> %P load BBb; function Nterm(r,a) return t^2* (t^(r-2)*(1+t^be)*InverseMod(Denom([be,be,r-be]) div (1-t)^3,((1-t^r) div (1-t))) mod ((1-t^r) div (1-t)))/Denom([1,1,1,r]) where be is InverseMod(a,r); end function; function P(A) return (1-t^A[6])/Denom(A[1..5]); end function; function PI(A) // Initial term P_I, only for CY 3folds n1 := #[i : i in A | i eq 1]; n2 := #[i : i in A | i eq 2]; return (1 + (n1-4)*t + (n2+Binomial(n1-3,2))*t^2 + (n1-4)*t^3 + t^4)/(1-t)^4; end function; function Bask(A); B := []; C := []; Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; for r in Relevant do Amod := [a mod r : a in A ]; case [#[a : a in Amod[1..5] | a eq 0],#[a : a in Amod[6..6] | a eq 0]]: // when 0:; // no sing, do nothing when 4:; //error when 5:; //error when [1,0]: Append(~B, Insert(Sort(Exclude(Exclude(Amod[1..5],Amod[6]),0)),1,r)); // end this case: If ai divides d then Pi not on X when [2,1]: // calculate the number S^0(d) in PP(ai,aj) Num := Floor(A[6]/LCM([a : a in A[1..5] | a mod r eq 0])); for i in [1..Num] do Append(~B, Insert(Sort(Exclude(Exclude(Amod[1..5],0),0)),1,r)); end for; // end if; If r does not divides d then Lij is line of 1/r when [2,0]: Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),Amod[6]),1,r)); when [3,1]:; // necessarily r divides d and curve of 1/r Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),0),1,r)); end case; end for; return B, C; end function; function PointTerms(B) return &+[K | Qorb(b[1],b[2..4],0) : b in B]; end function; function X(A) return P(A)-PI(A)-PointTerms(Bask(A)); end function; function PC(A) // The curve terms P_C B,C := Bask(A); YY := PartialFractionDecomposition(X(A)/t^3*(1-t)^4); return [t^3/(1-t)^4*&+[K|y[3]/y[1]^y[2] : y in YY | IsDivisibleBy(1-t^r,y[1])] where r is c[1] : c in C]; end function; n:=20; n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); X := PC(A)[2]; X; X - Qorb(3,[1,2],3)/(1-t^3) - Nterm(3,1); X - Qorb(3,[1,2],3)/(1-t^3) - 0* Nterm(3,1); X - Qorb(3,[1,2],3)/(1-t^3) - 2* Nterm(3,1); b:=1; N:=2; X-Qorb(3,[1,2],3)/(1-t^3); b:=1; N:=2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm;; b:=1; N:=2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); X := PC(A)[1]; X-Qorb(4,[1,3],4)/(1-t^4); PartialFractionDecomposition($1); X-Qorb(4,[1,3],4)/(1-t^4); PartialFractionDecomposition($1*(1-t)^4); Denom([1,1,1,1,2]); Nterm(4,1); X-Qorb(4,[1,3],4)/(1-t^4)-2*Nterm(4,1); A; X-Qorb(4,[1,3],4)/(1-t^4)-2*Nterm(4,1); n; n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); PC(A)[1]; X:=PC(A)[1]; b:=1; N:=2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); b:=1; N:=3; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); PC(A)[2]; X:=PC(A)[2]; b:=0; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); X:=PC(A)[2]; b:=1; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); b:=1; N:=4; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); b:=1; N:=-3; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); b:=1; N:=-2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); X:=PC(A)[2]; b:=5; N:=-2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); b:=5; N:=0; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); n:=n+1; A:=BB[n]; A; Bask(A); PC(A); X:=PC(A)[1]; X-Qorb(4,[1,3],4)/(1-t^4)-2*Nterm(4,1); X-Qorb(4,[1,3],4)/(1-t^4)-5*Nterm(4,1); X-Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); SetLogFile("MagExperiments"); > n; 41 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 3, 5, 15 ] [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 3, 3, 5, 15 ] [] [ [ 3, 1, 2 ] ] [ (5*t^5 + 5*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > b:=5; N:=0; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 5*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=5; N:=5; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 4, 5, 15 ] [ [ 4, 1, 1, 2 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 5, 5, 15 ] [ [ 5, 1, 2, 2 ], [ 5, 1, 2, 2 ], [ 5, 1, 2, 2 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 5, 5, 15 ] [ [ 5, 1, 1, 3 ], [ 5, 1, 1, 3 ], [ 5, 1, 1, 3 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 3, 6, 15 ] [ [ 6, 1, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 0, (t^5 - t^4 + t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > b:=2; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); (4*t^5 + t^4 + 4*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) > b:=3; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); (4*t^5 + 2*t^4 + 4*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) > b:=-1; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); (4*t^5 - 2*t^4 + 4*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) > b:=5; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 4*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=5; N:=-3; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 8*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=5; N:=5; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 4, 6, 15 ] [ [ 3, 1, 1, 1 ], [ 3, 1, 1, 1 ], [ 4, 1, 1, 2 ], [ 6, 1, 1, 4 ] ] [ [ 2, 1, 1 ] ] [ t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 3, 7, 15 ] [ [ 7, 2, 2, 3 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 3, 7, 15 ] [ [ 3, 1, 1, 1 ], [ 3, 1, 1, 1 ], [ 3, 1, 1, 1 ], [ 3, 1, 1, 1 ], [ 3, 1, 1, 1 ], [ 7, 1, 3, 3 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 4, 7, 15 ] [ [ 4, 1, 1, 2 ], [ 7, 1, 2, 4 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 1, 5, 7, 15 ] [ [ 7, 1, 1, 5 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 3, 3, 4, 4, 16 ] [ [ 4, 2, 3, 3 ], [ 4, 2, 3, 3 ], [ 4, 2, 3, 3 ], [ 4, 2, 3, 3 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ -4*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (2*t^5 + t^4 + 2*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > X:=PC(A)[2]; > b:=1; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=1; N:=2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 4, 4, 4, 16 ] [ [ 3, 1, 1, 1 ] ] [ [ 4, 1, 3 ] ] [ (2*t^7 + 4*t^6 + 4*t^4 + 2*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-4*Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); 3*t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-4*Qorb(4,[1,3],4)/(1-t^4)+4*Nterm(4,1); 6*t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-4*Qorb(4,[1,3],4)/(1-t^4)-5*Nterm(4,1); -3*t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-4*Qorb(4,[1,3],4)/(1-t^4)-3*Nterm(4,1); -t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-4*Qorb(4,[1,3],4)/(1-t^4)-2*Nterm(4,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 3, 4, 5, 16 ] [ [ 5, 3, 3, 4 ] ] [ [ 3, 1, 2 ] ] [ (3*t^5 + 2*t^4 + 3*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > b:=1; N:=2; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=1; N:=1; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 2*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > b:=1; N:=3; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 4, 4, 5, 16 ] [ [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 5, 2, 4, 4 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 4, 5, 5, 16 ] [] [ [ 5, 1, 4 ] ] [ (2*t^9 + 4*t^8 + 6*t^7 + 5*t^6 + 6*t^5 + 4*t^4 + 2*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-Qorb(5,[1,4],5)/(1-t^5)-0*Nterm(5,1); (2*t^5 + 2*t^4 + 2*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > X-Qorb(5,[1,4],5)/(1-t^5)-1*Nterm(5,1); (t^5 + t^4 + t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > X-Qorb(5,[1,4],5)/(1-t^5)-2*Nterm(5,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 4, 6, 16 ] [ [ 6, 1, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 4, 4, 6, 16 ] [ [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 6, 1, 1, 4 ] ] [ [ 2, 1, 1 ] ] [ 2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 2, 3, 7, 16 ] [ [ 3, 2, 2, 2 ], [ 7, 2, 2, 3 ] ] [ [ 2, 1, 1 ] ] [ -8*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 3, 7, 16 ] [ [ 7, 1, 3, 3 ] ] [ [ 3, 2, 1 ] ] [ (2*t^5 + t^4 + 2*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 4, 7, 16 ] [ [ 7, 1, 2, 4 ] ] [ [ 2, 1, 1 ] ] [ -4*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 5, 7, 16 ] [ [ 5, 1, 2, 2 ], [ 7, 1, 1, 5 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 3, 8, 16 ] [ [ 3, 2, 2, 2 ] ] [ [ 2, 1, 1 ] ] [ -2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 3, 8, 16 ] [] [ [ 3, 1, 2 ] ] [ (4*t^5 + 3*t^4 + 4*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 4, 8, 16 ] [ [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 1, 5, 8, 16 ] [ [ 5, 1, 1, 3 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 3, 3, 4, 5, 17 ] [ [ 4, 2, 3, 3 ], [ 5, 3, 3, 4 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-2*t^5 - 3*t^4 - 2*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 5, 5, 17 ] [ [ 3, 2, 2, 2 ] ] [ [ 2, 1, 1 ], [ 5, 2, 3 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-5*t^9 - 2*t^8 - 6*t^7 - 8*t^6 - 6*t^5 - 2*t^4 - 5*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) ] > X:=PC(A)[2]; > X-1*Qorb(5,[2,3],5)/(1-t^5); (-5*t^5 + 3*t^4 - 5*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > Nterm(5,2); (3*t^5 - 2*t^4 + 3*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > Nterm(5,1); (t^5 + t^4 + t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -2*Nterm(5,2)+Nterm(5,1); (-5*t^5 + 5*t^4 - 5*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -2*Nterm(5,2)-Nterm(5,1); (-7*t^5 + 3*t^4 - 7*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -3*Nterm(5,2)-Nterm(5,1); (-10*t^5 + 5*t^4 - 10*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -3*Nterm(5,2)-2*Nterm(5,1); (-11*t^5 + 4*t^4 - 11*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -3*Nterm(5,2)+2*Nterm(5,1); (-7*t^5 + 8*t^4 - 7*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -3*Nterm(5,2)+3*Nterm(5,1); (-6*t^5 + 9*t^4 - 6*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -8/5*Nterm(5,2)+1/5*Nterm(5,1); (-23/5*t^5 + 17/5*t^4 - 23/5*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > -8/5*Nterm(5,2)-1/5*Nterm(5,1); (-5*t^5 + 3*t^4 - 5*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 5, 6, 17 ] [ [ 5, 1, 1, 3 ], [ 6, 1, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 0, -t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) ] > Nterm(3,1); t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 3, 7, 17 ] [ [ 7, 2, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-3*t^5 - 4*t^4 - 3*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 4, 7, 17 ] [ [ 3, 1, 1, 1 ], [ 4, 2, 3, 3 ], [ 7, 1, 2, 4 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 5, 7, 17 ] [ [ 3, 1, 1, 1 ], [ 5, 1, 1, 3 ], [ 7, 1, 1, 5 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 3, 8, 17 ] [ [ 8, 2, 3, 3 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-t^5 - 2*t^4 - t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 4, 8, 17 ] [ [ 3, 1, 1, 1 ], [ 8, 1, 3, 4 ] ] [ [ 4, 1, 3 ] ] [ (2*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 2*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); (3*t^5 + 5*t^4 + 3*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > X-0*Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); (3*t^7 + 5*t^6 + 5*t^5 + 5*t^4 + 3*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4)+2*Nterm(4,1); (4*t^5 + 7*t^4 + 4*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > Nterm(4,1); t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); (3*t^5 + 5*t^4 + 3*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > Denom([1,1,2,2]); t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1 > Denom([1,1,2,4]); t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1 > > > > n:=n-5; > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 3, 7, 17 ] [ [ 7, 2, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-3*t^5 - 4*t^4 - 3*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 4, 7, 17 ] [ [ 3, 1, 1, 1 ], [ 4, 2, 3, 3 ], [ 7, 1, 2, 4 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 5, 7, 17 ] [ [ 3, 1, 1, 1 ], [ 5, 1, 1, 3 ], [ 7, 1, 1, 5 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 3, 8, 17 ] [ [ 8, 2, 3, 3 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), (-t^5 - 2*t^4 - t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 4, 8, 17 ] [ [ 3, 1, 1, 1 ], [ 8, 1, 3, 4 ] ] [ [ 4, 1, 3 ] ] [ (2*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 2*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 5, 8, 17 ] [ [ 5, 1, 1, 3 ], [ 8, 1, 2, 5 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 3, 3, 5, 5, 18 ] [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ] ] [ [ 5, 2, 3 ] ] [ (4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > x := -t^3*((1-t^5) div (1-t))*(3-2*t+3*t^2); > y := t^3*(1+t^2)*(1+t^2+t^4); > X; (4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) > x+y; -2*t^9 - t^8 - 2*t^7 - 4*t^6 - 2*t^5 - t^4 - 2*t^3 > x-2*y; -5*t^9 - t^8 - 8*t^7 - 4*t^6 - 8*t^5 - t^4 - 5*t^3 > 2*x-y; -7*t^9 - 2*t^8 - 10*t^7 - 8*t^6 - 10*t^5 - 2*t^4 - 7*t^3 > > x; -3*t^9 - t^8 - 4*t^7 - 4*t^6 - 4*t^5 - t^4 - 3*t^3 > y; t^9 + 2*t^7 + 2*t^5 + t^3 > x+6*y; 3*t^9 - t^8 + 8*t^7 - 4*t^6 + 8*t^5 - t^4 + 3*t^3 > x+7*y; 4*t^9 - t^8 + 10*t^7 - 4*t^6 + 10*t^5 - t^4 + 4*t^3 > X; (4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) > Denom([1,1,5,5]); t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1 > x+y; -2*t^9 - t^8 - 2*t^7 - 4*t^6 - 2*t^5 - t^4 - 2*t^3 > -2* > -2*x+y; 7*t^9 + 2*t^8 + 10*t^7 + 8*t^6 + 10*t^5 + 2*t^4 + 7*t^3 > -*x+y; >> -*x+y; ^ User error: bad syntax > -x+y; 4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3 > A; [ 2, 3, 3, 5, 5, 18 ] > Bask(A); [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ] ] [ [ 5, 2, 3 ] ] > X:=PC(A)[1]; > X; (4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) > -2*x+y; 7*t^9 + 2*t^8 + 10*t^7 + 8*t^6 + 10*t^5 + 2*t^4 + 7*t^3 > -x+y; 4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 3, 3, 4, 6, 18 ] [ [ 4, 2, 3, 3 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ -2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), -3*t^4/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > X:=PC(A)[2]; > b:=3; N:=0; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 5, 6, 18 ] [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 5, 1, 2, 2 ] ] [ [ 2, 1, 1 ] ] [ -3*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 3, 5, 6, 18 ] [ [ 5, 1, 1, 3 ] ] [ [ 3, 1, 2 ] ] [ (3*t^5 + 3*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > b:=3; N:=3; X-b*Qorb(3,[1,2],3)/(1-t^3)-N*Nterm(3,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 6, 6, 18 ] [ [ 6, 1, 2, 3 ], [ 6, 1, 2, 3 ], [ 6, 1, 2, 3 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 0, 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 4, 6, 6, 18 ] [ [ 4, 1, 1, 2 ], [ 6, 1, 1, 4 ], [ 6, 1, 1, 4 ], [ 6, 1, 1, 4 ] ] [ [ 2, 1, 1 ] ] [ 2*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 4, 7, 18 ] [ [ 4, 2, 3, 3 ], [ 7, 2, 2, 3 ] ] [ [ 2, 1, 1 ] ] [ -5*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 3, 3, 8, 18 ] [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ], [ 8, 2, 3, 3 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 5, 8, 18 ] [ [ 5, 1, 2, 2 ], [ 8, 1, 2, 5 ] ] [ [ 2, 1, 1 ] ] [ -3*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 6, 8, 18 ] [ [ 8, 1, 1, 6 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 2, 2, 3, 9, 18 ] [ [ 3, 2, 2, 2 ], [ 3, 2, 2, 2 ] ] [ [ 2, 1, 1 ] ] [ -9*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 3, 9, 18 ] [] [ [ 3, 1, 2 ] ] [ (t^5 - t^4 + t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 4, 9, 18 ] [ [ 4, 1, 1, 2 ] ] [ [ 2, 1, 1 ] ] [ -4*t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 1, 6, 9, 18 ] [ [ 3, 1, 1, 1 ] ] [] [] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 3, 3, 4, 4, 5, 19 ] [ [ 5, 3, 3, 4 ] ] [ [ 3, 1, 2 ], [ 4, 3, 1 ] ] [ (3*t^5 + 2*t^4 + 3*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1), (-2*t^7 - 4*t^6 - 5*t^5 - 4*t^4 - 2*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); (4*t^11 + 12*t^10 + 26*t^9 + 40*t^8 + 45*t^7 + 40*t^6 + 26*t^5 + 12*t^4 + 4*t^3)/(t^14 - 2*t^11 - 2*t^10 + t^8 + 4*t^7 + t^6 - 2*t^4 - 2*t^3 + 1) > X:=PC(A)[2]; > X-Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); -t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > Nterm(4,1); t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 4, 5, 6, 19 ] [ [ 4, 1, 1, 2 ], [ 5, 1, 1, 3 ], [ 6, 3, 4, 5 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 0, (2*t^5 + t^4 + 2*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 4, 5, 7, 19 ] [ [ 4, 1, 1, 2 ], [ 5, 1, 2, 2 ], [ 7, 1, 2, 4 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 3, 3, 4, 8, 19 ] [ [ 8, 1, 3, 4 ] ] [ [ 3, 1, 2 ], [ 4, 1, 3 ] ] [ (4*t^5 + 3*t^4 + 4*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1), (-t^6 - t^5 - t^4)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[2]; > X-0*Qorb(4,[1,3],4)/(1-t^4)+1*Nterm(4,1); (t^7 + t^6 + t^5 + t^4 + t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > X; (-t^6 - t^5 - t^4)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > Denom([1,1,4,4]); t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1 > Qorb(4,[1,3],4)/(1-t^4); -t^5/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > X; (-t^6 - t^5 - t^4)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4)+0*Nterm(4,1); -t^4/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > Nterm(4,1); t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > X-2*Qorb(4,[1,3],4)/(1-t^4)+0*Nterm(4,1); (-t^6 + t^5 - t^4)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > X-3*Qorb(4,[1,3],4)/(1-t^4)+0*Nterm(4,1); -t^4/(t^8 - 2*t^4 + 1) > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 6, 8, 19 ] [ [ 6, 1, 2, 3 ], [ 8, 1, 1, 6 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1), 2*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 3, 4, 9, 19 ] [ [ 4, 1, 1, 2 ], [ 9, 2, 3, 4 ] ] [ [ 2, 1, 1 ], [ 3, 2, 1 ] ] [ 0, 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 2, 2, 5, 9, 19 ] [ [ 5, 1, 2, 2 ], [ 9, 2, 2, 5 ] ] [ [ 2, 1, 1 ] ] [ -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 3, 5, 9, 19 ] [ [ 5, 1, 1, 3 ], [ 9, 1, 3, 5 ] ] [ [ 3, 1, 2 ] ] [ 2*t^3/(t^6 - 3*t^5 + 3*t^4 - 2*t^3 + 3*t^2 - 3*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 1, 1, 2, 6, 9, 19 ] [ [ 6, 1, 2, 3 ], [ 9, 1, 2, 6 ] ] [ [ 2, 1, 1 ], [ 3, 1, 2 ] ] [ 0, t^4/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 3, 4, 4, 4, 5, 20 ] [ [ 3, 1, 1, 1 ] ] [ [ 4, 3, 1 ] ] [ -5*t^5/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-5*Qorb(4,[1,3],4)/(1-t^4)+0*Nterm(4,1); 0 > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 3, 3, 4, 5, 5, 20 ] [ [ 5, 3, 3, 4 ], [ 5, 3, 3, 4 ], [ 5, 3, 3, 4 ], [ 5, 3, 3, 4 ] ] [ [ 3, 1, 2 ] ] [ (-2*t^5 - 3*t^4 - 2*t^3)/(t^8 - 2*t^7 + t^6 - 2*t^5 + 4*t^4 - 2*t^3 + t^2 - 2*t + 1) ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 4, 4, 5, 5, 20 ] [ [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 4, 1, 1, 2 ], [ 5, 2, 4, 4 ], [ 5, 2, 4, 4 ], [ 5, 2, 4, 4 ], [ 5, 2, 4, 4 ] ] [ [ 2, 1, 1 ] ] [ 0 ] > n:=n+1; A:=BB[n]; A; Bask(A); PC(A); [ 2, 3, 5, 5, 5, 20 ] [ [ 3, 2, 2, 2 ] ] [ [ 5, 2, 3 ] ] [ (-2*t^9 - 2*t^8 - 8*t^6 - 2*t^4 - 2*t^3)/(t^12 - 2*t^11 + t^10 - 2*t^7 + 4*t^6 - 2*t^5 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > X-4*Qorb(5,[2,3],5)/(1-t^5); (-2*t^5 - 2*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > Nterm(5,2); (3*t^5 - 2*t^4 + 3*t^3)/(t^8 - 3*t^7 + 3*t^6 - t^5 - t^3 + 3*t^2 - 3*t + 1) > Qorb(8,[1,3,4]); >> Qorb(8,[1,3,4]); ^ Runtime error in procedure call: Number of arguments (2) does not equal expected number of arguments (3) > Qorb(8,[1,3,4],0); (t^8 - t^7 + t^6)/(t^14 - 2*t^13 + t^12 - t^10 + 2*t^9 - t^8 - t^6 + 2*t^5 - t^4 + t^2 - 2*t + 1) > PartialFractionDecomposition($1*(1-t)^4); [ , , , , ] > (3/4*t^3 - 3/4*t + 1)/(1+t^4); (3/4*t^3 - 3/4*t + 1)/(t^4 + 1) > S!$1; 1 - 3/4*s + 3/4*s^3 - s^4 + 3/4*s^5 - 3/4*s^7 + s^8 - 3/4*s^9 + 3/4*s^11 - s^12 + 3/4*s^13 - 3/4*s^15 + s^16 - 3/4*s^17 + 3/4*s^19 - s^20 + 3/4*s^21 - 3/4*s^23 + s^24 - 3/4*s^25 + 3/4*s^27 - s^28 + 3/4*s^29 - 3/4*s^31 + s^32 - 3/4*s^33 + 3/4*s^35 - s^36 + 3/4*s^37 - 3/4*s^39 + s^40 - 3/4*s^41 + 3/4*s^43 - s^44 + 3/4*s^45 - 3/4*s^47 + s^48 - 3/4*s^49 + O(s^50) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)-1/(1-t)^4; (3/4*t^7 - 3*t^6 + 15/4*t^5 - 31/4*t^3 + 9*t^2 - 19/4*t)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)+(19*t-1)/(1-t)^4; (3/4*t^7 - 3*t^6 + 91/4*t^5 - 31/4*t^3 + 9*t^2 + 57/4*t)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)+(19/4*t-1)/(1-t)^4; (3/4*t^7 - 3*t^6 + 17/2*t^5 - 31/4*t^3 + 9*t^2)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)+(-9*t^2+19/4*t-1)/(1-t)^4; (3/4*t^7 - 12*t^6 + 17/2*t^5 - 31/4*t^3)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)+(+31/4*t^3-9*t^2+19/4*t-1)/(1-t)^4; (17/2*t^7 - 12*t^6 + 17/2*t^5)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > (3/4*t^3 - 3/4*t + 1)/(1+t^4)+(-17/2*t^5+31/4*t^3-9*t^2+19/4*t-1)/(1-t)^4; (-17/2*t^9 + 17/2*t^7 - 12*t^6)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + 2*t^4 - 4*t^3 + 6*t^2 - 4*t + 1) > Qorb(8,[1,3,4],0); (t^8 - t^7 + t^6)/(t^14 - 2*t^13 + t^12 - t^10 + 2*t^9 - t^8 - t^6 + 2*t^5 - t^4 + t^2 - 2*t + 1) > PartialFractionDecomposition($1*(1-t)^4); [ , , , , ] > X := Qorb(8,[1,3,4],0); > PartialFractionDecomposition(X*(1-t)^4); [ , , , , ] > PartialFractionDecomposition(X*Denom([1,1,2,4])); [ <1, 1, t^2 - t>, , ] > (1/2*t^3 - t^2 + 1/2*t)/(1+t^4) + 1/2*t/(1+t^2); (t^5 - t^4 + t^3 - t^2 + t)/(t^6 + t^4 + t^2 + 1) > X*Denom([1,1,2,4])-$1; t^2 - t > (1/2*t^3 - t^2 + 1/2*t)/(1+t^4) + 1/2*t/(1+t^2); (t^5 - t^4 + t^3 - t^2 + t)/(t^6 + t^4 + t^2 + 1) > X-$1/Denom([1,1,2,4]); t/(t^7 - t^6 - t^5 + t^4 - t^3 + t^2 + t - 1) > $1/(1+t); t/(t^8 - 2*t^6 + 2*t^2 - 1) > X := Qorb(8,[1,3,4],0); > (1/2*t^3 - t^2 + 1/2*t)/(1+t^4) + 1/2*t/(1+t^2); (t^5 - t^4 + t^3 - t^2 + t)/(t^6 + t^4 + t^2 + 1) > > > > X; (t^8 - t^7 + t^6)/(t^14 - 2*t^13 + t^12 - t^10 + 2*t^9 - t^8 - t^6 + 2*t^5 - t^4 + t^2 - 2*t + 1) > Denom([1,1,2,4,8]); -t^16 + 2*t^15 - 2*t^13 + 2*t^12 - 2*t^11 + 2*t^9 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1 > Denom([1,1,4,8]); t^14 - 2*t^13 + t^12 - t^10 + 2*t^9 - t^8 - t^6 + 2*t^5 - t^4 + t^2 - 2*t + 1 > PartialFractionDecomposition(X*Denom([1,1,1,1])); [ , , , , ] > $1[5,3]/$1[5,1] > ; (3/4*t^3 - 3/4*t + 1)/(t^4 + 1) > $1*(1-t^8); -3/4*t^7 + 3/4*t^5 - t^4 + 3/4*t^3 - 3/4*t + 1 > X; (t^8 - t^7 + t^6)/(t^14 - 2*t^13 + t^12 - t^10 + 2*t^9 - t^8 - t^6 + 2*t^5 - t^4 + t^2 - 2*t + 1) > Denom([1,1,1,8]); t^11 - 3*t^10 + 3*t^9 - t^8 - t^3 + 3*t^2 - 3*t + 1 > Qorb(4,[1,3],4)/(1-t^4); -t^5/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ , , , ] > BB8 := [A : A in BB | 8 in A]; > BB8134 := [A : A in BB8 | [8,1,3,4] in Bask(A)]; > #BB8134; 164 > n:=0; > n:=n+1; A:=BB8134[n]; A; Bask(A); PC(A); [ 1, 1, 3, 4, 8, 17 ] [ [ 3, 1, 1, 1 ], [ 8, 1, 3, 4 ] ] [ [ 4, 1, 3 ] ] [ (2*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 2*t^3)/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) ] > X:=PC(A)[1]; > PartialFractionDecomposition(X*Denom([1,1,1,1])); [ <1, 1, 2*t - 1>, , , , ] > Qorb(4,[1,3],4)/(1-t^4); -t^5/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > PartialFractionDecomposition(X*Denom([1,1,1,1])); [ <1, 1, 2*t - 1>, , , , ] > Qorb(4,[1,3],4)/(1-t^4); -t^5/(t^10 - 2*t^9 + t^8 - 2*t^6 + 4*t^5 - 2*t^4 + t^2 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ , , , ] > X-Qorb(4,[1,3],4)/(1-t^4); (2*t^5 + 3*t^4 + 2*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ <1, 1, 2*t - 1>, , , ] > Qorb(2,[1,1],2)/(1-t^4); -t^3/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ , , ] > X-Qorb(4,[1,3],4)/(1-t^4)-Qorb(2,[1,1],2)/(1-t^4);; (2*t^5 + 3*t^4 + 3*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4)+Qorb(2,[1,1],2)/(1-t^4);; (2*t^4 + t^3)/(t^7 - 3*t^6 + 3*t^5 - t^4 - t^3 + 3*t^2 - 3*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4)+Qorb(2,[1,1],2)/(1-t^2);; (t^5 + 3*t^4 + t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > X-Qorb(4,[1,3],4)/(1-t^4); (2*t^5 + 3*t^4 + 2*t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ <1, 1, 2*t - 1>, , , ] > Qorb(2,[1,1],2)/(1-t^4); -t^3/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ , , ] > X-Qorb(4,[1,3],4)/(1-t^4)+Qorb(2,[1,1],2)/(1-t^2); (t^5 + 3*t^4 + t^3)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 + 2*t^3 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ <1, 1, t + 1>, , , ] > Qorb(2,[1,1],2)/(1-t^2); -t^3/(t^6 - 2*t^5 - t^4 + 4*t^3 - t^2 - 2*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ <1, 1, -t + 2>, , ] > X-Qorb(4,[1,3],4)/(1-t^4)+1/2*Qorb(2,[1,1],2)/(1-t^2); 3/2*t^3/(t^6 - 4*t^5 + 7*t^4 - 8*t^3 + 7*t^2 - 4*t + 1) > PartialFractionDecomposition($1*Denom([1,1,1,1])); [ <1, 1, 3/2*t>, ] > > . Total time: 10.679 seconds, Total memory usage: 8.72MB