
Anyone know these guys?

Gavin Brown and Miles Reid

We observe that some of our diptych varieties have a beautiful description
in terms of key 5-folds V (k) ⊂ Ak+5 that are almost homogeneous spaces. By
poetic licence, we could call them quantum rational normal curves. We write
them out here, in the hope that someone can inform us that they occur
elsewhere in math or sci-fi.

From the point of view of equations, V (k) are serial unprojections or non-
general crazy-Pfaffians. In geometry, they are almost homogeneous spaces
for a central extension group G of GL(2) – in other words, closed orbits for a
highest weight vector (in a slightly nonfamiliar representation of a nonsimple
group).

The variety V (k) in equations

We define 5-folds V (k) ⊂ Ak+5 〈x0...k, a, b, c, z〉 for each k ≥ 3. First set up
2× k and k × (k − 2) matrixes

M =

x0 . . . xi−1 . . . xk−1

x1 . . . xi . . . xk

 and N =



a
b a
c b a

...
...

c b a
c b

c


Our variety V (k) is defined by two sets of equations (see below)

(I) MN = 0 and (II)
2∧
M = z ·

k−2∧
N. (1)
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(I) is a recurrence relation

axi−1 + bxi + cxi+1 = 0 for i = 1, . . . , k − 1.

(II) is a (k−2)×k adaptation of Cramer’s rule giving the Plücker coordinates
of the space of solutions of (I) up to a scalar factor z.

The ordering of minors in (II) is best understood in terms of the guiding
cases

xi−1xi+1 − x2
i = ai−1ck−i−1z and xi−1xi+2 − xixi+1 = ai−1bck−i−2z. (2)

Note that the maximal (k − 2) × (k − 2) minors of N include ak−2 (delete
the last two row) and ck−2 (delete the first two). More generally, deleting
two adjacent rows i − 1, i gives ai−1ck−i−1 as a minor (only the diagonal
contributes), whereas deleting two rows i−1, i+1 gives the minor ai−1bck−i−2.

Thus our second set of equations is

xi−1xj+1 − xixj = zN(i− 1, j).

Relations for xixj − xkxl for all i + j = k + l can be obtained as combi-
nations of these; for example

xi−1xj+2 − xi+1xj = xi−1xj+2 − xixj+1 + xixj+1 − xi+1xj

= zN(i− 1, j + 1) + zN(i, j).

Theorem 1 For k ≥ 3, (I) and (II) define a reduced irreducible Gorenstein
5-fold

V (k) ⊂ Ak+5 〈x0...k, a, b, c, z〉 .

Also for k = 2, with (II) involving the 0× 0 minors interpreted as the single
equation 1 · z = x0x2 − x2

1.

Lemma 2 (i) z is a regular element for V (k).

(ii) The section z = 0 of V (k) is the quotient of the hypersurface

W̃ : (g := au2 + buv + cv2 = 0) ⊂ A5 〈a, b, c, u, v〉

by the µk action 1
k
(0, 0, 0, 1, 1). It is Gorenstein because

da ∧ db ∧ dc ∧ du ∧ dv

g
∈ ωA5(W̃ ).

is µk invariant.
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(iii) Also z, a, c is a regular sequence, and the section z = a = c = 0 of
V (k) is the tent consisting of 1

k
(1, 1) with coordinates x0, . . . , xk and

two copies of A2 with coordinates x0, b and xk, b.

Proof First, if c 6= 0 then a, b, c, x0, x1 are free parameters, and the recur-
rence relation (I) gives x2, . . . , xk as rational function of these. One checks

that the first equation in (II) gives z = −ax2
0+bx0x1+cx2

1

ck−1 and the remainder
follow. Similarly if a 6= 0.

If a = c = 0 and b 6= 0 then one checks that x0, xk, b are free parameters,
xi = 0 for i = 1, . . . , k − 1 and z = x0xk

bk−2 . Finally, if a = b = c = 0 then
x0, . . . , xk and z obviously parametrise 1

k
(1, 1)× A1.

Therefore, no component of V (k) is contained in z = 0, which proves (i).
After we set z = 0, the equations (II) become

∧2 M = 0, and define
the cyclic quotient singularity 1

k
(1, 1) (the cone over the rational normal

curve). Introducing u, v as the roots of x0, . . . , xk, with xi = uk−ivi, boils the
equations MN = 0 down to the single equation g := au2 + buv + cv2 = 0.
This proves (ii). (iii) is easy.

The equations as Pfaffians

The equations of V (k) fit together as 4× 4 crazy Pfaffians of a skew matrix.
For this, edit M and N to get two new matrixes,

M ′ =

x0 . . . xi−1 xi . . . xk−2

x1 . . . xi xi+1 . . . xk−1

x2 . . . xi+1 xi+2 . . . xk


which is 3×(k−1) and N ′, the (k−1)×(k−3) matrix with the same display
as N (that is, delete the first (or last) row and column of N). Equations (I)
can be rewritten (a, b, c)M ′ = 0.

Now the equations (1) can be written as the Pfaffians of the (k+2)×(k+2)
skew matrix

cz −bz
az M ′

∧k−3 N ′

 or


c −b

a M ′

z
∧k−3 N ′


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the factor z in the first 3×3 block floats over to the final 3×3 block, allowing
us to cancel z in Pf12.3(i−4) for the recurrence relation axi−1 +bxi+cxi+1 = 0.
The remaining Pfaffians give (II).

Remark 3 This is a mild form of crazy Pfaffian (by analogy with Riemen-
schneider’s quasi-determinantal): there is a multiplier z between the (3, 3)
and (4, 4) entries, and when evaluating crazy Pfaffians you include z as a
factor whenever you cross it.

Written out in more detail, the big matrix is

cz −bz x0 . . . xi−1 xi . . . xk−2

az x1 . . . xi xi+1 . . . xk−1

x2 . . . xi+1 xi+2 . . . xk

ck−3 . . . . . . . . .

ck−i−1ai−2 −bck−i−2ai−2 . . . . . .

ck−i−2ai−1 . . . . . .

. . . . . .

ak−3


with bottom right (k − 1)× (k − 1) block equal the (k − 3)rd wedge of N ′.

Sanity check

Our family starts with k ≥ 3; the case k = 2 would give the hypersurface
ax0 + bx1 + cx2 = 0, with z := x0x2 − x2

1. The first regular case is k = 3,
which gives the 5× 5 skew determinantal

c −b x0 x1

a x1 x2

x2 x3

z


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a regular section of the affine Grassmannian aGr(2, 5). The case k = 4 is

c −b x0 x1 x2

a x1 x2 x3

x2 x3 x4

zc −zb

za


,

the standard extra symmetric 6× 6 determinantal of [Dicks] and [Reid1].
The first really new case is k = 5, with equations

c −b x0 x1 x2 x3

a x1 x2 x3 x4

x2 x3 x4 x5

zc2 −zbc z(b2 − ac)

zac −zab

za2


and



zc −zb x0 x1 x2 x3

za x1 x2 x3 x4

x2 x3 x4 x5

c2 −bc b2 − ac

ac −ab

a2


We first arrived at this matrix by guesswork, determining the superdiagonal
entries c2, ac, a2 and those immediately above −bc,−ac by eliminating vari-
ables to smaller cases; the entry b2−ac is then fixed so that the bottom 4×4
Pfaffian vanishes identically.

Alternative Proof of Theorem 1 A by-now standard application of se-
rial unprojection [PR] and [Reid2]. We can start with any of the codimension
2 complete intersections(

xi−1xi+1 = x2
i + ai−1ck−i−1z

axi−1 + bxi + cxi+1 = 0

)
⊂ A7 〈xi−1, xi, xi+1, a, b, c, z〉

and add the remaining variables one at a time by unprojection.

The variety V (k) by apolarity

We can treat V (k) as an almost homogeneous space under GL(2) × G. For
this, view x0, . . . , xk as coefficients of a binary form and a, b, c as coefficients
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of a binary quadratic form in dual variables, so that the equations MN = 0
or (a, b, c)M ′ = 0 are the apolarity relations.

More formally, write U for the given representation of GL(2) and write

q = au′2 + 2bu′v′ + cv′2 ∈ S2U∨

and

f = x0u
k + kx1u

k−1v + · · ·+ xkv
k ∈ SkU.

One includes a binomial coefficient
(
k
i

)
as multiplier in the coefficient of

uivk−i, a standard move in this game.
The second polar of f is the polynomial

Φ(u, v, u′, v′) =
1

k(k − 1)

(
∂2f

∂u2
u′2 + 2

∂2f

∂u∂v
u′v′ +

∂2f

∂v2
v′2
)

=
k−2∑
i=0

(
k − 2

i

)
xiu

k−i−2viu′2

+ 2
k−1∑
i=1

(
k − 2

i− 1

)
xiu

k−i−1vi−1u′v′ +
k∑
i=2

(
k − 2

i− 2

)
xiu

k−ivi−2v′2

=
k−2∑
i=0

(
k − 2

i

)
xiu

k−2−iviu′2

+ 2
k−2∑
i=0

(
k − 2

i

)
xi+1u

k−2−iviu′v′ +
k−2∑
i=0

(
k − 2

i

)
xi+2u

k−2−iviv′2

Substituting u′2 7→ a, u′v′ 7→ 1
2
b, and v′2 7→ c in this and equating to zero

gives our recurrence relation (a, b, c)M = 0.
Moreover, the second set of equation follow from the first by substitution,

provided (say) that c 6= 0 and we fix the value of x0x2 − x2
1; for example, in

xixi+2 − x2
i+1

substituting xi+2 = −a
c
xi − b

c
xi+1 gives

xi(−
a

c
xi −

b

c
xi+1)− x2

i = −a
c
x2
i − (

b

c
xi + xi+1)xi+1,
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and we can substitute −a
c
xi−1 for the bracketed expression, to deduce that

xixi+2 − x2
i+1 =

a

c
(xi−1xi+1 − x2

i ).

etc.
A normal form for a quadric under GL(2) is uv, so that a typical solution

to the equations is

(a, b, c) = (0, 1, 0), (x0...k) = (1, 0, . . . , 1).

This is a “highest weight vector”, and V (k) is its closed orbit.

Application to diptych varieties

The diptych varieties for d, e with de = 4 are unprojections of pullbacks of
V (k).

Case [2, 2]

The diptych variety has variables the x0...k, y0...2 of Figure 1, together with

tt

tt

(0)

...

2

2

2
A

t
t
t

(−1)

k

1
B

Figure 1: Case [2, 2]

A,B,L,M . The two bottom equations are

x1y0 = Ak−1Bk + x2
0L and x0y1 = ABx1 + y0M
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The pentagram y1, y0, x0, x1, x2 adjoins x2, then the long rally of flat penta-
grams y1, xi−1, xi, xi+1, xi+2 adjoin x3, . . . , xk, with matrixes
y1 x1 M x2

y0 AB x0L

x0 Ak−2Bk−1

x1

 and


y1 xi+1 LM xi+2

xi−1 AB xi

xi (AB)k−i−2(LM)i−1BM

xi+1


and Pfaffian equations

y1xi = ABxi+1 + LMxi−1, xi−1xi+1 = x2
i + (AB)k−i−1(LM)i−1BM

and xi−1xi+2 = xixi+1 + (AB)k−i−2(LM)i−1BMy1.

These are the equations of V (k) after the substitution

(a, b, c, z) 7→ (LM, y1, AB,BM).

Thus to make our diptych variety, pull back V (k) ⊂ Ak+5 by that substitu-
tion, then adjoin y0, y2 as unprojection variables. 1

Case [4, 1] with even l = 2k

Omit the odd numbered xi, giving Figure 2. The diptych variety has variables

t

tt
t

(−1)

...

2

2

3
A

t
t
t
t
t

(0)

2

k

2

1
B

Figure 2: Case [4, 1] with even l = 2k

x0...k, y0...4, A,B,L,M with the two bottom equations

x1y0 = Ak−1B2k−1y1 + x3
0L and x0y1 = AkB2k+1 + y0M

1We still have to deal with the unprojection, here and below.
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We adjoin y2, then x2, . . . , xk by a game of pentagrams centred on a long rally
of flat pentagrams, with y2 against xi−1, xi, xi+1, xi+2 and Pfaffian equations

y2xi = AB2xi+1 + LM2xi−1, xi−1xi+1 = x2
i + (AB2)k−i−1(LM2)i−1BM

and xi−1xi+2 = xixi+1 + (AB2)k−i−2(LM2)i−1BMy2

These are the equations of V (k) after the substitution

(a, b, c, z) 7→ (LM2, y2, AB
2, BM).

Case [1, 4] with even l = 2k

Omit the even numbered xi, giving Figure 3. The diptych variety has vari-

tt
t
tt
t

(0)

...

3
2

2
3
1

A

t
t
t

(−2)

k

2
B

Figure 3: Case [4, 1] with even l = 2k

ables x0...k, y0...2, A,B,L,M with the two bottom equations

x1y0 = A2k−1Bk + x0L and x0y1 = x2
1A

2B + y2
0M

As before, adjoining x2, . . . , xk features a long rally of flat pentagrams, with
y1 against xi−1, xi, xi+1, xi+2 and Pfaffian equations

y1xi = A2Bxi+1 + L2Mxi−1, xi−1xi+1 = x2
i + (A2B)k−i−1(L2M)i−1AL

and xi−1xi+2 = xixi+1 + (A2B)k−i−2(L2M)i−1BMy2

These are the equations of V (k) after the substitution

(a, b, c, z) 7→ (L2M, y1, A
2B,BM).
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Case [1, 4] with odd l = 2k + 1

This is [1, 4] read from the top, but [4, 1] read from the bottom, so is a mix
of the two preceding cases. Omit the odd numbered xi, giving Figure 4. The

tt
t
tt
t

(−1)

...

2
2

2
3
1

A

t
t
t
t

(0)

2

k

2
B

tt
t
tt
t

L
3

...

2
2

2
3

(0)

t
t
t
t

1
M

2

k

(−2)

Figure 4: Case [1, 4] with odd l = 2k + 1

diptych variety has variables x0...k, y0...3, A,B,L,M with the two bottom
equations

x1y0 = y1A
2k−3Bk−1 + x3

0L and x0y1 = A2k−1Bk + y0M

Adjoin y2 then x2 by
y1 A2B M y2

y0 A2k−3Bk−1 x2
0L

x0 y1

x1

 then


y2 x1 M x2

y1 A2B x0LM

x0 y2A
2k−5Bk−2

x1


After this, adjoining x3, . . . , xk−1 is the usual long rally of flat pentagrams,
with y2 against xi−1, xi, xi+1, xi+2 and

y2 xi+1 LM2 xi+2

xi−1 A2B xi

xi (A2B)k−i−3(LM2)i−1ABMy2

xi+1


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and the Pfaffian equations

y2xi = A2Bxi+1 + LM2xi−1, xi−1xi+1 = x2
i + (A2B)k−i−2(LM2)i−1ABMy2

and xi−1xi+2 = xixi+1 + (A2B)k−i−3(LM2)i−1ABMy2
2

These are the equations of V (k − 1) after the substitution

(a, b, c, z) 7→ (LM2, y2, A
2B,BM).
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