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Abstract—Over an algebraically closed field of characteristic p, there are three group schemes
of order p, namely the ordinary cyclic group Z/p, the multiplicative group μp ⊂ Gm and the
additive group αp ⊂ Ga. The Tate–Oort group scheme TOp puts these into one happy family,
together with the cyclic group of order p in characteristic zero. This paper studies a simplified
form of TOp, focusing on its representation theory and basic applications in geometry. A final
section describes more substantial applications to varieties having p-torsion in Picτ , notably the
5-torsion Godeaux surfaces and Calabi–Yau threefolds obtained from TO5-invariant quintics.
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1. INTRODUCTION

The Tate–Oort group scheme aims to extend what we know about the usual cyclic group of
order p and its representation theory to work over a field of characteristic p, and in mixed charac-
teristic. It exists in several forms, split and nonsplit.

This paper concentrates on an easy version that I call t-split. (See Subsection 6.3 for the nonsplit
form.) As an oversimplified slogan,

• TOp is a group scheme over the base ring B = Z[S, t]/(P ), where P = Stp−1 + p;
• its underlying scheme is the closed subscheme TOp ⊂ A1

B defined by xp − Sfp(t, x), where
fp is set up in order that the congruence (1 + tx)p ≡ 1 holds modulo the ideal (P,F ) (see
Subsection 3.2 for the specific formula);

• its group law G×G → G is
(y, z) �→ x = y + z + tyz (1.1)

where y = x⊗ 1 and z = 1⊗ x are coordinates on the two factors (see the discussion below).
The details and the main properties are discussed in Subsection 3.2.

The main feature of this definition is that the coordinate ring A = B[TOp] contains the function
τ = 1 + tx with τp = 1. Thus when t is invertible, TOp has p distinct characters τ i for i =
0, . . . , p − 1, and one-dimensional representations 1

p (i) on which TOp[1/t] acts by multiplication
by τ i (cf. Lemma 2.1). Thus its representation theory is reductive: every representation splits into
eigenspaces as 1

p (a1, . . . , am), exactly as representations of μp over C. This is what I mean by t-split.

1.1. Background. Three different group schemes of order p in characteristic p play the same
role as the cyclic group Z/p in characteristic 0. These are

• F+
p defined by xp = x with the group operation (y, z) �→ y + z;

• αp defined by xp = 0 with (y, z) �→ y + z;
• μp defined by xp = 1 with (y, z) �→ yz.
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In each case, the underlying scheme is a hypersurface in the affine x-line A1
〈x〉 defined by a monic

equation, and the group law is the restriction of a polynomial map A1 ×k A1 → A1, where y, z
denote coordinates on the two factors.1 The induced k-algebra homomorphism on the coordinate
ring A = B[TOp] is traditionally described as a Hopf algebra (or bigebra) structure A → A ⊗k A
on the coordinate ring A, given by x �→ x⊗ 1 + 1⊗ x in the two additive cases or x �→ x⊗ x in the
case of μp, but for the present this obscures rather than enlightens; I prefer to write y = x⊗ 1 and
z = 1⊗ x. The bigebra comes into its own in the discussion of Cartier duality in Section 4.

The Tate–Oort group scheme TOp puts these three together as a deformation family. By the
above description, as a hypersurface defined by a monic equation, its coordinate ring A = B[TOp]
is free over B with basis {1, . . . , xp−1}. When S �= 0, the polynomial xp − Sfp is separable in x,
so TOp[1/S] is etale over B, and is a form of Z/p. When t �= 0, I can rewrite (1.1) as (y, z) �→
((1 + ty)(1 + tz) − 1)/t, which makes TOp[1/t] isomorphic to μp under x �→ 1 + tx. The fibre
of TOp over the point p = S = t = 0 is αp.

The regular representation of a finite group scheme is its coordinate ring. In this case, the
coordinate ring A = B[TOp] has basis {1, x, . . . , xp−1}, so the regular representation of TOp is
the (p − 1)th symmetric power of the two-dimensional representation {1, x}. The affine space Ap

corresponding to the regular representation, or its projectivisation Pp−1, serves as an ambient space
for TOp-equivariant varieties. TOp-invariant ideals of polynomial functions on Ap lead to non-
singular projective algebraic varieties of interest. The 5-torsion Godeaux surfaces of [5] (see also
Subsection 6.1.1 and [10]) serve as a guiding case.

1.2. Philosophical principle. Wherever you see a Z/p symmetry or a μp action over C,
you should expect to see Z/p, μp and αp in characteristic p, and TOp in mixed characteristic. In
characteristic p, it is a mistake to view an inseparable field extension or a geometric quotient by a
nonreduced group scheme (containing μp or αp) as pathological, while viewing a separable Galois
extension or an etale cover of degree divisible by p as virtuous. A Z/p Galois extension is Artin–
Schreier, which is as pathological as it gets: wild ramification gives curves of arbitrary genus as etale
covers of A1, and makes basic techniques such as counting Hurwitz numbers useless. By contrast,
the group scheme μp is reductive, and quotients of linear spaces by μp are just toric varieties. In
calculations such as those of Section 5, αp is in many ways the easiest of all to work with.

There is a rich theory of inseparable field extensions (see, for example, [4]), but it rarely makes
it to the surface in introductory courses, which commonly define inseparable extensions only to get
rid of them.

1.2.1. Website. This paper is accompanied by the website [10]. This includes links to more
advanced applications, and computer files illustrating many of the calculations of the paper. Except
possibly for some of the proofs of nonsingularity, no deep or large-scale computation is involved,
just hundreds of experiments and sanity checks without which the paper would not be viable. My
computer work is written in Magma [2], and everything here works instantly in the free online
calculator [7].

2. HYBRID ADDITIVE–MULTIPLICATIVE GROUP

2.1. The algebraic group G. For any base ring B and t ∈ B, write G = SpecA, where
A = B[x, 1/(1 + tx)]. That is, x is the coordinate on the affine line A1

B over B, and G is the standard
open subscheme (1 + tx �= 0) ⊂ A1

B. Then (1.1) defines the structure of an affine group scheme
on G, with unit element x = 0 and inverse x �→ −x/(1 + tx). This is a hybrid of the multiplicative
group Gm and the additive group Ga: over the open set SpecB[1/t] where t is invertible, it is

1In the language of SGA 3, (1.1) can be viewed as a map of functors taking any two S-valued points y, z ∈ TOp[S]
to y + z + tyz ∈ TOp[S].
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isomorphic to Gm under x �→ 1 + tx, and over the closed subscheme V (t) = Spec(B/t) where t = 0,
it is isomorphic to Ga.

View GB,t as the subgroupscheme

GB,t :=

{(
1 0
x 1 + tx

)}
⊂ Aff(1, B) ⊂ GL(2, B) (2.1)

of the affine group Aff(1, B). The matrix form (2.1) writes the group law (1.1) in the form

(1 + ty, 1 + tz) �→ (1 + ty)(1 + tz), (2.2)

while specifying how to cancel t top and bottom in (y, z) �→ ((1 + ty)(1 + tz) − 1)/t, even where
t = 0. This gives the unchanging (1.1). It follows that the matrices (2.1) commute, and that the
bth power map in GB,t is given by

x �→ (1 + tx)b − 1

t
=

b∑
i=1

(
b

i

)
ti−1xi = tb−1xb + . . .+ bx (2.3)

for any b ≥ 1.

2.2. The given representation (B⊕2)∨ of G. Formula (2.1) defines an action of G on A1,
and on the space B⊕2 of inhomogeneous linear forms on it. The notation hides two ambiguities. To
cure the first, let x be the usual coordinate of G = SpecB[x, 1/(1 + tx)] and y the linear coordinate
on A1. Then the action G ×B A1 → A1 is the polynomial map m : (x, y) �→ x + y + txy. On
the level of coordinate rings, it corresponds to the B-algebra homomorphism m∗ : B[y] → B[x, y]
sending y �→ x+ y + txy.

The second issue is that I want the action of G on the affine space A2
B of inhomogeneous linear

forms on A1, the dual of that expressed by the matrix in (2.1). Write B⊕2 for the free module
B · 1⊕B · y of linear forms, and let w0, w1 be the dual basis of (B⊕2)∨, so that the affine space A2

B

of inhomogeneous linear forms is SpecB[w0, w1]. Then the action of G on (B⊕2)∨ is given by right
multiplication (w0, w1) �→ (w0, w1)

(
1 0
x 1+tx

)
by the matrix of (2.1), that is, the polynomial map

A2
B ×B G → A2

B given by
{
w0 �→ w0 + xw1,

w1 �→ (1 + tx)w1.
(2.4)

2.3. Symmetric power Ud = Symd((B⊕2)∨). The next Section 3 treats the t-split Tate–Oort
group TOp as a subgroupscheme of the hybrid group G; the representations I need invariably come
by restricting representations of the algebraic group G. To prepare for this, I treat the dth symmetric
power of the given representation of G, that is, the affine space Ad+1 of forms of degree d. With
w0, w1 as above, the dth symmetric power of (B⊕2)∨ is based by {u0, u1, . . . , ud}, corresponding to
Symd(w0, w1) = {wd

0 , w
d−1
0 w1, . . . , w

d
1}, the dual basis to {1, x, . . . xd}. Its G action is defined by

right multiplication (u0, u1, . . . , ud) �→ (u0, u1, . . . , ud)M where

M =

⎛⎜⎜⎜⎜⎝
1 0 0 . . . 0
x 1 + tx 0 . . . 0

...
...

...
...

xd dxd−1(1 + tx)
(d
2

)
xd−2(1 + tx)2 . . . (1 + tx)d

⎞⎟⎟⎟⎟⎠ , (2.5)

with entries mij =
(i
j

)
xi−j(1 + tx)j if i ≥ j, or 0 if j > i.
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One strategy in subsequent calculations involves reducing to the case t invertible, where the
representation theory of TOp is reductive, and every representation splits into one-dimensional
eigenspaces. The following observation plays a key role in this.

Lemma 2.1. (i) The matrix M has d+ 1 eigenvalues (1 + tx)k for k = 0, . . . , d.
(ii) Write

v0 = u0, v1 = u0 + tu1, v2 = u0 + 2tu1 + t2u2, . . . (2.6)

or, more formally,

vk =
k∑

i=0

(
k

i

)
tiui = u0 + ktu1 +

(
k

2

)
t2u2 + . . .+ ktk−1uk−1 + tkuk. (2.7)

That is, vk =
(
1, kt,

(k
2

)
t2, . . .

(k
i

)
ti, . . . , tk, 0, . . . , 0

)
, with entries the terms in the binomial expansion

of (1 + t)k. Then vk is an eigenvector with eigenvalue (1 + tx)k, or vkM = (1 + tx)kvk.
(iii) Where t is invertible, the vk for k = 0, 1, . . . , d form an eigenbasis of Ud. Moreover,

relations (2.7) can be inverted to give the lower triangular basis {ui} in terms of the eigenbasis {vi}:

u0 = v0, u1 =
−v0 + v1

t
, u2 =

v0 − 2v1 + v2
t2

, . . . , (2.8)

or systematically

uk =
1

tk

k∑
i=0

(−1)k−i

(
k

i

)
vi =

(−1)kv0 + (−1)k−1kv1 + . . . − kvk−1 + vk
tk

. (2.9)

Proof. (i) Subtracting (1 + tx)k times the identity matrix from M leaves a matrix with a
k × (d+ 1− k) block of zeros, which is clearly singular, so that (1 + tx)k is an eigenvalue.

(ii) To understand the eigenvector identities, write out the cases d = 2, 3, . . . by hand. For
example,

(1, 2t, t2) ·

⎛⎝ 1 0 0
x 1 + tx 0
x2 2x(1 + tx) (1 + tx)2

⎞⎠ = (1 + tx)2 · (1, 2t, t2). (2.10)

More formally, vk has ith entry
(k
i

)
ti or 0, and mij =

(i
j

)
xi−j(1 + tx)j or 0. Therefore, the jth entry

of the vector vkM equals
∑k

i=j

(k
i

)
ti
(i
j

)
xi−j(1 + tx)j . Fix j and replace the sum over i by a sum

over l = i− j to get

k∑
i=j

(
k

i

)
ti
(
i

j

)
xi−j(1 + tx)j = (1 + tx)jtj

k−j∑
l=0

(
k

j + l

)(
j + l

j

)
tlxl. (2.11)

Now the binomial coefficient identity(
k

j + l

)(
j + l

j

)
=

k!

(k − j − l)! (j + l)!

(j + l)!

j! l!
=

k!

(k − j)! j!

(k − j)!

(k − j − l)! l!
=

(
k

j

)(
k − j

l

)
(2.12)

transforms the right-hand side to

(1 + tx)jtj
k−j∑
l=0

(
k

j

)(
k − j

l

)
tlxl = (1 + tx)k

(
k

j

)
tj. (2.13)

This proves (ii).
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Assertion (iii) is the matrix identity

⎛⎜⎜⎝
1 0 0 . . .
1 t 0 . . .
1 2t t2 . . .
. . . . . . . . . . . . . .

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1 0 0 . . .

−1/t 1/t 0 . . .

1/t2 −2/t2 1/t2 . . .

−1/t3 3/t3 −3/t3 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ = Id+1, (2.14)

which is proved similarly. �
Other associated representations of G usually have lower triangular bases and eigenbases where

t is invertible, which are related in a similar way.

3. CONSTRUCTION OF TOp

3.1. Group TOp in characteristic p. The hybrid group G puts Gm and Ga in one family.
The first step towards linking the three characteristic p group schemes Z/p, μp and αp as one family
is to work over the base ring B = Fp[S, t]/(St) or its Spec, the line pair SpecB : (St = 0) ⊂ A2

Fp
.

The construction uses the parameter S ∈ B to choose a p-torsion subgroupscheme of GB,t. Set
TOp : (x

p = Sx) ⊂ GB,t. Using the identity (a + b)p = ap + bp and relations (2.2) and (2.3) of
Subsection 2.1 gives (

1 0
x 1 + tx

)p

=

(
1 0

tp−1xp 1 + tpxp

)
=

(
1 0
0 1 + tpxp

)
. (3.1)

In the second equality, tp−1xp = 0 comes from xp = Sx and St = 0 ∈ B.
Proposition 3.1. The closed subscheme TOp = (xp − Sx) ⊂ GB,t is a subgroupscheme. It

has the following properties :

(i) TOp is the hypersurface in A1
B,〈x〉 over SpecB = (St = 0) ⊂ A2

Fp
defined by xp = Sx;

(ii) its coordinate ring is free of rank p over B with basis 1, x, . . . , xp−1;

(iii) where S is invertible, TOp is etale over B; it becomes isomorphic to the additive group
F+
p = Z/p on pulling back by S = sp−1;

(iv) where t is invertible, TOp is isomorphic to the multiplicative group scheme μp;

(v) where S = t = 0, it is αp.

Proof. The only thing requiring proof is

(y + z + tyz)p − S(y + z + tyz) ∈ Ideal(yp − Sy, zp − Sz). (3.2)

In fact, it is
(yp − Sy) + (zp − Sz) + tpzp(yp − Sy) + St(tp−1yzp − yz). (3.3)

The point of (iii) is that if I set S = sp−1, the equation of TOp splits into linear factors

xp − sp−1x =
∏
a∈F+

p

(x− as), (3.4)

so the pulled-back group becomes F+
p where s is invertible. However, without s = p−1

√
S, the p− 1

generators of F+
p
∼= Z/p are Galois conjugate over B, and the coordinate x of A1 cannot distinguish

them, so TOp[1/S] is a nonsplit form of Z/p. �
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3.2. Group TOp in mixed characteristic. In this step p is a prime integer, and the base
ring is

B = Z[S, t]/(P ), where P = Stp−1 + p. (3.5)

I can view this as B = Z[t, p/tp−1] ⊂ Z[t, t−1] ⊂ Q(t), so it is an integral domain. It turns out that
I can still construct TOp as a subgroupscheme of the p-torsion of the algebraic group GB,t.

The intermediate binomial coefficients
(
p
i

)
for i = 1, . . . , p − 1 are divisible by p; set2

fp(t, x) =

p−1∑
i=1

(p− 1)!

i!(p− i)!
ti−1xi =

p−1∑
i=1

(
p
i

)
p

ti−1xi =
(1 + tx)p − 1− tpxp

pt
. (3.6)

Thus (3.6) cancels a factor of p and of t, even where they are zero. I take

F = xp − Sfp(t, x) (3.7)

as the equation of TOp ⊂ GB,t. For example,

p = 2: F = x2 − Sx,

p = 3: F = x3 − S(tx2 + x),

p = 5: F = x5 − S(t3x4 + 2t2x3 + 2tx2 + x),

p = 7: F = x7 − S(t5x6 + 3t4x5 + 5t3x4 + 5t2x3 + 3tx2 + x).

(3.8)

Lemma 3.2 verifies that (3.7) defines a group subscheme TOp ⊂ GB,t with the unwavering group
law (1.1). Equation (3.7) has the following key properties:

(i) it is monic of degree p in x;
(ii) the linear term in x is −Sx, and all the intermediate terms are divisible by t.
The base is stratified according to which of S and t are invertible or zero. Where S is invertible,

F in (3.7) is separable in x, so that TOp[1/S] is etale and finite over the base, and is therefore a
form of Z/p. Where t is invertible, TOp[1/t] is isomorphic under x �→ 1 + tx to the subgroupscheme
μp ⊂ Gm. Where S and t are both zero, TOp is isomorphic to αp ⊂ Ga.

Lemma 3.2. (i) (1 + tx)p − 1 ≡ tpF mod P .
(ii) Let x1 and x2 be indeterminates, and set x3 = x1 + x2 + tx1x2. Then xp3 − Sfp(x3, t)

belongs to the ideal (
xp1 − Sfp(x1, t), x

p
2 − Sfp(x2, t), P

)
⊂ Z[x1, x2, S, t]. (3.9)

Proof. (i) In view of (3.6), (3.7) and (3.5), I get

(1 + tx)p − 1 = tpxp + ptfp(x, t) = tpF + tfp(t, x)P. (3.10)

(ii) Since 1 + tx3 = (1 + tx1)(1 + tx2), I get the identities

(1 + tx3)
p − 1 ≡ (1 + tx1)

p(1 + tx2)
p − 1 ≡ A((1 + tx1)

p − 1) +B((1 + tx2)
p − 1), (3.11)

with (say) A = (1 + tx2)
p and B = 1. The argument of (3.10) gives

(1 + txi)
p − 1 ≡ tp(xpi − Sfp(t, xi)) mod P for i = 1, 2, 3 (3.12)

2The polynomials fp(t) = ((1 + t)p − 1 − tp)/(pt) have some pedigree: they go back to Cauchy and Liouville
in the context of Fermat’s last theorem. For p prime, fp has the trivial factor (1 + t)(1 + t + t2) if p ≡ 5 or
(1 + t)(1 + t + t2)2 if p ≡ 1 mod 6; the nontrivial factor, the Cauchy–Mirimanoff polynomial, is conjectured or
known to be irreducible (cf. [8, 9]). I am indebted to John Cremona and Marc Masdeu for these references.
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as equalities in Z[x1, x2, S, t]/(P ). Apply (3.12) to the three terms in (3.11) to get

tp(xp3 − Sfp(t, x3)) ≡ tpA(xp1 − Sfp(t, x1)) + tpB(xp2 − Sfp(t, x2)) (3.13)

modulo P . Now Z[x1, x2, S, t]/(P ) = B[x1, x2] is an integral domain, so the factor tp cancels. �
3.3. Representation theory of TOp. The regular representation of TOp is its action on

its own coordinate ring A[TOp] = B[x]/(F ). Since F is monic of degree p, this gives rise to the
affine space Ap = SpecB[U ] or projective space Pp−1 = ProjB[U ] corresponding to the (p − 1)th
symmetric power U = Symp−1((B⊕2)∨) of the dual of the given representation.

As discussed in Subsection 2.3, U is the free B-module based by {u0, . . . , up−1}, with the TOp

action given by u �→ uM , with M the lower triangular matrix (2.5). Over B[1/t], it has the
eigenbasis {v0, . . . , vp−1} of Lemma 2.1.

To define ideals of TOp-invariant subschemes of Pp−1 (such as the quintic hypersurfaces in P3

or P4 for the 5-torsion Godeaux surfaces or threefolds discussed in Subsection 6.1.1), I need other
representations of TOp, usually arising as associated representations of U . Notably, symmetric
powers Symk(U), exterior powers

∧2 U , or more complicated cases such as Syml(Symk(U)) or
U ⊗

∧2 U . These usually also have lower triangular bases over B, and eigenbases over B[1/t].
Passing between the two eventually becomes harder than Lemma 2.1, with calculations involving
the relations P = Stp−1 + p and F = xp − fp(t, x) defining B = Z[S, t]/(P ) and B[TOp] = B[x]/(F )
(see Section 5 for a trailer).

4. THE CARTIER DUAL (TOp)
∨

4.1. Cartier duality. The t-split Tate–Oort group TOp has base ring B = Z[S, t]/(P ), where
P = Stp−1 + p. Its coordinate ring A = B[x]/(F ) (with F as in (3.7)) is a B-bigebra: it is a com-
mutative algebra, with Hopf algebra structure induced by the never varying group structure (1.1).

Cartier duality corresponds philosophically to Pontryagin duality between the additive group Z/n
and the multiplicative group μn ⊂ C× (or a finite Abelian group A and its character group Â =
Hom(A,C×)). It is based on the observation that for a finite commutative group scheme G = SpecA
with coordinate ring A, the axioms satisfied by its algebra multiplication α : A ⊗ A → A and its
symmetric Hopf algebra structure γ : A → A ⊗ A (induced on coordinate rings by the group law
G×G → G) are precisely dual to one another. Interchanging the two determines the Cartier dual
group scheme G∨.

Remark 4.1. For a finite commutative group scheme G and a scheme X (all over a base B),
morphisms G → PicX correspond one-to-one to G∨-torsors Y → X. This generalises the traditional
μn etale cover for a subgroup Z/n ⊂ Pic0X, and is a key point motivating my construction (although
not really essential for the proofs), so I give a brief sketch.

Given σ : G → PicX, the G∨-torsor Y → X comes from the Poincaré line bundle L on
X ×B PicX: pull L back to a line bundle σ∗(L) on G ×B X, and then push down to a sheaf
A = πX∗(σ∗(L)) of OX -modules. Then A can be made into an OX-algebra via the group mul-
tiplication G × G → G. Also, A is Zariski locally free of rank 1 as an OX [G]-module. Then
Y = SpecX A is the G∨-torsor corresponding to σ.

Alternatively, in the language of SGA 3, G is defined as a functor that takes a B-scheme S to
a finite commutative group G(S). The Cartier dual G∨ is then the functor that takes S to the
character group Hom(G(S),Gm,B) (this is discussed in [12, (2.10)]). A morphism G → PicX =
H1(X,O×

X ) defines a class in H1(X,G∨) (in the Zariski topology), which is the group of G∨-torsors.
Cartier duality swaps additive and multiplicative structures in the same way as Pontryagin

duality. It also interchanges the effect of t-splitting and S-nonsplitting. I explain: TOp[1/t] is
reductive, with p eigenvalues (1 + tx)k or one-dimensional representations, as in Lemma 2.1; and
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TOp[1/S] is a form of Z/p whose nonzero points form an irreducible scheme (that is, they are all
conjugate over B, as in Proposition 3.1(iii)).

The opposite holds for the Cartier dual: (TOp)
∨[1/t] is the split cyclic group Z/p (see The-

orem 4.3 below), so its underlying scheme has p irreducible components; and (TOp)
∨[1/S], while

reductive, has only the trivial one-dimensional representation and an irreducible (p− 1)-dimensional
representation, which only splits into eigenspaces after a cyclic Galois extension of order p− 1.

4.2. Notation. In my case, A is a free B-module, based by xi for i = 0, . . . , p− 1. Write A∨

for the dual B-module, with dual basis u0, . . . , up−1. The Hopf algebra structure of (1.1) is the
B-algebra homomorphism γ : A → A⊗A defined by

x �→ y + z + tyz = x⊗ 1 + 1⊗ x+ tx⊗ x. (4.1)

The dual of γ defines a B-module homomorphism β : A∨ ⊗ A∨ → A∨, making A∨ into a
commutative B-algebra. Theorem 4.3 calculates the practical effect of taking the dual; allowing
denominators dividing (p − 1)! gives the multiplicative structure of the algebra A∨ in a pleasing
form. This treatment does not involve the relation F , so it could be viewed in terms of the algebraic
group GB,t of Section 2.

The Cartier dual group scheme (TOp)
∨ of TOp has underlying scheme SpecA∨, and so is a

closed subscheme of the affine space A
p
B with coordinates u0, . . . , up−1. The usual structure α of A

as a B-algebra gives the dual Hopf algebra structure δ : A∨ → A∨ ⊗A∨ in a way that is conceptually
similar, although computationally more involved, as explained below. Theorem 4.5 describes the
comultiplication δ explicitly.

For operations involving the tensor product A∨ ⊗A∨, I introduce new notation vi = ui ⊗ 1 and
wi = 1 ⊗ ui for coordinates on the two factors of Ap ×B Ap. This is the same device as my use of
y = x⊗ 1 and z = 1⊗ x in treating the structures of A, explained in Subsection 1.1.

Remark 4.2. I allow denominators dividing (p − 1)! in this section, but refrain from burdening
the notation with TOp[1/(p − 1)!] or (TOp)(p). The localisation does not change anything near p, but
it simplifies the treatment considerably (notably Theorems 4.3–4.5). Cartier duality works perfectly
well without denominators, but the explicit calculations I favour would then be inadequate. I treat
the Cartier dual for theoretical purposes here, and I do not really use it seriously in applications.

4.3. The algebra structure β : A∨ ⊗ A∨ → A∨. Psychologically, the really hard first step
is to take the notion of dual map literally. The Hopf algebra structure γ : x �→ y + z + tyz of A is
a B-algebra homomorphism, so

γ(xa) = (y + z + tyz)a =
∑

i+j+k=a

(
a

i, j, k

)
tkyi+kzj+k, (4.2)

where
( a
i,j,k

)
is the multinomial coefficient, with i+ j + k = a. To nail down the dual map, I solemnly

express (4.2) in terms of structure constants of the Hopf algebra, writing the right-hand side as a
sum of monomials ybzc:

γ(xa) =
∑
bc

cabcy
bzc, (4.3)

where cabc is the coefficient of ybzc in (y + z + tyz)a. With perseverance, one reads from (4.2) that

cabc =

(
a

i, j, k

)
tk where k = b+ c− a, i = b− k, j = c− k. (4.4)

In (4.2), the exponents i+ k and j + k must be nonnegative and i+ j + k = a. This translates
in terms of a, b and c as saying that cabc is nonzero exactly for b and c in the triangle bounded
by b, c ≤ a ≤ b + c, with corner monomials ya, za and (yz)a. That is, β(ubuc) =

∑
cabcua only

involves a with max{b, c} ≤ a ≤ b+ c.
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The multiplication β : A∨ ⊗ A∨ → A∨ is the dual of γ, so is given on the basis u0, . . . , up−1 as
ubuc �→

∑
cabcua with the same structure constants.

Theorem 4.3. (i) The multiplication β : A∨ ⊗A∨ → A∨ is given on the basis u0, . . . , up−1 by

ubuc =
∑
a

cabcua (4.5)

where the structure constants cabc are as in (4.4).
(ii) Viewed as a list of relations on the ui, the multiplication table of (4.5) generates the ideal

k!uk =
k−1∏
i=0

(u1 − it) for k = 2, . . . , p − 1 and
p−1∏
i=0

(u1 − it) = 0. (4.6)

In other words, u0 = 1A∨ is the identity element of A∨, and after u1, I can view the remaining
generators as t-binomial coefficients, the expressions

uk = t-
(
u1
k

)
=

u1(u1 − t) . . . (u1 − (k − 1)t)

k!
, (4.7)

with the final line u1(u1 − t) . . . (u1 − (p − 1)t) =
∏

a∈F+
p
(u1 − at) = 0.

Rather than denominators, the factorials k! could possibly be viewed as the statement that the
products u1(u1 − t)(u1 − 2t), etc., are divisible in A∨. Without denominators, I would need to
include more relations such as u2u3 = . . . , and so on. The product over F+

p in the final relation is
reminiscent of the s-splitting of (3.4) when S = sp−1.

Example 4.4 (p = 5). First, no (y + z + tyz)a with a > 0 has a constant term so u0 = 1 has
12 = 1. The argument for u0 × ui = ui is similar; I write u0 = 1 from now on. Now writing u1 × u1
requires finding all occurrences of yz in all (y + z + tyz)a. For a = 1 there is one with coefficient t,
and for a = 2 there is one with coefficient 2. So,

u1 × u1 = tu1 + 2u2, or 2u2 = u1(u1 − t). (4.8)

Next, u1 × u2 needs all occurrences of yz2 in all (y + z + tyz)a. Here 2tyz2 comes from a = 2
and 3yz2 from a = 3. Thus,

u1 × u2 = 2tu2 + 3u3, or 3u3 = u2(u1 − 2t). (4.9)

In the same way, yz3 appears in (y + z + tyz)a with coefficient 3t for a = 3 and with coefficient 4
for a = 4, giving

u1 × u3 = 3tu3 + 4u4, or 4u3 = u3(u1 − 3t). (4.10)

Finally, yz4 appears in (y + z + tyz)4 only. This gives

u1 × u4 = 4tu4, or (u1 − 4t)u4 = 0. (4.11)

The proof of Theorem 4.3 for all p is just the same, and I omit it.

4.4. The Hopf algebra structure δ : A∨ → A∨ ⊗ A∨. The algebra A = B[x]/(F ) is a
hypersurface, a staple object of commutative algebra. However, the Hopf algebra comultiplication
of A∨ needs the multiplication table written out in the basis 1, x, . . . , xp−1, recording the residue
mod I = (P,F ) of xi × xj = xi+j . Applying F replaces xp by a sum of p − 1 terms involving S
and different powers of t. Expressing xk in this basis needs k + 1 − p iterations of the reduction,
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so deriving the structure constants is a cumbersome calculation. However, the answer given by
computer algebra and a certain amount of guesswork turned out simpler than expected, leading to
the comparatively humane treatment of Theorem 4.5.

Since by Theorem 4.3 u1 generates A∨ as a B-algebra (with denominators at most (p − 1)!),
and comultiplication δ is a B-algebra homomorphism, I fortunately only need the image of u1.

Theorem 4.5. The comultiplication δ : A∨ → A∨ ⊗A∨ takes u1 to

δ(u1) = v1 + w1 + S

(
p−1∑
i=1

viwp−i

)
+

2p−2∑
n=p+1

cn

(
p−1∑

i=n−p+1

viwn−i

)
, (4.12)

where cn is the coefficient of x in xn mod I = (P,F ). Specifically,

cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for n = 0,

1 for n = 1,

0 for 2 ≤ n ≤ p− 1,

S for n = p,

(4.13)

cp+n = (−1)n−1 1

p

(
p+ n− 1

n

)
S2tp−n−1 for 1 ≤ n ≤ p− 2. (4.14)

Equivalently,

δ(u1) = v1 + w1 + S(v1wp−1 + . . .+ vp−1w1)

+
1

p

(
p

1

)
S2tp−2(v2wp−2 + . . .+ vp−2w2)− . . .+

1

p

(
2p − 3

p− 2

)
S2tvp−1wp−1. (4.15)

For p = 3 and p = 5 this gives

δ(u1) = v1 + w1 + S(v1w2 + v2w1) + S2tv2w2

and
δ(u1) = v1 + w1 + S(v1w4 + v2w3 + v3w2 + v4w1)

+ S2t3(v2w4 + v3w3 + v4w2)− 3S2t2(v3w4 + v4w3) + 7S2tv4w4. (4.16)

These formulas were suggested by computer experiments; you recognise at once the factor

(−1)n−1 1

p

(
p+ n− 1

n

)
from (say) the coefficients when p = 11:

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, S, S2t9,−6S2t8, 26S2t7,−91S2t6,

273S2t5,−728S2t4, 1768S2t3,−3978S2t2, 8398S2t. (4.17)

Lemma 4.6. For n = 1, . . . , p − 2, the coefficients cp+n of (4.14) are given by the following
inductive formula, starting out from cp = S = − 1

pS
2tp−1:

cp+n = −
n∑

i=1

(
p

i

)
t−icp+n−i for n = 1, . . . , p− 2. (4.18)

Proof. Each term of (4.14) has S to power 2, and cp+n has t to power p− n− 1, which verifies
the exponents in (4.18).
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The coefficient of cp+n in (4.14) (including sign) equals −1/p times the coefficient of tn in the
binomial expansion of (1 + t)−p. Then for n ≥ 1, (4.18) just states that the coefficient of tn in the
product (1 + t)−p

∑
i≥0(−1)i

(p+i−1
i

)
ti is zero. �

Proof of Theorem 4.5. The first three lines of (4.13) are clear, since the product xi × xj is
already reduced for i+ j ≤ p− 1.

The basis of A over B is {xi} for i = 0, . . . , p − 1. However, since δ(u1) has no constant term,
I omit x0 = 1A, and work with the partial basis {xi} for i = 1, . . . , p − 1. Multiplying this basis
by x and replacing xp by Sfp(t, x) means multiplying the column vector (x, . . . , xp−1) on the left
by the (p − 1)× (p − 1) matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
S 1

p

(p
2

)
St 1

p

(p
3

)
St2 . . . 1

p

(p
2

)
Stp−3 Stp−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.19)

The bottom row does xp �→ Sfp(t, x) =
(
1
p

(p
i

)
Sti−1

)
· column(x, . . . , xp−1).

The case k = p of (4.13) asks for the coefficient of x1 in the reduction of xp mod F . This
corresponds to x × xp−1, so to the bottom left entry mp−1,1 of M , giving cp = S. For the same
reason, cp+n in (4.14) is the bottom left (p− 1, 1) entry of Mn+1 reduced mod P = Stp−1 + p.

In more detail: multiplication by x does xi �→ xi+1 (the superdiagonal ones of M), except that
the final basis element xp−1 goes to Sfp(t, x), the “carry” of long multiplication. Multiplication
by x2 does xi �→ xi+2, except for xp−2 �→ Sfp(t, x) and xp−1 �→ x × Sfp(t, x), which involves a
second “carry” of its top term,

1

p

(
p

1

)
Stp−2xp−1 �→ S2tp−2fp(t, x). (4.20)

This gives the value cp+1 = S2tp−2 in (4.14). The term S2tp−2 is not divisible by Stp−1, so is already
reduced mod P . However, for each i with 3 ≤ i ≤ p − 2, treating xi × xp−1 leads to repeated
reduction mod F , and the result always has terms divisible by S3tp−1, which reduce mod P .

Consider x3 × xp−1. A first reduction step xp+2 − x2F gets rid of the leading term xp+2 but
leaves Stp−2xp+1. After several reductions, one verifies that

xp+2 −
(
x2 + Stp−2x+ S2t2p−4 +

1

p

(
p

2

)
Stp−3

)
F (4.21)

has degree at most p− 1 in x, and ends in
(
S3t2p−4 + 1

p

(p
2

)
S2tp−3

)
x. To reduce the coefficient of x

mod P , replace S3t2p−4 by −pS2tp−3, which gives

cp+2 =

(
−p+

1

p

(
p

2

))
S2tp−3 = − 1

p

(
p+ 1

2

)
S2tp−3. (4.22)

I now prove by induction that for n = 1, . . . , p − 2, the bottom left (p − 1, 1)th entry of Mn+1

equals cp+n as stated in (4.14). Obviously Mn+1 = M × Mn, and its bottom left entry comes
by multiplying the bottom row of M (made up of the coefficients of Sfp(t, x)) by the left column
of Mn. Now the left column of Mn is made up of p − n − 1 zeros, followed by the quantities cp+i

for i = 0, . . . , n − 1; indeed, for each j, the effect of doing M j �→ M × M j just lifts each row of
the matrix by one, and puts the new entry cp+j into the bottom left. The products add to cp+n by
Lemma 4.6, completing the proof. �
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5. GEOMETRIC APPLICATIONS

I discuss free TOp actions on varieties V . The main inspiration comes from Godeaux’s con-
struction of quintic hypersurfaces invariant under a free μ5 action. The Fermat hypersurface
F5 : (

∑4
i=0 x

5
i = 0) ⊂ P4 over C (for example) has the free μ5 action 1

5 (0, 1, 2, 3, 4), with quotient
X = F5/μ5 a Calabi–Yau threefold; the section x0 = 0 is a classical Godeaux surface S. Both X
and S have π1 = Z/5, and torsion Z/5 ⊂ Pic given by the eigensheaves of the group action.

This construction and many similar ones can also be done in mixed characteristic, with μp or Z/p
replaced by TOp. The case of 5-torsion Godeaux surfaces is described in Subsection 6.1.1. The real
cases of interest unfortunately involve large-scale calculations that can only be done by computer.
Rather than getting into an explanation of computer algebra, I give here a handful of initial cases
that illustrate some of the main techniques. Subsection 6.1 discusses some more advanced results.

A constantly recurring observation: a G-equivariant variety V is usually a simpler object to work
with than its quotient V/G. The issue is even more pronounced in mixed characteristic: whereas
the families of equivariant varieties I construct are flat over the base B, with constant cohomology
groups, the corresponding families of quotients usually have fibres with nonreduced Pic (so having
jumping h1(O) and not Cohen–Macaulay).

5.1. Background. Several of the sections below treat curves of genus 1 with a p-torsion group
action. These topics can be viewed as including local deformations of supersingular curves with αp

actions. I discuss briefly the cultural background, and what this material relates to.
The Shimura surface S → X1(p) is the universal family of elliptic curves with a marked point

of order p over the modular curve X1(p), the completion of H/Γ1(p). Away from p, it has p disjoint
sections forming a copy of Z/p ⊂ E in each fibre. The p-torsion of an elliptic curve E over a field
of characteristic p is a group scheme of order p2 that includes the kernel of Frobenius, so that its
p-torsion subgroup contains a nonreduced group scheme, and has at most p distinct points. Over
the prime p, the base curve X1(p) of the Shimura surface breaks up into two curve components that
parametrise curves E with marked subgroup Z/p or μp, and intersect at a point corresponding to
the supersingular elliptic curve with marked subgroup αp. The standard reference3 is [3, Ch. V]
(especially Theorems 2.12–2.18 on pp. 250–252).

5.2. Plane cubics C3 ⊂ P2 with free TO3 action. This section illustrates a key technique
for calculating with TOp actions: start from the reductive case with t invertible, and then cancel
powers of t to achieve good reduction.

I set p = 3 and aim to produce a modular family of plane cubic curves with TO3 action; start
over the base ring Z[t, 1/t] and set S = −p/tp−1. The group action is then reductive, making it
easy to find the invariants as monomials in the eigenbasis {vi} of Lemma 2.1. For my plane cubics
to have good reduction at 3, I need to cancel as many powers of t as possible in linear combinations
of these invariants, substituting p �→ −Stp−1 where necessary. Doing so leads to a flat family over
SpecB on which TOp acts freely, with a nonsingular fibre over S = t = 0. Nonsingularity is an
open condition, so this implies without any further calculation that nearby fibres with S �= 0 or
t �= 0 are also nonsingular.

Write U = [u0, u1, u2] with the action (2.5). Over B[1/t], in terms of the eigenbasis v0, v1, v2
of Lemma 2.1, the invariant cubics are v30, v0v1v2, v31 and v32 . Substituting back into the u0 gives
v30 = u30, and then

v0v1v2 − v30 = t3u0u1u2 + 2t2u0u
2
1 + t2u20u2 + 3tu20u1. (5.1)

3I thank John Cremona for pointing out this reference.
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Substituting 3 �→ −St2 makes this divisible by t2, giving the invariant

tu0u1u2 + 2u0u
2
1 + u20u2 − Stu20u1. (5.2)

The same substitution makes v31 − v30 = t3u21 + 3t2u0u
2
1 + 3tu20u1 divisible by t3, giving the invariant

u31 − Su20u1 − Stu0u
2
1. (5.3)

The final reduction must take t6 out of something involving v32 . Starting as before from v32 − v30 and
substituting for 3 gives

t6u32 + 6t5u1u
2
2 + 3t4u0u

2
2 + 12t4u21u2 + 8t3u31

− St4u20u2 − 4St5u0u1u2 − 4St4u0u
2
1 − 2St3u20u1, (5.4)

which is divisible by t3, but the term in u31 only contains t3, and the next term in u20u2 only has t4.
To proceed, subtract off appropriate multiples of the invariants of (5.2) and (5.3):

v32 − 8(v31 − v30) + 6(v0v1v2 − v30)

= t6u32 + 6t5u1u
2
2 + 3t4u0u

2
2 + 12t4u21u2 + 18t3u0u1u2 + 9t2u20u2. (5.5)

Then two iterations of the substitution 3 �→ −St2 give the invariant

u32 − S(u0u
2
2 + 4u21u2 + 2tu1u

2
2) + S2(u20u2 + 2tu0u1u2). (5.6)

Remark 5.1. (i) There were choices in the above reductions, and I do not claim the answer is
in a canonical form. In more complicated cases, I do not know if the algebra of invariants is always
locally free over B.

(ii) There are alternative derivations of the invariants. Any reasonable ordering on the cubic
monomials S3(u0, u1, u2) gives the action on S3U as a 10 × 10 lower triangular matrix having
diagonal entries (that is, eigenvalues)

1, τ, τ2, τ2, τ3, τ3, τ4, τ4, τ5, τ6. (5.7)

Since τ3 = 1, the invariant eigenspace is four-dimensional, and can be found easily enough by
computer algebra.

5.2.1. Nonsingularity. The TO3-invariant cubic forms of (5.2), (5.3) and (5.6) are

c0 = u30,

c1 = u0(u0u2 + 2u21 + tu1u2 − Stu0u1),

c2 = u31 − Su20u1 − Stu0u
2
1,

c3 = u32 − S(u0u
2
2 + 4u21u2 + 2tu1u

2
2) + S2(u20u2 + 2tu0u1u2).

(5.8)

Consider the plane cubic E3 ⊂ P2
B〈u0,u1,u2〉 defined by F = c0 + c1 + c2 + c3, or cλ = c0 + λc1 +

c2 + c3 if you want to see a modular invariant. In characteristic zero, E is projectively equivalent
to the Hesse cubic y30 + y31 + y32 + λy0y1y2. On the other hand, it is flat over Z[S, t]/(St2 + 3), and
when S = t = 3 = 0 and λ �= 0 one sees that it defines a nonsingular curve.
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5.2.2. Supersingularity. Fans of computer algebra should enjoy playing with the consequences
of u30 + u0(u0u2 + 2u21) + u31 + u32 being supersingular. It means that the eigenvalues of Frobenius
are zero, which gives straightforward formulas for the number of points of E3 over Fpn. For q =
3, 9, . . . , 3n, . . . , the number of points over Fq is 4 = 1 + 3, 16 = 1 + 2 ×

√
9 + 9, 28 = 1 + 27,

64 = 1 − 2 ×
√
81 + 81, or more generally, 1 + q if n is odd, 1 + 2

√
q + q if n ≡ 2 mod 4, and

1− 2
√
q + q if n ≡ 0 mod 4.

5.2.3. Question: quasielliptic degeneration. The referee raises the following interesting ques-
tion, which I have not had time to study properly: The rational elliptic surface given by the
Hesse pencil is known to degenerate in characteristic 3 to the quasielliptic surface with equation
λx1(x

2
0 − x21) = x2(x

2
0 − x22). Can this degeneration, or this quasielliptic surface, be related to my

construction in terms of the TO3-invariant cubics (5.8)?

5.3. TO2-invariant quartic curve E4 ⊂ P(1, 1, 2). I include this briefly because it is in-
structive and easy. Set p = 2, and as usual, B = Z[S, t]/(St+ 2) and TO2 = Spec(B[x]/(x2 − Sx)).
Write u0, u1, v for coordinates on P(1, 1, 2) over B, and guess the TO2 action

u0 �→ u0, u1 �→ xu0 + τu1, v �→ x3u20 + 3x2τu0u1 + 3xτ2u21 + τ3v (5.9)

where τ = 1 + tx. I leave it as an exercise to check that the invariant subring of this action is
generated by

a = u0, b = u21 − Su0u1, c = (u0 + tu1)v + 3u31 − 2Su0u
2
1,

and e = v2 − 3Su21v + 3S2u0u1v − S3u20v
(5.10)

in degrees 1, 2, 3 and 4. [Hint: the method is always to start from the reductive case with 1/t,
calculate eigenforms, and then take out as many powers of t as possible.]

An invariant form such as a4 + ac + e defines a relative curve in P(1, 1, 2)B , and one sees that
this one reduces modulo (S, t, 2) to the nonsingular genus 1 curve

(v2 + u20v = u40 + u0u
3
1) ⊂ P(1, 1, 2)F2 . (5.11)

5.4. Enriques surfaces after Bombieri and Mumford. Consider first a complete inter-
section of three quadrics Y (2, 2, 2) ⊂ P5 (over C) having a free μ2 = {±1} action. Then Y is a K3
surface, in general nonsingular, and the quotient X = Y/μ2 is an Enriques surface with general mod-
uli, and with a chosen polarisation. In coordinates y1, y2, y3, z1, z2, z3 with action (+,+,+,−,−,−),
the invariant quadrics are Sym2(y1, y2, y3)⊕ Sym2(z1, z2, z3).

This generalises in a straightforward way to the case of TO2 in mixed characteristic at 2, and
gives nonsingular Enriques surfaces in characteristic 2 with torsion group Z/2, μ2 and α2, all
living together in a single deformation family with surfaces in characteristic 0 (cf. [6] for a similar
treatment).

5.4.1. Sketch of the problem of singularities. In the inseparable cases, it is known that the
“K3-like cover” Y must be singular (see [1, § 3]). If it were a nonsingular surface, an everywhere
nonzero vector field would imply the Euler number is 0, whereas as a nonsingular K3, it must be 24.
Proposition 5.3 shows that, for a general choice of parameters, Y is a K3 surface with 12 nodes,
whose Jacobian subscheme consists of 12 orbits of the group action. As a rough description, the
singular point is locally analytically y1y2 = z2, with Jacobian subscheme V (y1, y2, z

2), and the
group action is locally z �→ z + α with α2 = 0 (the p-closed vector field x ∂

∂z , with x the coordinate
of TOp), so that the quotient is nonsingular, with local analytic coordinates y1, y2. This is the
sufficient condition of [5, Sect. 4.4] for the quotient by a μp or αp action to be nonsingular. (We
hope to return to the question of nonsingularity criteria for quotients by inseparable group actions;
cf. Subsection 6.2.2.)
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5.4.2. Invariant quadrics. First fix the TO2 action on coordinates: choose three copies of the
rank 2 given representation (B⊕2)∨ of Subsection 2.2, with TO2 action (yi, zi) �→ (yi, xyi + τzi)
where τ = 1 + tx.

Lemma 5.2. The TO2-invariant quadratic forms are the 12 expressions

y2i , z2i − Syizi, yiyj, yizj + yjzi + tzizj for i, j = 1, 2, 3. (5.12)

Derivation. As before, the calculation proceeds in two steps: first work over B[1/t], when the
action diagonalises as in Lemma 2.1, and then cancel powers of t. In yi, zi only (for i = 1, 2, 3),
the squares of the ±1 eigenforms give the invariants y2i and (yi + tzi)

2. Taking the difference and
substituting 2 �→ −St gives the combination

(yi + tzi)
2 − y2i = 2tyizi + t2z2i = t2(−Syizi + z2i ), (5.13)

and dividing by t2 gives z2i − Syizi.
Working in a similar way with ±1 eigenforms in mixed yi, zi, yj, zj gives the invariants yiyj

and (yi + tzi)(yj + tzj), and the difference divided by t.
Proposition 5.3. Set S = t = 0, so that TO2 reduces to α2. Then three general linear

combinations of the invariants (5.12) define a surface Y (2, 2, 2) ⊂ P5 that is a K3 surface with
12 nodes having a free action of α2, so that the quotient X = Y/α2 is a nonsingular Enriques
surface.

An explicit example over F2 is given by the three quadrics

(y1 + y2)y2 + z22 + z23 , (y1 + y3)y3 + y1z3 + y3z1 + z21 , y21 + y2z3 + y3z2 + z21 + z22 . (5.14)

The proof reduces to a number of verifications in computer algebra (see the website [10] for the
Magma code).

The action of α2 on P5 corresponds to the vector field α ∂
∂zi

with α2 = 0. The action has fixed
locus the plane P2

〈y1,y2,y3〉. The three quadrics of (5.14) restrict to (y1 + y2)y2, (y1 + y3)y3 and y21 ,
so that Y is disjoint from the fixed plane. It follows that the vector field defines a free group action,
and Y has dimension 2, so is a complete intersection.

I ask the computer for the degree of the Jacobian subscheme (defined by the 3× 3 minors of the
Jacobian matrix ∂Qi

∂xj
, where Qi are the three forms and xj the six coordinates) and for the degree

of its reduced subscheme. The answer is 24 and 12, and this proves the proposition.

5.5. TO5-invariant quintic curves E5 ⊂ P4. As in Subsection 3.2, let B = Z[S, t]/(P ) with
P = St4 + 5, and TO5 = Spec(B[x]/(F )) with F = x5 − S(t3x4 + 2t2x3 + 2tx2 + x). As discussed
in Subsections 2.3 and 3.3, the dual regular representation U = (V reg)∨ is the free B-module based
by {u0, . . . , u4} with the TO5 action given by the lower triangular matrix (2.5) with d = 4, which I
denote by Du.

Here I write down 5× 5 skew matrices with entries in U that base the module of TO5-invariant
homomorphisms ϕ :

∧2 U → U . The ideal of 4 × 4 Pfaffians of a general such homomorphism
defines a relative curve E5 ⊂ P4

B whose fibre over (S = t = 0) is a nonsingular curve of genus 1.
When t is invertible, the representation theory is reductive, and the coordinate change of

Lemma 2.1 from lower triangular coordinates ui to eigencoordinates vi applies. Rather than working
directly with the 50-dimensional representation Hom(

∧2 U,U), I determine the eigenspace decom-
position of the domain

∧2 U and then view the invariant maps as those that take the eigenvectors
vi ∧ vj of

∧2 U to the τ i+j eigenspace of U , based by vi+j . (Here τ = 1 + tx, and satisfies τ5 = 1.)
I write

∧2 U as skew 5 × 5 matrices. As a B-module it has basis wij = ui ∧ uj with i < j,
lexicographically ordered, corresponding to elementary skew matrices. Then TO5 acts on skew
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matrices by N �→ DuN
tDu. In the basis wij, this works out as right multiplication by the 10× 10

matrix

Dw =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ . . . . . . . . .
2xτ τ2 . . . . . . .
3x2τ 3xτ2 τ3 . . . . . .
4x3τ 6x2τ2 4xτ3 τ4 . . . . .
x2τ xτ2 0 0 τ3 . . . .
2x3τ 3x2τ2 xτ3 0 3xτ3 τ4 . . . .
3x4τ 6x3τ2 4x2τ3 xτ4 6x2τ3 4xτ4 τ5 . . .
x4τ 2x3τ2 x2τ3 0 3x2τ3 2xτ4 0 τ5 . .
2x5τ 5x4τ2 4x3τ3 x2τ4 8x3τ3 8x2τ4 2xτ5 4xτ5 τ6 .
x6τ 3x5τ2 3x4τ3 x3τ4 6x4τ3 8x3τ4 3x2τ5 6x2τ5 3xτ6 τ7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.15)

For example, Du does u1 �→ xu0 + τu1 and u2 �→ x2u0 + 2xτu1 + τ2u2, so that

u1 ∧ u2 �→ (xu0 + τu1) ∧ (x2u0 + 2xτu1 + τ2u2) = x2τu0 ∧ u1 + xτ2u0 ∧ u2 + τ3u1 ∧ u2, (5.16)

which is the fifth row of Dw. Each diagonal term τ, τ2, . . . of Dw is an eigenvalue. Using τ5 = 1,
one sees that each eigenvalue τ i for i = 0, . . . , 4 appears twice.

Calculating the kernel of Dw − τ i gives the following 10 skew matrices as τ i eigenvectors (I write
the upper triangular entries mij with ij = 01, 02, . . . , and omit the diagonal zeros and jith en-
try −mij):

1: M14 =

⎛⎜⎜⎝
0 0 0 0

0 0 1
0 −2/t

3/t2

⎞⎟⎟⎠ , M23 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
1 −4/t

6/t2

⎞⎟⎟⎠ ,

τ : M01 =

⎛⎜⎜⎝
1 −2/t 3/t2 −4/t3

1/t2 −2/t3 3/t4

1/t4 −2/t5

1/t6

⎞⎟⎟⎠ , M24 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
0 1

−3/t

⎞⎟⎟⎠ ,

τ2 : M02 =

⎛⎜⎜⎝
0 1 −3/t 6/t2

−1/t 3/t2 −6/t3

−2/t3 5/t4

−3/t5

⎞⎟⎟⎠ , M34 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
0 0

1

⎞⎟⎟⎠ ,

τ3 : M03 =

⎛⎜⎜⎝
0 0 1 −4/t

0 −1/t 4/t2

1/t2 −4/t3

3/t4

⎞⎟⎟⎠ , M12 =

⎛⎜⎜⎝
0 0 0 0

1 −3/t 6/t2

3/t2 −8/t2

6/t4

⎞⎟⎟⎠ ,

τ4 : M04 =

⎛⎜⎜⎝
0 0 0 1

0 0 −1/t
0 1/t2

−1/t3

⎞⎟⎟⎠ , M13 =

⎛⎜⎜⎝
0 0 0 0

0 1 −4/t
−2/t 8/t2

−8/t3

⎞⎟⎟⎠ .

Thus M24 is in the τ eigenspace because(
τ6 0

3xτ6 τ7

)(
t
−3

)
= τ

(
t
−3

)
in view of τ = 1 + tx and τ5 = 1.
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The basis elements Mij ∈
∧2 U and vi+j ∈ U are in the same eigenspace of μ5 = TO5[1/t].

Thus I can define a μ5-invariant linear map

hij :
∧2 U → U, Mij �→ vi+j .

These 10 elements base Homμ5
(
∧2 U,U) for t invertible.

I explain what μ5-invariance means, and why it solves my problem of constructing invariant
ideals for a group action. For a matrix M with entries in B[1/t][u0, . . . , u4] or B[u0, . . . , u4], write
Du(M) for the matrix obtained by applying Du to the entries of M .

Proposition 5.4. (a) Each matrix vi+jMij satisfies

Du(vi+jMij)
tDu = Du(vi+jMij). (5.17)

The same holds for any linear combination
∑

bijvi+jMij with coefficients bij ∈ B[1/t].
(b) Let M be a 5× 5 skew matrix with entries in B[1/t][u0, . . . , u4] or B[u0, . . . , u4] and assume

DuM
tDu = Du(M). Then the ideal of 4× 4 Pfaffians of M is invariant under Du.

Proof. In fact both sides of (5.17) are equal to τ i+jvi+jMij . The point is that on the left
of (5.17), Du acts by invertible row and column operations with coefficients in B[1/t], without
doing anything to the ui or vi, whereas on the right it acts on each entry of the matrix, without
doing anything to the rows and columns. Now Mij was constructed as an eigenvector, so satisfies
DuMij

tDu = τ i+jMij and multiplying Mij by vi+j on both sides of (5.17) is completely harmless.
On the other hand, Du acts trivially on the entries of Mij , so applied to vi+jMij it just multiplies
each entry by τ i+j. This proves assertion (a).

For (b), Du acts on B[1/t][u0, . . . , u4] as a B-algebra homomorphism, so takes a Pfaffian of M
to a Pfaffian of Du(M); by the invariance assumption, this is a Pfaffian of an equivalent matrix.
This proves assertion (b). �

Returning to TO5 itself, to find HomTO5
(
∧2 U,U), I only need to get rid of the denominators.

The next result establishes this.
Proposition 5.5. The 10 matrices

N34 = v2M34,

N24 = v1M24 +
3

t
v2M34,

N23 = v0M23 +
4

t
v1M24 +

6

t2
v2M34,

N14 = v0M14 +
2

t
v1M24 +

3

t2
v2M34,

N13 = v4M13 +
4

t
v0M14 +

2

t
v0M23 +

8

t2
v1M24 +

8

t3
v2M34,

N12 = v3M12 +
3

t
v4M13 +

6

t2
v0M14 +

3

t2
v0M23 +

8

t3
v1M24 +

6

t4
v2M34,

N04 = v4M04 +
1

t
v0M14 +

1

t2
v1M24 +

1

t3
v2M34,

N03 = v3M03 +
4

t
v4M04 +

1

t
v4M13 +

4

t2
v0M14 +

1

t2
v0M23 +

4

t3
v1M24 +

3

t4
v2M34,

N02 = v2M02 +
3

t
v3M03 +

6

t2
v4M04 +

1

t
v3M12 +

3

t2
v4M13

+
6

t3
v0M14 +

2

t3
v0M23 +

5

t4
v1M24 +

3

t5
v2M34,
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N01 = v1M01 +
2

t
v2M02 +

3

t2
v3M03 +

4

t3
v4M04 +

1

t2
v3M12

+
2

t3
v4M13 +

3

t4
v0M14 +

1

t4
v0M23 +

2

t5
v1M24 +

1

t6
v2M34

have entries linear forms in u0, . . . , u4 with coefficients in B. They form a basis of HomTO5
(
∧2 U,U)

(in degree 1 in the ui). Each Nij has vi+j as leading entry in the ij-th place, which contains u0,
and no other occurrence of u0.

The derivation of these matrices is a computer algebra calculation, and is documented on [10].
These matrices get quite bulky; I write out just a few as an illustration:

N34 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
0 0

u0 + 2tu1 + t2u2

⎞⎟⎟⎠, N24 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
0 u0 + tu1

3(u1 + tu2)

⎞⎟⎟⎠, N23 =

⎛⎜⎜⎝
0 0 0 0

0 0 0
u0 4u1

6u2

⎞⎟⎟⎠,

N14 =

⎛⎜⎜⎝
0 0 0 0

0 0 u0
0 2u1

3u2

⎞⎟⎟⎠ , N04 =

⎛⎜⎜⎝
0 0 0 v4

0 0 −4u1 − 6tu2 − 4t2u3 − t3u4
0 −St3u1 + 6u2 + 4tu3 + t2u4

St2u1 + St3u2 − 4u3 − tu4

⎞⎟⎟⎠ ,

and the final one

N01 =

⎛⎜⎜⎝
v1 2u1 + 2tu2 3u2 + 3tu3 4u3 + 4tu4

u2 + tu3 2u3 + 2tu4 3Stu1 + 6St2u2 + 6St3u3 − 12u4
Stu1 + 2St2u2 + 2St3u3 − 4u4 −8Su1 − 14Stu2 − 12St2u3 − 4St3u4

−2S2t3u1 + 16Su2 + 13Stu3 + 4St2u4

⎞⎟⎟⎠.

To define my curve E5 ⊂ P4 over B, rather than a general linear combination, it is enough to
take N = N01 +N04 +N23. Substituting S = t = 0 in this gives

N = N01 +N04 +N23 =

⎛⎜⎜⎝
u0 2u1 3u2 u0 − u3

u2 2u3 u1 + 3u4
u0 + u4 −u1 + u2

u2 + u3

⎞⎟⎟⎠ . (5.18)

Proposition 5.6. The 4× 4 Pfaffians of N define a nonsingular genus 1 curve E5 ⊂ P4 with
a free α5 action.

The α5 action is given by the matrix Du of (2.5) with S and t set to 0, so that x5 = 0. It
acts on P4 as a p-closed vector field D with D5 = 0, nowhere zero outside the coordinate point
P0 = (1, 0, 0, 0). On the other hand, E does not pass through P0, because x20 is a term of the
Pfaffian Pf01.23 of N . The computer asserts that its Pfaffians define a nonsingular curve E.

In a little more detail the Pfaffians are

u0(u0 + u4) + u1u3 + 3u22,

u0(−u1 + u2)− 2u1(u1 + 3u4) + u2(u0 − u3) = −(u0u1 + 3u0u2 + 2u21 + u1u4 + u2u3),

u0(u2 + u3) + 2u2(u1 + 3u4) + 2u3(u0 − u3),

2u1(u2 + u3) + 2u2(−u1 + u2) + (u0 + u4)(u0 − u3) = u20 − u0u3 + u0u4 + 2u1u3 + 2u22 − u3u4,

u2(u2 + u3) + 2u3(u1 − u2) + (u0 + u4)(u1 + 3u4).
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The curve E has 6 = 1 + p rational points over F5:

P1 = (0, 2, 0, 0, 1), P2 = (−1, 0, 0, 0, 1), P3 = (−1, 0, 0, 1, 1),

P4 = (1, 0, 1, 2, 1), P5 = (2, 2, 3, 1, 1), P6 = (3, 2, 2, 3, 1).
(5.19)

The pencil of hyperplanes 〈u0 + 2u1 + u4, u2〉 through P1, P2, P3 defines a double cover π : E → P1.
The first hyperplane u0 + 2u1 + u4 intersects E in the divisor 3P1 + P2 + P3 (that is, has inflexional
tangent at P1), whereas u0 + 2u1 + u4 + 3u2 is tangent to E at P4 (so has divisor P1 + P2 +
P3 + 2P4). This identifies two of the ramification points as (1, 0), (1, 3) ∈ P1.

In fact, E ∼=
(
y2 = x(x − 3)((x − 1)2 − 2)

)
, with the other ramification points 1 ±

√
2 ∈ F25.

(It is supersingular, so has 36 = 1 + p2 + 2
√

p2 points over F25. As in Subsection 5.2.2, it is also
fun to count its points in F5n .)

6. BIGGER APPLICATIONS, OPEN PROBLEMS

6.1. Godeaux and Campedelli surfaces. The constructions of Section 5 illustrate some
of the methods needed in future work: Subsection 5.2 on the TO3-invariant cubic hypersurfaces
E3 ⊂ P2 is a trailer for the TO5-invariant quintic hypersurfaces that make the 5-torsion Godeaux
surfaces and Calabi–Yau threefolds of [10]. The 5 × 5 Pfaffian format of E5 of Subsection 5.5
illustrates the methods for the 7 × 7 Pfaffian format that construct 7-torsion Campedelli surfaces
and Calabi–Yau threefolds. And the case of the weighted quartics E4 ⊂ P(1, 1, 2) of Subsection 5.3
(especially the point (5.9), where I must guess the TOp action on the degree 2 forms) illustrates one
aspect of my construction (in progress) of 3-torsion Godeaux surfaces and Calabi–Yau threefolds
in P(13, 23, 33), using Gorenstein codimension 4 methods.

6.1.1. Godeaux surfaces with 5-torsion. Godeaux surfaces obtained as quotients S = T5/G5 of
a hypersurface T5 ⊂ P3 by G5 = μ5, Z/5 and α5 were constructed by Bill Lang, Rick Miranda
and Christian Liedtke, respectively. Kim Soonyoung [5] showed how to make these constructions
in a more-or-less uniform way, with the extra symmetry by Aut(G5) = F×

5
∼= Z/4 corresponding

to the holomorph G5 � Aut(G5). She also clarified the issue discussed in Subsection 5.4.1 of the
singularities of the cover.

Our forthcoming joint work with Kim Soonyoung unifies the three separate cases μ5, Z/5 and α5

into a single construction, with TO5 acting on a hypersurface in T5 ⊂ P3 or F5 ⊂ P4. The calcu-
lations of invariants in Magma [2] and the final computation for the nonsingularity of the quotient
are available from the website [10].

6.1.2. Campedelli surfaces with 7-torsion. The ambient space for the construction is the pro-
jective space P6 = P(Up−1) corresponding to the dual regular representation of TO7 introduced in
Subsections 2.2 and 3.3. I write out the TO7-invariant homomorphisms

∧2 U → U as skew matrices
exactly as in Subsection 5.5, except that there are 21 skew 7 × 7 matrices with some much bigger
entries. The 6× 6 Pfaffians of a general combination of these are seven cubics that define a Calabi–
Yau threefold Y14 ⊂ P6

B with a free TO7-action. The same singularity calculation on Y14 gives that
the quotient of the central α7 fibre S = t = 7 = 0 is nonsingular. The surface section x0 = 0 gives
a family of Campedelli surfaces with torsion Z/7, μ7 or α7. The Magma calculations proving these
claims are online at [10] (documenting them is work in progress).

6.1.3. Godeaux surfaces with 3-torsion. Over C, the μ3 cover of a Godeaux surface with 3-tor-
sion is comparatively well understood in terms of a triple unprojection format P(13, 23, 33). It also
extends naturally to a Calabi–Yau threefold. Making this work as a TO3 construction is currently
in progress, but I expect it to work. One issue that arises illustrates a tricky point of representation
theory: in the reductive μ3 case, each of the three sets of coordinates x1, x2, x3, y1, y2, y3, z1, z2, z3
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forms a new copy of the regular representation 1
3 (0, 1, 2) as a direct summand in its component of

the graded ring; whereas in the TO3 case, they only appear as a complement to stuff from lower
degree, and how TO3 acts on the extension has to be determined or guessed (as with v in (5.9)).

6.2. Problems.

6.2.1. Does the restriction to TOp[1/t] predict a representation? The case t invertible is always
easier in applications, because it is reductive, and eigenforms usually provide generators of the
modules or rings we need. It might be valuable to formalise this more generally: to what extent
is a TOp-module determined by its restriction to the t invertible case, and when does a TOp[1/t]-
module extend to a TOp-module? Can we exploit the reductive case to find a working substitute for
character theory for TOp? In geometric applications, one usually knows the required representation
from Riemann–Roch or its orbifold versions.

6.2.2. Singularities of inseparable covers. It is familiar when constructing Enriques surfaces or
Godeaux surfaces as quotients Y → X that, in the inseparable case, the cover Y usually has to be
singular, even when the final X is nonsingular (cf. Subsection 5.4). It would be interesting to know
if there is a more general criterion for X to be nonsingular, complementing the sufficient condition
of [5, Sect. 4.4] in the isolated case.

It is striking to consider G-torsors over a curve C of genus ≥ 2, which are in plentiful supply from
torsion subgroups of PicC, or can be constructed in an ad hoc way by the methods of Section 5
(for example, D8 ⊂ P(1, 1, 4) that is a μ2- or α2-torsor over C6 ⊂ P(1, 1, 3), a curve of genus 2 in its
canonical embedding). An inseparable torsor D → C is singular, since it has the same etale Betti
numbers and geometric genus as C, but has an everywhere nonvanishing vector field. It is not clear
to me how to resolve the little paradox that the group scheme acts on D but cannot act regularly
on its normalisation: a vector field must have poles on D̃ when genus is at least 2.

Cyclic covers also play an essential role in the singularities of the higher dimensional minimal
model program. A terminal threefold singularity has local class group Z/r, generated by the canon-
ical class, and over C the index 1 cover is an isolated rational hypersurface singularity. For this to
make sense when the characteristic p divides the index r, one needs an inseparable μr cover, and it
is an open problem to say something useful about its singularities.

The referee suggested an idea along the following lines: an inseparable morphism Y → X of
degree p is locally zp = s, where s ∈ OX is defined up to addition of k(X)p. The gradient of s is thus
well defined, and corresponds to a local section ds ∈ Ω1

X . If the variety X is normal, then locally
over any prime divisor of X, I can assume that div s is reduced, so that ds �= 0 in codimension 1.
If X itself is nonsingular, the singularities of Y lie over the critical points of s, that is, over the
zeros of ds. The criterion of [5] discussed in Subsection 5.4.1 corresponds to s having Morse critical
points.

Having a copy of Z/p or μp in PicX certainly gives rise to a μp- or αp-torsor Y → X by
Remark 4.1, so to an inseparable map of degree p, and hence to a p-closed codimension 1 foliation
on X and (locally defined) section ds ∈ Ω1

X , but at present I do not have too much understanding
of how this works, or how to use it in applications.

6.3. The T -nonsplit form TOp,0. This paper has developed the t-split form TOp,1 of TOp

with a view towards its representation theory and geometric applications. I conclude with some
indications of how to pass from the t-split form of Section 3 to the T -nonsplit form TOp,0, attempting
to copy the original treatment of Tate and Oort [13].

There are several reasons for wanting to do this: to describe the moduli stack of varieties with
p-torsion in Pic, without fixing in advance a generator of Z/p; to treat Cartier duality as a strict
isomorphism that interchanges S and T ; to recover the treatment of the universal group scheme TOp

of [13] as a construction in algebra (without recourse to p-adic methods).
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The construction combines two different naturally occurring order p− 1 symmetries of the t-split
group TOp,1: first, any group or group scheme G of order p over a base S automatically has the
Aut(F+

p ) = (Z/p)× symmetry over S defined by g �→ ga for a ∈ (Z/p)×. It is traditional to choose
a primitive root a mod p and view this as a cyclic Z/(p − 1) symmetry.

The second symmetry is the μp−1 Galois symmetry of the base B1 given by t �→ εt for ε ∈ μp−1.
To identify this as a cyclic Z/(p − 1) symmetry requires a primitive (p − 1)th root of unity ε, so an
extension of scalars from Z to a ground ring containing at least the cyclotomic ring of integers Z[ε].

Since I increase the ground ring Z to Z[ε], possibly localised further as explained below, the
construction fits into the following diagram:

B1 = Z[S, t]/(Stp−1 + p)
∩
A1 = B1[x]/(x

p − Sfp(t, x))
with

B0 ⊂ B1 ⊗Z Z[ε]
∩
A0 ⊂ A1 ⊗Z Z[ε]

(6.1)

where B1 ⊂ A1 are as in Section 3 and B0 ⊂ A0 the invariant subrings.
Identifying the two symmetry groups with Z/(p − 1) and with each other (in other words,

choosing both a and ε) gives the Z/(p − 1) Galois symmetry generated by

t �→ εt and (1 + tx) �→ (1 + tx)a, hence x �→ ε−1 (1 + tx)a − 1

t
. (6.2)

The invariant subrings of this Z/(p − 1) symmetry and the associated schemes SpecA0 → SpecB0

will provide the T -nonsplit group scheme TOp,0 after restricting to a neighbourhood of the prime
ideal (p, a− ε) in SpecZ[ε] by an appropriate localisation.

To be clear: the Z/(p − 1) symmetry and SpecA0 → SpecB0 are already defined over SpecZ[ε],
but the localisation described below is needed to ensure that the bigebra structure δ1 : A1 →
A1 ⊗B1 A1 restricts to a bigebra structure δ0 : A0 → A0 ⊗B0 A0. In other words, the localisation
provides the denominators of δ0.

Tate and Oort [13] work with the smallest possible ground ring that achieves this, namely

Λp = Z[ε]

[
1

p− 1

][
a− ε

p

]
. (6.3)

Here the denominator p − 1 is no surprise: averages over μp−1 are used for the eigenspace decom-
position of a cyclic Galois extension in Kummer’s proof that a cyclic extension is radical (“Hilbert’s
Theorem 90”). It also appears in an essential way in the formula for δ0.

It is well known that the prime p splits in Z[ε] into ϕ(p− 1) prime ideals with multiplicity 1. In
the above notation, they are (p, a− εi) for i coprime to p − 1. The element a−ε

p of the cyclotomic
field Q[ε] is thus regular at the prime P1 = (p, a− ε), but has a pole at all the other primes over p.
Allowing it in the coordinate ring of TOp,0 thus keeps a neighbourhood of P1, but localises away
from the other primes over p. In fact without this localisation, SpecA0 has orbifold singularities
at each of the other primes over p, and the restriction of δ1 to A0 would map to the invariants
(A1 ⊗A1)

μp−1 , but not to A0 ⊗A0.
An addendum on this construction is on the website [10], supplementing the treatment of [13]

with a detailed treatment of the case p = 11, and computer algebra routines that work instantly for
primes up to 30.
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