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My main theme is that a flip arises automatically out of the geometric invariant theory
(GIT) of a C* action. Thus the question in the title is answered in parallel with “What is
a projective space (or projective variety)?” and “What is a blow-up?”.

Up to now, flips and flops have arisen in Mori theory as an empirical phenomenon: a
birational map f: X —— X' between projective varieties which is an isomorphism on the
complement of closed sets of codimension > 2. (That is, restricting to open sets of X
and X' where f and f~! are regular defines an isomorphism f: U 2 U’ between opens
UC X and U' C X' whose complements X \ U and X'\ U' have codimension > 2. In
jargon: an isomorphism in codimension 1, meaning that f and f~! are isomorphisms in
a neighbourhood of a sufficiently general point of any codimension 1 subvariety of X and
X'.) My sermon today puts flips in a more general context, but still does not solve the
problem of giving a convincing definition. I return briefly to more concrete questions on
Mori flips in §3.
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geometry for a long time to come.
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described in §2 is due entirely to him. Together with other workers in Mori theory, I have
worried about the question in the title since about 1980. In particular, the idea of §3
that many flip singularities can be described as toric hypersurfaces goes back to the early
1980s. However, the revelation of the connection with C* actions was vouchsafed to me
in Mar-Apr 1992 at the Univ. of Valladolid while meditating on the scriptures [Mori] and
[Kollar and Mori], in connection with a lecture course on Mori theory.
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§1. C* ACTIONS IN GENERAL

1.1. Notation. A diagonal action of C* on C" is given by
TiyeensZn = A%Ty,..., A% 2, for A € C*

where a; € Z are certain characters of C*. For my purposes, the most important thing
about the a; is their sign, and I reorder the coordinates on C” so that the action is

Tiye.., Z1 = A%z, ..., A%y

yl,...,ymbelyl,...,)\bmym with a;, b; > 0.

Zlyeeey 2RV Z1yeny 2k
Here I+ m + k = n. If £ > 0 then since the z; are invariant, for most purposes
(whole theory) = CF x (case k = 0),

so for simplicity I mostly assume k¥ = 0, that is [ + m = n.

The automorphism X — A~ interchanges the roles of the z; and y;, and ! and m, so I
usually assume that | > m. The cases m < 1 are in a sense degenerate. As I'm about to
explain, m = 0 corresponds to the ordinary construction of (weighted) projective space,
and m = 1 to a (weighted) blowup (see the Exercise at the end of 1.4). A flip will only be
visible if [,m > 2.

1.2. First case, P"~!. Consider the case m =0, a; = -+- = a, = 1, that is, the usual
action of C* on C" defining projective space:

Tlyeeey Ly F AT,y ATy,

It’s crucial to understand why this action is bad. In algebra, there are no C*-invariant
polynomials except constants: the A¢ eigenspaces (character spaces) of C* are just the
homogeneous polynomials of degree d (because h(Az) = A?h(z)), and for d = 0 you get
just the constants. In geometry, the origin 0 is in the closure of every orbit, because
A-z — 0as A — 0. Thus the only continuous C*-invariant morphism from C” is a
constant.

(Figure 1.2.1)

As everyone knows, the solution to this problem is not very hard to find: we throw
away the origin, then the action on C"\ 0 is good, and the quotient is P*~!. Functions on
P"! are defined as follows: if h is a homogeneous polynomial of degree d, the open subset
Up : (h #0) C C" is C* invariant, and an invariant regular function on U}, is given by
g/h¢, where g is homogeneous of degree cd. Thus textbooks on algebraic geometry define
the topology of projective space in terms of the open sets V} = U,/C* C P*~! and the
regular functions on V} to be g/h¢, where g and h°® are homogeneous of the same degree,
so that g/h¢ is C*-invariant. (It is most common to take d = 1 and h = z; to get the
“standard” linear affine pieces of projective space.)

Note that just replacing C™ by C" \ 0 makes a dramatic difference to the group action
and the behaviour of the quotient.
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Variation 1: Weighted projective space. The case when C* acts on C" by
T, Ea N Gay o A Sege

with all @; > 0 is basically very similar to the case that all the a; = 1. Just replace the
degree of polynomials by their weights (where, for example, z2z, has weight 2a; + a. The
resulting projective variety (C™ \ 0)/C* is called a weighted projective space, and denoted
by P(ai,...,a,) or P(a) or P(*~V(a). Open sets of P(a) and regular functions on them
are defined in terms of weighted homogeneous polynomials. In general, P(a) has cyclic
quotient singularities (orbifold points), corresponding to points at which the stabiliser of
the C* action jumps. For example, the weighted projective space P(1,1,2) is isomorphic
to the ordinary quadratic cone in P?, with the singular point (0,0, 1) corresponding to the
line of points of C* having stabiliser {£1} C C*.

Variation 2: Projective subvarieties of P*"~!. Instead of just taking the quotient of
C", I could start with some affine variety A C C" invariant under C* (strictly bigger than
0), and consider the quotient (4 \ 0)/C* = X C P*~1. This is the standard definition of a
projective subvariety of P™ in algebraic geometry.

In order for A C C” to be C*-invariant, it is necessary and sufficient for its defining ideal
Is C k[z1,...,2,] to be C*-invariant. In this case the projective subvariety is naturally
associated with the graded ring k[zi1,...,z,]/]a.

Variation 3: Proj R. Putting together Variations 1 and 2 gives the general construction
of Proj R for a graded ring R. In more detail, let k[z1,...,2,] be the polynomial ring with
the weights wt(z;) = a; > 0, and let I be a homogeneous prime ideal (that is, I is invariant
under the C* action

R et N e

or equivalently, I is generated by a number of weighted homogeneous polynomials g;).
Then R = k[zy,...,z,]/I is a graded finitely generated integral domain with Ry = k and
R; = 0 for 2 < 0, and every such R is of this form. Then A C C" is a variety with a
C* action, and ProjR = X = (A\0)/C* C P(a1,...,an) is a projective subvariety of the
weighted projective space.

R is determined by X together with the extra data of the sheaves Ox(k) for k& >
0: namely, R = @,;>, H(X,O0x(k)). Under extra conditions the Ox(k) are invertible

sheaves (line bundles) with Ox (k) = Ox(1)%*.

1.3. The case of flips. Now let [, > 2, and supposea; =---=a;=b; =---=b,, =1
for simplicity, so that the C* action is given by

-1 -1
$1,...,$;,y1,...,ymI—)Al'l,...,)\ﬂ’}g,)\ yl,...,)\ YUYm-

It’s almost obvious that the ring of invariant polynomials k[z1,...,%]C is generated by
the products u;; = z;y; for ¢t = 1,...,1, s = 1,...,m, and related by the determinantal
equations
U1 HiR Ulm
rank =1

Un Ulm
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(That is, the ideal of relations between the u;; is generated by the 2 x 2 minors of the
I x m matrix (u;;).) The affine algebraic variety X C C'™ defined by these equations
is well known in algebraic geometry. It is the affine cone over the Segre embedding of
P'~! x P™~!. In other words, embed P!~ x P™~1 < P!m=1 by the bilinear forms o
and take the affine cone over it.

(Figure 1.3.1)

I write X = C™ // C*, and call it the GIT quotient of C*. Its affine coordinate ring
is the ring of invariants k[zy,...,y]C . Now consider the extent to which X is the orbit
space of the C* action. The action of C* on C” looks like this:

(Figure 1.3.2)

In other words, it has closed orbits C* - (¢,n) with ¢ = (z1,...,21) # (0,...,0) and
n = (y1,---,¥m) # (0,...,0) (the orbit is isomorphic to C*), but it also has two bad
locuses B_ and B, defined by z; = --- = z; = 0 and y; = --- = y,, = 0 (intersecting
in the origin). These are nonclosed orbits, since A(£,0) — 0 as A — 0 and A\(0,n) — 0 as
A — oo.

It is easy to check that the morphism C* — X = C" // C* defined by z;,y; — z,;y; has
the following property: the inverse image of a point P € X with P # 0 is a closed orbit
of C* in C", whereas the inverse image of 0 € X is By U B_, which is a union of closures
of many orbits. Thus X is a good quotient as far as the closed orbits are concerned, since
there are enough C*-invariant functions to separate them, but the quotient map C* — X
treats the nonclosed orbits fairly indiscriminately. Is there a better quotient? I say that
there are several different ones, and that’s where flips come in.

It’s easiest to describe the geometric picture first. Since X is the cone on P!=1 x P—1,
a union of generating lines over points of the base (£,7) € P'~! x P™1, there are 3 obvious
ways of modifying it by taking account of the values of £ and 5.

The blowup X. The blowup X consists of replacing the “cone” by a “cylinder”, that
is, the disjoint union of the same generators, in other words, the graph of the incidence
relation (cone) x (base of cone) consisting of pairs

P € cone, ) € base of cone such that P € generator thro’ Q.

Thus X has a morphism o: X — X such that e (1 i e

Before and after the flip X*. In a similar way, by fixing the ratio £ between the [ rows
of the matrix (u;;), I can view X as a union of copies of C™ parametrised by points of P‘~1.
By taking the disjoint union of these generating m-planes, or equivalently the incidence
relation between points of X and points of P'~! given by the ratio of rows of (u;), I get
a variety X~ having a morphism f_: X~ — X with fibre over the origin f~(0) = P~
Interchanging the roles of the z; and y; gives fy: X+ — X with f,~1(0) = P™~1.

The 4 varieties X, X* and X fit together in the following way:

(Figure 1.3.3)

In Mori theory, we sometimes call the rational map X~ —— X% a flip. It replaces
P'=! C X~ (with normal bundle O(—1)™) with P! ¢ X * (with normal bundle O(—1)").
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The case | = m = 2 is a celebrated example of [Atiyah]: X is the ordinary double point
(zt = yz) C C* (where & = uyy, ¥y = U192, 2 = ugy, t = ug2), and the two modifications X+
correspond to blowing up the ratios z/y = z/t and z/z = y/t. The distinction between
flips and flops is mainly of interest to the people who already know it, so I don’t discuss it.
However, the Atiyah case is called a flop, because X~ —— Xt is a symmetric operation;
the only flop of his career.

Theorem (GIT interpretation). The varieties X and X¥* are all natural GIT quotients.
Indeed, we’ve already seen X = C" // C*, and I claim that X* = (C"\ B4)/C*.

Proof. C™ \ B_ is covered by C*-invariant open pieces v® = (z; # 0). It’s easy to see
that the ring of C*-invariant regular functions on U (say) is exactly the polynomial ring

on z;/xz; for i = 2,...,l and y;x1, and that these are parameters on an affine piece of X _.
Amen

Exercise. In case m = 1, everything works in exactly the same way, but X+ = X = C!,
and f_: X~ — X is the blowup of the origin 0 € CL.

1.4. What is a flip? I claim that the flip diagram

ol (1.4.1)

is a precise analogue of the construction of projective space for the Z-graded polynomial
ring k[z1,...,ym]. Indeed, the topology on X ~ (say) is defined by open sets (h # 0), where
h € k[z1,...,ym] is a homogeneous polynomial of degree d < 0 (for example h = z;), and
the regular functions on (% # 0) are given by g/h¢, where ¢ is homogeneous of degree cd.

All 3 variations of 1.2 apply here also, so that a flip diagram (1.4.1) can be constructed
from any C* action on an (affine) variety A, or equivalently, any Z-graded ring R. (I
assume for safety that R is a normal integral domain, and contains homogeneous elements
of both positive and negative degree, say at least one element of each degree +1.)

Geometrically, the action on A = Spec R has two bad locuses B, and the three varieties
in the flip diagram are X = A // C* and X* = (4 \ B4)/C*. In terms of algebraic
geometry, X = SpeC(RC*), and X* are exact analogues of Grothendieck’s construction
of ProjR: for example, X~ has an open set Uy : (h # 0) for any homogeneous element
h € R of negative degree d, and Uj, = Spec(R[1/h]®"). The flip diagram (1.4.1) is the
homogeneous spectrum of R: the scheme theoretic points of X ~ are the C*-invariant (that
is, homogeneous) prime ideals of R not containing the whole of R™, etc.

The eigenspaces (character spaces) of C* acting on R define a finitely generated Z-graded
sheaf of O x-algebras R = @5 O(k). The two sides of the flip are relative Projs:

X* =Projx(R*)  where R™ = @ O(k) and R* = P O(k).
k<0 k>0

Remark. Another aspect of this Proj-like character of the flip diagram 1.4.1 is Grothen-
dieck’s Lefschetz principle: all the properties of the Proj are already implicit in the local
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ring of the vertex of the affine cone. To make sense of this in the present context, suppose
that By N B (the subscheme defined by the sum of the two ideal sheaves R«o and Rxo)
is a single point 0 € A = Spec R; this is the analogue of the condition Ry = k for N-graded
rings. Then taking the direct sum of the eigenspaces of the C*-action on the local ring
Ooea recovers R together with its grading.

1.5. Genuine flips. The construction of 1.3-4 is more general than the generally recog-
nised phenomenon of a flip that is an isomorphism in codimension 1. Indeed, in 1.4, the
reason for imposing the condition that R contains nonzero homogeneous elements of both
positive and negative degrees was to avoid the case X_ = @, X = pt., and X; an ar-
bitrary projective variety; in the birational context, I suppose we don’t want to consider
spontaneous creation from the void as an elementary operation (however, compare Propo-
sition 2.6, (2)). Next, as in the exercise at the end of 1.3, if Rs¢ is a principal ideal then
X_ — X is a blowup and X4 = X. From this point of view, a flip and a blowup can be
viewed as different aspects of the same construction.

Now let X = A // C* be as in 1.3-4, and assume in addition that B4 C A each has
codimension > 2 (to avoid the case of a blowup). It is not hard to prove the following.

Proposition. (1) Each O(k) is a divisorial sheaf on X, that is, O(k) = Ox (kD) for some
Weil divisor D € WDiv X.
(2) If k1, ko are both positive (or both negative) and sufficiently divisible, then

(3) For k sufficiently divisible (of either sign),
O(—k) = Home,(O(k),0x). O

Here (3) gives the “opposite” property familiar from Mori flips: the Weil divisor classes
on X corresponding to ample divisors on X * are negative rational multiples of one another.

In the same way that a positively graded ring R can be recovered from Proj R and the
data of its sheaves O(k), it is clear that R and its C* action can be recovered from the flip
diagram (1.4.1) and the sheaves O(k) on it. (See §3 for a particular case.)

+ §2. APPLICATIONS TO GIT BY M. THADDEUS

2.1. GIT, its aims. The general setup of geometric invariant theory is the following: V'
is an algebraic variety, say projective, and G an algebraic group acting on V. We want to
construct the orbit space V/G as an algebraic variety. The most important applications
are moduli problems. When we study some geometric objects, we may have a construction
in coordinates depending on some parameters in a variety V, and changes of coordinates
form a group G that acts on the parameters. For example, a plane curve Cy C P? of degree
d is determined in a given coordinate system by the coefficients of its defining equation,
which form a projective space V of dimension (d';z) —1, and projective coordinate changes
in P? define an action of PGL(3) on V.

*see also i Hu C)
o ebred %W &%‘35 681 GWZ) (51— 184
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2.2. What the layman is usually told about GIT. Unfortunately, the orbit space
V/G is almost always bad, for reasons we have already seen in §1: in geometry, because
nonclosed orbits mean that the orbit space is non-Hausdorff; in algebra, because there are
not enough G-invariant functions to separate the orbits. The solution (just as in the very
simple case (1.2)) is to throw away some bad orbits.

Roughly, the main result is as follows: under reasonable assumptions on V and G, there
exist dense open subvarieties VS C V55 C V (of stable and semistable orbits) and a quotient
algebraic variety V // G with maps

V
U
el s (2.2.1)

U U
e =

with the properties: (1) X = V // G is the best quotient algebraic variety (it is made
up by taking Spec’s of all G-invariant functions on G-invariant open sets). (2) V5% is the
domain of definition of the rational quotient map 7: V —— X. (3) Restricted to V=, the
quotient map 7: V¥ — V3/G C X is a good quotient, in the sense that the fibres of m are
the G-orbits.

2.3. What the layman is not told. The description in 2.2 is incomplete because
it omits one ingredient, on which the subvarieties V® C V® C V, the quotient variety
X // G and the morphisms 7° and 7% in (2.2.1) depend essentially. Namely to make the
constructions of (2.2.1), I need to choose an embedding V' C PV, and an action of G on the
coordinates of PY inducing the given action on X. The technical term for these choices is
a G-linearised very ample line bundle L, but for brevity, and to avoid technicalities, I call
it a linearisation of the action. I write V7, V //; G = X etc. for the objects in (2.2.1)
constructed according to a given L.

Important warning. The GIT software? is automatic and for many purposes transparent

to the user. However, it works by taking G-invariants of a projective coordinate ring (e.g.
k[zy,...,2p] if V = P?71) so it cannot start working if a linearisation is not installed.
Moreover, it’s easy to construct examples (see 2.6 below) of a variety V with an action of
a group G, and two different linearisations L and M such that, say, V> =0 and V57 C V
is dense.

2.4. Thaddeus’ principle. Suppose that V and G are as usual, and that L and M are
linearisations such that Vi and Vj; are both dense in V. Then X1 and X pr are birational,
and X1 —— Xy is a composite of flips in the sense of §1.

Of course, it comes as no surprise that X; and Xj; are birational, since there is a

G-invariant open dense set VFNVE, C V on which either quotient is simply the orbit space
of the G action.

IGIT ©1965 is a trademark of David Mumford, Inc.
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Remarks. (1) The listener versed in the doctrine of cones in algebraic geometry (Hironaka,
Kleiman, Mori and co.) will guess at once that the linearisations L form a convex cone in
a finite dimensional real vector space, and that the different biregular models X, partition
this cone into chambers, with a flip X7, —— X, as you cross a wall; in a different context,
compare [Reidl], Theorem 8.2.

(2) Thaddeus’ proof at present uses a reduction to the case of C* acting on P". Although
very simple and pleasant, it does not give any information about the chain of flips. It would
be very interesting to have an argument more directly involving the GIT of the action of
G on V,L and V, M. One could hope that flips correspond to parabolic subgroups and so
forth, as in Kirwan’s work on stratification of the semistable locus [Kirwan].

In sketch form, Thaddeus’ proof of the principle is in two steps:

2.5. Step 1. Reduction to C* action on P". The idea is the following. We’re given
two G-linear embeddings wr: V «— P! and pap: V <« P™. A classical construction of
projective geometry gives a P'-bundle P(L @ M) — V: put the two projective spaces as
disjoint linear subspaces of a common projective space P"*™*! and join up corresponding
points of ¢ 7,(V) and ¢ (V).

(Figure 2.5.1)

P(L & M) — V contains two sections ¢1(V) and ¢ (V) given by the inclusions 7,
and ¢p. The construction of P(L & M) — V is equivariant: G has a linear action on
P(L & M) C P"*™*! by just taking the diagonal action on the direct sum of C'*! and
C™*1. In addition, there is a natural geometric action of C* on P(L @ M) that pushes
towards the two ends as A — 0 and A — oco. The point is that this action has two different
linearisations, namely

AL l,m e X
and  A:&n— &A1y

Now there are several ways of viewing the quotient P(L & M) // G x C*. Dividing first
by either of the C* actions and then by G gives P(L & M) // G x C* = X and Xp.
On the other hand, dividing first by the G-action gives the quotient Y = P(L® M) // G
as a projective variety with a given embedding ¥ «— PV (defined by G-invariant forms)
having a C* action with two different linearisations, such that ¥ // C* = X and X
respectively. Thus X, and X are contained as subvarieties in quotients of P by a C*
action with two different linearisations.

2.6. Step 2. Study of C* action on P". A linearised C* action on P" is given by
ChTe i D Rl TS et for A € C*

where a; € Z. However, since in P” it is only the ratios of the homogeneous coordinates
r; that have any meaning, the same action on P" is also given by

g &
G TER O R L
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for any d € Z; I write L4 for this linearisation of the C* action, abbreviate (P™)%, to (P™)5
and [/, to // 4> ete. T assume that the a; are all distinct and well spaced-out, say

Gy Z2dgt2 @y=d1+2 ..., ap>a, 1+2

This is purely for definiteness, and to get a result that is convenient to describe. If all
the a; are distinct one reduces easily to this by taking a cyclic cover of the C* action
(passing to a root of A), or equivalently, working with a Veronese embedding. The effect
of coincidences among the a; is straightforward, and is discussed in the remark after the
proposition.

Proposition. (1) If d ¢ [ag,a,] then (P")$ = 0; if d = ag or a, then (P™)S = 0, and
(P")3 is the affine space (¢ # 0) (respectively (z, # 0)). The quotient P //, C* is a
single point (as with the bad action at the start of (1.2)).

(2) I d € (ap,ay) then (P?)T = B\ (1,0,...,0), (P")3 = (P™)=\ (xo = 0) (that is, P?
with a point and a complementary hyperplane deleted), and

Bey € B e 6 o) (weighted projective space).

The case d € (ap—1,ay) is similar. Thus the passage from d < ag to d > ag creates a
P("~1 from the void, and the passage from d < a, to d > a,, annihilates a P(*~1,

(3) If d = ay for some k = 1,...,n — 1 then (P")S = (P")* is the complement of
the P*~1 with coordinates To,...,2r—1 and the P* %=1 with coordinates < RN, J
The quotient Xy = P" //; C* is a weighted projective cone over a product of weighted
projective spaces

P(kﬁl)(ak e 6 G ) P(n—k—l)(ak+1 — Qky...,0n — Q). (2.6.1)

(4) If d € (ag,ag41) then (P™)* = (P")* is the complement of the P* with coordinates
To,..., T and the P*~%=1 with coordinates Tk+1y.+.3Ln. The quotient variety X, is
independent of d € (ag,ar+1) (but its natural embedding to projective space defined by
C* invariant rational monomials varies with d). X4 has two birational morphisms X4 — X}
and X4 — X1 which contract to a point weighted projective spaces P(»—*—1) and P(*)
respectively. Over the cone point of X}, the passage from d < ay, to d > ay, is the flip of
1.3 (with the weights of (2.6.1)).

Remark. Coincidences between the a;, just lead to cones in (3) with positive dimensional
vertexes; the flip takes place along the whole vertex in a locally trivial way.

(Figure 2.6.2)

Proof. This is all an easy exercise in the style of 1.2-3. [Hint: Consider homogeneous
monomials ™ = [[ ;" on P" that are invariant under the linearised C* action, that is,
>.(ai = d)m; = 0. For (3), (z # 0) is a C* invariant open set, and the ratios z;/z} for
t=0,...,k—1and z;/z4 for j = k+1,...,n play exactly the roles of the z; and y; in
1.3.]

The exercise can be understood most naturally in the language of toric geometry. Mono-
mials of degree ¢ in xy,...,z, are obviously the lattice points of the simplex A obtained
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by intersecting the positive quadrant in R**! with the affine hyperplane Y m; = c¢. Write
I’y for the convex polygon given as the intersection of A with the variable affine hyper-
plane ) (a; — d)m; = 0. Then X, is the toric variety associated with I';. In Thaddeus’s
expression, this amounts to putting the simplex A obliquely through a meat-slicer. Amen

§3. MORI EXTREMAL DIVISORIAL CONTRACTIONS AND EXTREMAL FLIPS

3.1. Mori theory. Mori’s theory of minimal models of 3-folds works with projective
3-folds having at worst Q-factorial terminal singularities, a class of singularities that is
now quite well understood (see [YPG]). The aim is to pass from a given projective 3-fold
X to a birational variety X', where (1) the final model X' is either a minimal model or a
Mori fibre space (the analogue of a ruled surface), and (2) the passage from X to X' is by
a succession of highly restricted “elementary” steps, called eztremal divisorial contractions
or eztremal flips (the 3-fold analogues of contracting a —1l-curve on a surface). In this
sermon, I don’t have time to discuss either the virtues of the final model, nor the way in
which the whole approach is driven by the canonical class.

I preach instead on some of the remaining problems concerning extremal divisorial
contractions and extremal flips. The picture is as follows (I omit a reasonable number of
technical assumptions).

(Figure 3.1.1)

The main outstanding problem in minimal models of 3-folds is that, although the ex-
tremal divisorial contractions and extremal flips have strong categorical properties, and
we know how to prove that they exist, we don’t at present have lists of them comparable
to the lists of terminal singularities ([YPG], Theorem 6.1). My main point here is that
the doctrine of C* actions discussed in §1 reduces contractions and flips in a purely formal
way to the local study of a C* action on a Gorenstein 4-fold point 0 € A.

It seems likely that the case when 0 € A is a hypersurface singularity is at least a
very significant component of the lists. The singularities of A are isolated modulo the C*
action, and therefore finitely determined, so that all the methods of singularity theory are
available (see for example [Montaldi and van Straten] for the de Rham complex and the
equivariant Milnor fibre).

3.2. What we know about flips. I summarise very briefly the results of the two giant
foundational papers on flips, referring to Figure 3.1.1, (b). [Mori] contains a detailed
analysis of the the flipping contraction X~ — X (the left-hand side of the diagram);
his main result is that given the left-hand side, the right-hand side also exists. [Kollar
and Mori] give a classification of the flip singularity X in terms of its general hyperplane
section, and show how to construct and to some extent classify the right-hand side. The
disavantage with the knowledge provided by the sum of these two papers is that in general
they do not provide a useable description of both sides of the flip—in other words, with
present technology, you can’t see both X~ — X and X* — X on the same screen.
(Also, the technology is not extremely user-friendly as it stands. It’s fair to say that at
present Kolldr and Mori are the only two people in the world to have understood the two
papers.) In particular, it seems difficult in most cases to determine the Z-graded algebra

Dz Ox(nKx).
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Incidentally, flips gained notoriety as a difficult subject because their existence was
the main stumbling-block in the theory for most of the 1980s, but most of the potential
applications of Mori theory involve a concrete description of varieties and birational trans-
formations between them, and classifying the extremal divisorial contractions is every bit
as difficult and as important as the flips; of course, we know a lot more about the flips
thanks to the work of Mori and Kollar.

3.3. The reduction to a local C* action. Let X~ — X be a contraction of an
extremal ray that is either a flipping or divisorial contraction to a point (I'm ignoring
divisorial contractions to a curve), and write

B (3.3.1)

for the flip. In the case of a divisorial contraction, set X+ = X; in the flipping case, the
existence of the flip X+ — X is proved in [Mori]. In what follows I consider P € X as a
variety germ in the Zariski topology (the scheme Spec Opcx).

In either case, by definition of extremal ray, the relative Weil divisor class group WCIl =
WCLX ~/X) is finitely generated and of rank 1, that is

WCl =2 Z & Tors.

Moreover, —K x- is an ample generator. The presence of a finite torsion group just means
that at the same time as the C* action, providing the GIT interest, there is also a fairly
harmless finite Abelian cover going on.

The following result is very similar to the cyclic covering trick (see e.g. [YPG], (3.6)).

Theorem 3.3.1. There exists a local variety 0 € A and an action of the dual group
wCl19"2l = C* g Tors on A such that (3.3.1) is the GIT quotient in the sense discussed in
Theorem 1.3. =

The C* action on 0 € A has the two bad locuses By such that By N B_ = 0 (set-
theoretically), and By have dimension 2 + 2 in the flip case and 3 + 1 in the divisorial
contraction case.

Revelation 3.3.2. 0 € A is a Gorenstein rational singularity.

Construction and proof. To prove the theorem, I just construct a more-or-less tautological
WCl-graded sheaf of Ox algebras R such that the graded piece of degree 0 € WCl is Oy,
and such that the positive and negative subalgebras R* have X* as their Proj. (I say
that D € WCl is negative if it is ample on X ~, for example, —K x-.)

In the flipping case, WCl equals the local divisor class group WClp X, so just set
R = @pewct Ox(D). The multiplication Ox(D1) ® Ox(D3z) — Ox(Dy + D) is the
natural one. In degree D = 0 I have Ry = Ox by choice, in negative degree I have
Rp = f-+«Ox-(D), and in positive degree Rp = f1.Ox+(D) (where I write D for the
birational transform on D). Thus Projy(R*) = X just follows because @x (D) is ample
on X* for D positive or negative.
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In the divisorial contraction case, I set Rp = Ox in nonnegative degree D and Rp =
f-«Ox-(D) in negative degree (this is a subsheaf of finite colength in O x(f—.(D)), which
is a torsion element of WClp X). Then, as in the flip case, Ry = Ox by choice and
Projx(R™) = X~ because Ox(D) is ample on X~ for D negative, and Projyx(R*) =
X= =%

A is simply Specy R. The bad locuses By and By, of the C* action are defined by the
ideals R <o and R~¢. Since all the sheaves are locally free on X \ P it follows that for every
D, and Dy, the multiplication Ox(D;) ® Ox(D3) — Ox(D; + D,) maps onto a subsheaf
of finite colength. It’s easy to deduce from this that the ideal R<p + R>o C R also has
finite colength, so that By N By = 0 is set-theoretically a single point.

I’'ve never worked out the proof of 3.3.2, but it shouldn’t be too hard. A Gorenstein
should be a tautological consequence of Kx € WCL The revelation that A has rational
singularities should follow from R'f4,Ox+ = 0. Amen

3.4. Problems. The ideas of §1 and Theorem 3.3.1 provide a formal language in which
one can eventually understand flips and extremal contractions. I still hope that the answer
will be not much more complicated than for terminal singularities. The main difficulty is
that I do not know too much about the Gorenstein 4-fold rational singularity 0 € A. My
revelation doesn’t say if 0 € A is terminal, but it seems likely. In principle the results of
[Mori] and [Kollar and Mori] tell us a lot about the flipping case.

If 0 € A is nonsingular, the flip or divisorial contraction is toric ([Reid2]), and this case
can be easily understood. Gavin Brown has some calculations under the assumption that
0 € A is a hypersurface singularity. In this case, the condition that X~ = (A\ B_)/C* has
only terminal singularities has a toric interpretation similar to that of [YPG], Chap. II. It
is at least possible that in this case 0 € A is always a ¢cDV 4-fold point.

Example. [Kollar and Mori], 13.7. Let f,—1(£1,&2) be a homogeneous polynomial of
degree m — 1 with coefficients in k. Consider C® with coordinates z1, z2, 24, y1,y2 (the x4
is not a misprint) and the C* action

T1,T2,Ta,Y1,Y2 = AT1, ATg, A24, Ay, ATy,
Consider the C* invariant 4-fold cA,,_» singularity 0 € A C C® given by
TalY = fm—l(l‘l,wz)-
It’s easy to see that the C* invariant functions are

Uy =IT1Y1, V1 = TalY,
Uy = T1Y2, V2 = T2Y2, Uz = 18495”,

and that X = A // C* is the triple point in A®(u1,us,v1,vs,v3) defined by

rank(ul 41 fm—l(uz,vz)) 1

Uz Uz U3
Then the elements

T1,%2,83 = T4y ' € Ox(—Kx) and x4 € Ox(—mKx)
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generate R_, and y1,y2 € Ox(Kx) generate R4+ as Ox algebras. Thus X_. is the graph
of the rational map X —— P(13,m) given by the weighted ratios of z, 23, T3, 24, and X+
the graph of X —— P! given by y;,y;. The whole flip picture is as follows:

(Figure 3.4.1)
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Dear Miles,

The following is the simplest case of my example, where the ring A is a complete
intersection of codimension 2.

Let my,ms, 01,02, 1, 2, & be positive integers such that

(my, ma) = (Mmime,8) = 1,028ms < my

Let z1,--- , x4, 2z, u be the variables with weights

my,ma, o26me — my{< 0), —ms, 6,0

Let A C C° be defined by
O‘25ucx2 o ZO’zmQ

T1Lg = Ty

. o5 0'15 al(ml—agﬁmg)
T4 — U Tq Z

with the G,,-action induced by the above weights. Let
B ={xy=23=2=0}= {2y =2, =0}
B ={ry=gx;=10}

following your notation. Then X~ = (A — B7)/G,, is covered by two open sets
Uy = {z1 # 0} and Uy = {x2 # 0}. On Uy, we have coordinates

e kit 1
(@2,74,2,0) = = (mz, ~1m2,5,0)
miy

with equation

:32:1—34 — uo.’l e zgl(mlﬁ-ﬁzﬁmg) . {:l—:ggéuag . 20’«277’).2}0"15)

and on Uy, we also have coordinates
L 1
(Z1,Z3,2,u) = —(my, —my,86,0)
o

with equation

T1Zy = el

It is easy to see that X~ has only terminal singularities and — Ky is positive. If
we put a further condition that

(OfI,O'l) = (ag,dg) = 1,

then X is analytically Q-factorial, whence CI(A//Gw) =Z. X+ = (A—B")/G,,
has a similar description. It can also be checked that

A D p: Weil Divisor on X"HO(X_: O(D))

Yours,
Mori
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