
Plurigenera and invariants of canonical n-folds

Miles Reid

Abstract
My initial aim is to give formulas for the plurigenera of canonical

n-folds for all n depending on integral parameters without implicit
congruences. Understanding the coe�cients in these formulas leads
to a form of Hirzebruch RR for �(D) that takes account of the (�1)n
symmetry under D 7! K �D arising from Serre duality and is primi-
tive integral.

1 Introduction

As is well-known, the binomial coe�cients
�

a
n

�
for n = 0, 1, 2, . . . form a

Z-basis for integral polynomial functions Z! Z; they start with
�

a
0

�
= 1 and�

a
1

�
= a
Among these, the binomial coe�cients

�
a+m�1

2m

�
are symmetric under a 7!

1�a, and form a Z-basis for such functions; the first cases are
�

a�1
0

�
= 1 and�

a
2

�
= 1

2a(a� 1). In the same way, the functions✓
a + m

2m + 1

◆
+

✓
a + m� 1

2m + 1

◆
=

2a� 1

2m + 1

✓
a + m� 1

2m

◆
, (1)

for m = 0, 1, 2, . . . base the integral polynomial functions that are skew under
a 7! 1�a, starting with

�
a
1

�
+

�
a�1
1

�
= 2a�1 and

�
a+1
3

�
+

�
a
3

�
= 1

6(2a�1)a(a�1).
Binomial coe�cients are made to be summed as generating functions:

the Hilbert series of the polynomial ring k[x0, . . . , xn] or of Pn with its usual
polarisation OPn(1) is

X
a�0

h0(Pn,O(a))ta =
X
a�0

✓
n + a

n

◆
ta =

1

(1� t)n+1
; (2)

one can view this formula as the definition of the binomial coe�cients. The
same trick applied to my symmetric and skew guys gives:
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Proposition 1.1 Define An(t) =8>><
>>:

P
a�0

�
a+m�1

2m

�
ta =

tm+1

(1� t)2m+1
for n = 2m;

P
a�0

��
a+m
2m+1

�
+

�
a+m�1
2m+1

��
ta =

(1 + t)tm

(1� t)2m+2
for n = 2m + 1.

(3)

I write out the starting values:

A�2 = 1� t, A�1 = 1 + t, A0 =
t

1� t
, A1 =

t + t2

(1� t)2
. (4)

Each term An(t) obeys the functional equation

tAn(1
t ) = (�1)n+1An(t), (5)

that I call Gorenstein symmetry, or more precisely, Gorenstein symmetry of
parity (�1)n+1 and canonical weight 1 (the exponent of t in (5)).

Proof The first sum for even m is evaluated using (2) with n = 2m; the
shift from n+a = 2m+a down to a+m�1 leads to the tm+1 in the numerator.
On substituting t 7! 1/t, the numerator gets divided by t2m+2, whereas the
denominator gets divided by t2m+1 and multiplied by (�1)2m+1 = �1. The
second sum is similar. ⇤

Trivial as this is, these function are the key to RR and to the plurigenus
formula for canonical n-folds. By the Hilbert Syzygies Theorem, a coher-
ent sheaf on Pn is K-equivalent to a virtual sum of line bundles OPn(a), so
its Hilbert series is a sum of terms (2) times powers of t. The result for
plurigenera of canonical n-folds is as follows:

Theorem 1.2 Let X be a nonsingular n-fold over C with ample canonical
class KX . Write

Pa(X) = h0(aKX) and PX,KX (t) =
1X

a=0

Pat
a (6)

for its plurigenera and Hilbert series. Then

PX,KX (t) =
X

j2[�2,n]
j⌘n mod2

�jAj + qt (7)

2



where the Aj are as in (3), the �j are certain integers, and the correction
term in degree 1 involves q = 1 + pg � (�1)n�.

Equivalently, the Hilbert polynomial for the plurigenera Pa for a � 2 is

Pa(X) =

8>>>>><
>>>>>:

mX
j=0

�2j

✓
a + j � 1

2j

◆
n = 2m;

mX
j=0

�2j+1

✓✓
a + j

2j + 1

◆
+

✓
a + j � 1

2j + 1

◆◆
n = 2m + 1.

(8)

It depends on the [n
2 ] + 1 coe�cients �0,�1, . . . ,�[n

2 ] or on the initial [n
2 ] + 1

plurigenera.

Note The integer invariants �i are basically versions of the Todd genera,
but symmetrised under D 7! KX � D; they play a starring role in the
discussion below.

I show below how to express the coe�cients �j in terms of Chern numbers.
However, it is clear a priori that they are integers, and are determined by the
first

⇥
n
2

⇤
+ 1 plurigenera. This follows because the leading term in t of the

successive terms of (8) are 1, t, t2, . . . , increasing by one at each step, so that
the �j term contributes to the plurigenus P[ j

2 ]+1. See the examples below.

1.1 Initial terms of the power series

Split into even and odd cases, (7) gives PX,KX (t) =

1� t + qt + �(OX)
t

1� t
+ �2

t2

(1� t)3
+ · · · + Kn tm+1

(1� t)n+1
, (9)

1 + t + qt� �(OX)
t + t2

(1� t)2
+ �3A3 + · · · + Kn

2
A2m+1. (10)

It is worth spelling out how the statement deals with the initial terms,
ensuring that the series starts with 1+pgt. In the even case, I set ��2 = 1 and
�0 = �(OX) = TdX . In the odd case, ��1 = 1 and �1 = ��(OX) = �TdX .
It is clear from (4) that the negative terms A�2 = 1 � t and A�1 = 1 + t
are linear polynomials, so the coe�cients ��2 or ��1 only a↵ect the t0 = 1
and t terms in PX(t), and do not contribute to the Hilbert polynomial. The

3



irregularity term qt in (7) with q = 1+ pg� (�1)n� serves only to adjust the
term in t from its RR value (�1)n�� 1 to P1 = pg. Kodaira vanishing gives
Pa(X) = h0(aKX) = �(aKX) for a � 2, so no further irregularity adjustment
is needed.

1.2 Higher terms and growth of the power series

At the top end, the growth of plurigenera is controlled by the leading term8>>>><
>>>>:

Kn

✓
a + m� 1

2m

◆
for n = 2m;

Kn

2

✓✓
a + m

2m + 1

◆
+

✓
a + m� 1

2m + 1

◆◆
for n = 2m + 1,

(11)

so that �n = Kn in the even case and �n = Kn

2 in the odd case. The formula
implies that Kn is divisible by 2 for n odd.

The next-to-leading term is

�n�2

✓
a + m� 2

2m� 2

◆
with �n�2 = Kn�2 · 1

12
(mK2 + c2) (12)

for n = 2m or

�n�2

✓✓
a + m� 2

2m� 1

◆
+

✓
a + m� 3

2m� 1

◆◆
(13)

with �n�2 = Kn�2 · 1

24
((m� 1)K2 + c2)

for n = 2m + 1. The second factor in each product has the same terms as
Td2. With hindsight, one might try to view it as Td2 plus binomial coe�cient
times K2 times Td0.

1.3 Symmetric RR

Writing the coe�cients �j as combinations of Chern numbers of X leads
directly to a symmetric form of the Hirzebruch RR formula, where D appears
only in pseudo-binomial coe�cients defined by✓

D + (m� 1)K,K

2m

◆
=

(D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m)!
(14)
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for n = 2m, with 2m factors that are reflected and multiplied by �1 by the
substitution D 7! K �D, and

1

2

✓✓
D + mK,K

2m + 1

◆
+

✓
D + (m� 1)K,K

2m + 1

◆◆

= (D � 1
2K)⇥ (D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m + 1)!
(15)

for n = 2m + 1, with 2m + 1 terms that are again reflected and multiplied
by �1 by D 7! K �D.

The result will be: in the even case n = 2m

ch(D) · TdX =
mX

j=0

B2j · bn�2j (16)

where b0, b2, b4, etc., are like Td0, Td2, Td4 but modified with binomial
coe�cients times K2 times lower Tds.

In the odd case n = 2m + 1 we get, for example,

n = 3 : ch(D) · TdX =

✓
D � K

2

◆✓
D(D �K)

6
+

c2

12

◆
(17)

and

n = 5 : ch(D) · TdX =�
D � K

2

� ⇣
(D+K)D(D�K)(D�2K)

5! + D(D�K))
3! · c21+c2

12 + Td4

⌘
(18)

2 Index 1

The plurigenera and Hilbert series of a canonical n-fold X are given by

Pi(X) = H0(iKX) and PX,KX (t) =
1X
i=0

Pit
i. (19)

Assume first for simplicity that X has local index 1 (that is, only Gorenstein
canonical singularities) and is regular, so that �(OX) = 1 + (�1)npg. (More
general cases later.)
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It is known that the Hilbert series is a rational function with denominator
(1� t)n+1, and Serre duality implies it is Gorenstein symmetric of degree 1,
meaning that

tP (1/t) = (�1)n+1P (t). (20)

Thus

P (t) =
Num

(1� t)n+1
=

1 + a1t + a2t2 + · · · + a2tn + a1tn+1 + tn+2

(1� t)n+1
, (21)

with Num a symmetric polynomial of degree n + 2; that is, Num is palin-
dromic, with ap = aq for p+q = n+2. It follows that P (X,KX) is determined
as a linear combination of just

⇥
n
2

⇤
+1 coe�cients. Whereas the RR formula

�(iK) = ch(iK) · TdX involves n + 1 terms. There are several di↵erent
strategies to choose these invariants, with di↵erent advantages:

(i) The Hilbert polynomial Hp(i), with Hp(i) = h0(iK) for all i � 2.

(ii) The coe�cients of Hp(i) are the n+1 terms Kn�q·TdX,q for q = 0, . . . , n,
corresponding to all the Todd classes

⇥
ch(iK) · Td(X)

⇤
n

=
nX

q=0

(iK)q

q!
· Tdn�q . (22)

(iii) The palindromic coe�cients 1, a1, a2, . . . , a2, a1, 1 in the numerator of
(21).

(iv) The initial plurigenera Pk for k = 1, 2, . . . ,
⇥

n
2

⇤
+ 1.

(v) The “principal parts” of P (t) viewed as a meromorphic function with
pole at t = 1. In more detail, P has the expansion P (t) =

8>>>><
>>>>:

mX
j=�1

b2j
tj

(1� t)2j+1
= (1� t) + · · · + Kn tm+1

(1� t)n+1
if n = 2m,

mX
j=0

b2j

2

tj + tj+1

(1� t)2j
= (1 + t) + · · · + Kn

2

tm + tm+1

(1� t)n+1
if n = 2m� 1

(23)
having

⇥
n
2

⇤
+ 1 coe�cients b2j for j = �1, . . . ,m or j = 0, . . . ,m.
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(vi) Golyshev [Go] views the roots of the Hilbert polynomial Hp(i) as basic
invariants. These are real algebraic numbers in a “canonical strip”
centred at n = 1

2 , and complex conjugate pairs on the line Re z = 1/2).
This view may provide information akin to the Bogomolov–Miyaoka–
Yau inequality and its generalisations.

The three sets of invariants (iii–v) relate to one another in obvious ways, and
each gives integral invariants without hidden congruence properties. (iii) and
(v) display the symmetry and dependence on

⇥
n
2

⇤
+1 parameters very neatly.

The nice feature of (v) is that each term has the same Gorenstein sym-
metry (20). It also translates directly into a neat formula for the plurigenera,
as follows. You recognise 1

(1�t)n+1 as the Hilbert series of Pn,O(1), with its

well-known Hilbert polynomial
�

n+i
n

�
, so that one deduces practically without

calculation that in the even dimensional case

Pi(X) =
mX

j=0

�2m�2jK
2j

✓
i + j � 1

2j

◆

= � + K2�2m�2

✓
i

2

◆
+ · · · + Kn

✓
i + m� 1

n

◆
for i � 2 (24)

where n = 2m, and in the odd dimensional case

mX
j=1

�2m�2j
K2j�1

2

✓✓
i + j � 1

2j + 1

◆
+

✓
i + j

2j + 1

◆◆

= (��) · (2i� 1) + · · · + Kn

2

✓✓
i + m

n

◆
+

✓
i + m� 1

n

◆◆
for i � 2

(25)

if n = 2m� 1

Serre duality and symmetric RR

Serre duality �(OX(KX � D)) = (�1)n�(OX(D)) gives that RR is (�1)n

symmetry under D 7! KX � D, so that Hp(i) is (�1)n symmetric under
i $ 1 � i. This symmetry implies (for example) that Hp is a function of�

i
2

�
for even n, and equals 2i� 1 times a function of

�
i
2

�
for odd n; hence it

depends on
⇥

n
2

⇤
+ 1 coe�cients.
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The formula
ch(D) · TdX = eD ⇥

Y xi

1� e�xi
(26)

in terms of products of the Chern roots xi is identically equal to

eD�K
2 ⇥

Y xi

2 sinh xi
2

= eD�K
2 ⇥ Td+

X , (27)

(take e
K
2 = e�

P xi
2 inside the product, then use xe�

x
2

1�e�x = x

e
x
2�e�

x
2

= x
2 sinh x

2
),

where the seed power series is the even function

s

2 sinh s
2

= 1� 1

24
s2 +

7

5760
s4 � 31

967680
s6 +

127

154828800
s8 � · · · . (28)

The modified Todd classes only appear in even degrees, making the symme-
try under D 7! KX � D obvious, at the cost of extra powers of 2 in the
denominator.

However, the individual RR terms Kj · Tdn�j in ch ·Td do not know
about the symmetry: rendering the right-hand side in terms of the elementary
symmetric functions ci = �i(x1, . . . , xn) completely jumbles up the symmetry,
and the symmetry of RR involves di↵erent coincidences in each dimension
among the terms in the Todd classes.

In addition, the Chern numbers have hidden divisibility properties, such
as the well-known fact that K2 + c2 is divisible by 12 in dimension 2, or K3

divisible by 2 and Kc2 divisible by 24 in dimension 3 (and later, divisibility
conditions by 720 or 30480; see ??, below). I want to write the plurigenus
directly with integer coe�cients and without hidden congruences.

3 Pseudo-binomial coe�cients and symmet-
ric RR

There is an better solution. I define the pseudo-binomial coe�cients: for
even n = 2m, set

✓
D + (m� 1)K,K

2m

◆
=

(D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m)!
(29)
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so that D 7! K � D inverts the 2m terms and multiplies each by �1. For
odd n = 2m + 1, set

✓
D + mK,K

2m + 1

◆
=

1

2

✓✓
D + mK,K

2m + 1

◆
+

✓
D + (m� 1)K,K

2m + 1

◆◆

= (D � 1
2K)⇥ (D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m + 1)!
(30)

If we write RR in terms of symmetrised Todd classes Td+ and these
pseudo-binomial coe�cients then each term is symmetric under D 7! K�D.

3.1 Symmetric RR

Writing the coe�cients �j as combinations of Chern numbers of X leads
directly to a symmetric form of the Hirzebruch RR formula, where D appears
only in pseudo-binomial coe�cients defined by

If n = 2m:

Bn(D) =

✓
D + (m� 1)K,K

2m + 1

◆
(31)

=
(D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m)!
(32)

If n = 2m + 1:

Bn(D) =
1

2

✓✓
D + mK,K

2m + 1

◆
+

✓
D + (m� 1)K,K

2m + 1

◆◆
(33)

= (D � 1
2K)⇥ (D + (m� 1)K)(D + (m� 2)K) · · · (D �mK)

(2m + 1)!
(34)

In either case D 7! K �D reflects the terms and multiplies each by �1.
The result corresponding to Theorem 1.2 is:

Theorem 3.1 In the even case n = 2m

ch(D) · TdX =
mX

j=0

B2j · bn�2j (35)
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where b0, b2, b4, etc., are like Td0, Td2, Td4 but modified with binomial
coe�cients times K2 times lower Tds.

In the odd case n = 2m + 1 we get, for example,

n = 1 : ch(D) · TdX = B1(D) = D � K

2
(= 1� g + deg D) (36)

n = 3 : ch(D) · TdX = B3(D) + B1(D) · c2

12
(37)

=

✓
D � K

2

◆✓
D(D �K)

3!
+

c2

12

◆
(38)

n = 5 : ch(D) · TdX = B5(D) + B3(D) · 1

12
(c2

1 + c2) + B1(D) · b4 (39)

where b4 = 1
720(�c2

1c2 + c1c3 + 3c2
2� c4). Note that this is not exactly equal to

Td4 = 1
720(�c4

1 + 4c2
1 + c1c3 + 3c2

2 � c4).

X := &+[D^(5-i)*Todd[i+1]/Factorial(5-i) : i in [0..5]];
X div (D-K/2) - (D+K)*D*(D-K)*(D-2*K)/Factorial(5)
- D*(D-K)/Factorial(3)*1/12*(c1^2+c2)
- (-1/720*c1^2*c2 + 1/720*c1*c3 + 1/240*c2^2 - 1/720*c4);

1. Curve of genus g

P (X,KX) = 1 + gt +
X

(2i� 1)(g � 1)ti = (��) · t + t2

(1� t)2
+ (1 + t), (40)

where �� = g � 1 = �Td1 = 1
2KX . Obviously, this gives

Pi = (2i� 1)(g � 1) for i � 2. (41)

where �� = g � 1 = �Td1 = 1
2KX .

2. Surface

RR and Kodaira vanishing gives

Pm =

8><
>:

1 if n = 0,

pg if n = 1,

� + K2 ·
�

n
2

�
if n � 2.

(42)
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This gives the well-known Hilbert series

P (X,KX) =
1 + (pg � 3)t + (K2 � 2pg + 4)t2 + (pg � 3)t3 + t4

(1� t)3
+ qt (43)

= 1� t + � · t

1� t
+ K2 · t2

(1� t)3
. (44)

3-fold

The Hilbert series is

P (X,KX) = 1 + t + qt + (��) · t + t2

(1� t)2
+

K3

2
· t2 + t3

(1� t)4
(45)

giving

Pa = (��) · (2a� 1) +
K3

12
· a(a� 1)(2a� 1) for a � 2. (46)

Here � = 1
24c1c2 = � 1

24Kc2. Note that c3 does not appear in this world.

In terms of pg = P1 = 1 � � and P2 = K3

2 � 3�, we get � = 1 � pg and
K3 = 2P2 � 6�.

e.g. K3 = 6, � = �4 (corresponding to pg = 5) gives X6 ⇢ P4.
K3 = 2, � = �3 (corresponding to pg = 4) gives X10 ⇢ P(1, 1, 1, 1, 5), the

double cover of P3 branched in S10.
K3 = 8, � = �4 (corresponding to pg = 5) gives X(4, 4) ⇢ P5(15, 2).

// check in Magma
K3 := 6; chi := -4;
P := K3/2*(t^2+t^3)/(1-t)^4 - chi*(t+t^2)/(1-t)^2 + (1+t); P;

4-fold

P (X,KX) = 1� t + � · t

1� t
+ �2 ·

t2

(1� t)3
+ K4 · t3

(1� t)5
, (47)

where �2 = K2 · b2 and b2 = 1
12(2K

2 + c2), giving

Pa = � + �2

✓
a

2

◆
+ K4

✓
a + 1

4

◆
. (48)
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Take the 3 parameters to be K4, �2 and � = Td4 = pg + 1. This has
the advantage that they are integers with no implicit congruences, directly
related to the initial plurigenera. In terms of Chern numbers, you have to
say that K4, K2c2 and � = Td4 are integers with K2c2 even and 2K4 +K2c2

divisible by 12.
e.g. K4 = 7, pg = 6, K2c2 = 154 gives X7 ⇢ P5.
K4 = 8, pg = 6, K2c2 = 152 gives X(4, 6) ⇢ P(16, 3).
K4 = 6, pg = 6, K2c2 = 156 gives X(3, 8) ⇢ P(16, 4).

// check in Magma
K4 := 7; chi := 7; dc2 := 154;
P := K4/6*(t^2 + 4*t^3 + t^4)/(1-t)^5 + dc2/12*t^2/(1-t)^3

+ chi*t/(1-t) + (1-t); P;

K4 := 6; chi := 7; dc2 := 156; // same line for P
P*(1-t)^6*(1-t^4); // t^11 - t^8 - t^3 + 1

5-fold

P (X,KX) = 1 + t + (��) · t + t2

(1� t)2
+

K3

2
· b2 ·

t2 + t3

(1� t)4
+

K5

2
· t3 + t4

(1� t)6
(49)

Here K3 · b2 = 1
12(K

5 + K3c2) (it is just a coincidence that b2 = Td2).
For i � 2 the coe�cient of ti is

Pi(X) = 1 + (��) · (2i� 1)

+
K3

2
· Td2 ·

✓✓
i + 1

3

◆
+

✓
i

3

◆◆
+

K5

2

✓✓
i + 2

5

◆
+

✓
i + 1

5

◆◆
. (50)

// check in Magma
K5 := 8; chi := -6; dTd2 := 20;
P := K5/2 * (t^3+t^4)/(1-t)^6
+ dTd2/2 * (t^2+t^3)/(1-t)^4
- chi * (t+t^2)/(1-t)^2 + (1+t); P;
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6-fold

P (X,KX) = K6 · t4

(1� t)7
+ K4�2 ·

t3

(1� t)5
+ K2�4 ·

t2

(1� t)3

+ � · t

1� t
+ 1� t. (51)

where

�2 =
1

12
(3K2 + c2), �4 =

1

720
(6K4 + 9K2c2 + c1c3 + 3c2

2 � c4) (52)

Hence

Pi(X) = K6 ·
✓

i + 2

6

◆
+ K4�2 ·

✓
i + 1

4

◆
+ K2�4 ·

✓
i

2

◆
+ � for i � 2. (53)

8-fold

�(D) =

✓
D + 3K,K

8

◆
+

✓
D + 2K,K

6

◆
�2+

✓
D + K,K

4

◆
�4+

✓
D,K

2

◆
�6+�8

where

�2 =
1

12
(4c2

1 + c2),

�4 =
1

720
(18c4

1 + 14c2
1c2 + c1c3 + 3c2

2 � c4),

�6 =
1

60280
(12c6

1 + 30c4
1c2 + 12c3

1c3 + 32c2
1c

2
2 � 12c2

1c4 + 11c1c2c3

� 2c1c5 + 10c3
2 � 9c2c4 � c2

3 + 2c6)

�8 = Td8 =
1

3628800
(�3c8

1 + 24c6
1c2 � 14c5

1c3 � 50c4
1c

2
2 + 14c4

1c4

+ 26c3
1c2c3 � 7c3

1c5 + 8c2
1c

3
2 � 19c2

1c2c4 + 3c2
1c

2
3 + 7c2

1c6

+ 50c1c
2
2c3 � 16c1c2c5 � 13c1c3c4 + 3c1c7 + 21c4

2

� 34c2
2c4 � 8c2c

2
3 + 13c2c6 + 3c3c5 + 5c2

4 � 3c8)

Each of those formulas in dimension 1–8, Serre duality involve di↵erent
coincidences among the terms in the Todd classes.
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4 Letter about Qorb

Shengtian corrected my Qorb formula, and you should just replace my version
by hers:

http://www.warwick.ac.uk/~masda/Ice/My_magmarc
down 4 paragraphs, from line 35

My formula allowed the Proj to have 1-dimensional singular locus such
as 1

6(1, 2, 3), but does not give the right result for singular locus of dimension
� 2 such as 1

8(1, 2, 2) or 1
R(1, r, r) with r divides R, or 1

R(1, ar, br) with
r = hcf(abr,R). I think I take out the factor (1� tr) once only before doing
XGCD, whereas she takes it out the right number of times.

What Qorb is doing is also becoming clearer to me. For a completely
general graded ring (in positive degree, with R0 = k), the Hilbert series
P (t) is a power series that is also a rational function. If you view it as a
meromorphic function, it has poles at the primitive rth roots of unity, of
order  dimFixµr, the dimension of the fixed locus of the subgroup of rth
roots of unity µr ⇢ C⇥ acting on SpecR. (This is practically obvious.)

Therefore the rational function has a partial fraction decomposition with
denominators (�r)d (where �r is the cyclotomic polynomial), corresponding
to the principal parts of the meromorphic function. I don’t know exactly at
what level of generality, but in the cases we want, there is way of parsing the
principal parts (at all the roots of 1, including 1 itself, the initial term PI), as
a sum of terms with denominator

Q
(1� tr), as r runs through a set of orders

of isotropy groups at each stratum and abutting strata, and numerator in a
stated short support.

To see what I mean, just run Shengtian’s Qorb on a few 1
R(a, br, cr) cases,

for example

P := Qorb(28,[5,7,14],2); P;
Factorization(Denominator(P));

[
<t - 1, 4>,
<t + 1, 2>,
<t^2 + 1, 1>,
<t^6 - t^5 + t^4 - t^3 + t^2 - t + 1, 2>,
<t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 3>,
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<t^12 - t^10 + t^8 - t^6 + t^4 - t^2 + 1, 1>
]

One sees that
(�t36 + t35� t34 + t32� t31 + t30� t29 + t27� t26 + t25� t23)Q

r2[1,7,14,28](1� tr)

5 Coarse general statement

R = k[x0, . . . , xn]/I is a graded ring in positive degrees. For M a finite
graded R-module, write PM(t) for its Hilbert series. On the one hand, PM(t)
is a power series with integral coe�cients. On the other, it is a rational
function with denominator a product of (1� tai) where ai = wtxi.

Write Fix(µr) ⇢ SpecR for the fixed locus of µr ⇢ C⇥. Then PM(t) can
also be viewed as a rational function with poles of order  dr at the primitive
rth roots of 1, where

dr = dim
�
Fix(µr) \ SuppM

�
.

(NB: the dimension in a�ne space SpecR, which is one more than the di-
mension in Peoj R.) This is obvious by the standard hyperplane section ar-
gument. We can also view PM(t) as a meromorphic function with the same
poles, and ask for his principal parts at each primitive rth root "r. Since the
primitive rth roots of 1 are roots of the irreductible cyclotomic polynomial
�r(t), the principal part can be treated as

Num

�dr
r

,

where Num is a polynomial with rational denominator. This gives a partial
fraction decomposition of PM(t) as a sum of such terms.

Conjecture 5.1 The same principal part is given by a unique best rational
function

NumQ
�ri

,

where Num has integral coe�cients, and the denominator involves the ri with
Fix(µri) adjacent to Fix(µr). Here “best” can be interpreted as “shortest”.

Then PM(t) is a sum of such terms over finitely many values of ri. This
is a coarse result. It says nothing about relation with RR, but also it does
not require any assumptions about smoothness etc.
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6 Canonical 3-folds

It has been well understood for 30 years that in dimension � 3, nonsingu-
lar is not enough. A simple example illustrates some interesting and typi-
cal features. Consider the general hypersurface X10 ⇢ P(1, 1, 2, 2, 3); write
x1, x2, y1, y2, z for the coordinates. This has 5⇥ 1

2(1, 1, 1) orbifold points along
P1(y1, y2) and a 1

3(1, 2, 2) point at Pz = (0, 0, 0, 0, 1).
I write his canonical Hilbert series as follows: first, the initial term

PI =
1� 2t + 3t2 + 3t3 � 2t4 + t5

(1� t)4
, (54)

takes care of P1 = 2, P2 = 5. Next, add in the orbifold terms

Porb(
1
2(1, 1, 1), 1) =

�t3

(1� t)3(1� t2)
, Porb(

1
3(1, 2, 2), 1) =

�t3 � t4

(1� t)3(1� t3)
.

(55)
to take care of the periodicity, getting

PI + 5⇥ Porb(
1
2(1, 1, 1), 1) + Porb(

1
3(1, 2, 2), 1) =

1� t10Y
a2[1,1,2,2,3]

(1� ta)
(56)
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