curves of transverse type 1/3(1,2) Y12 in PP(1,2,3,3,3) has a surface section S12 in PP(2,3,3,3) This is iso to dP2 S4 in PP(2,1,1,1) (write B = 3A for the new Oh(1), with the branch curve Ga as a 1/3 locus). Then A = K(S,orb) = -B + 2/3 Ga so that 2A = 1/3 Ga, 3A = B. I still don't have a systematic way of thinking about the orbifold curve. Instead, use RR on S with [nA] and K(S) = [K(S,orb)]. [nA] = nA - 2/3 Ga if n == 1 mod 3 nA - 1/3 Ga if n == 2 nA if n == 0. So setting B^2 = b gives for n = 3k, 3k+1, 3k+2 P(n) = h^0(S, kB), h^0(S, (k-1)B) or h^0(S, kB). 1 if n = 0 0 if n = 1 1 + k(k+1)b/2 for n = 3k+2, k >= 0 1 + k(k+1)b/2 for n = 3k, k >= 1 1 + (k-1)k b/2 for n = 3k+1, k >= 1 S := PowerSeriesRing(Q,50); b:=1; P := 1 + &+[(1 + k*(k+1)*b/2)*s^(3*k+2) : k in [0..20]] + &+[(1 + k*(k+1)*b/2)*s^(3*k) : k in [1..20]] + &+[(1 + (k-1)*k*b/2)*s^(3*k+1) : k in [1..20]]; P*&*[(1-s^i) : i in [2,3,3]]; Suppose I compare with the formula in terms of P1, P2. P1 = pg, P2 = K^2 + pg + 1; P*(1-t)^3 = 1 + (P1-3)*s+ (P2-3P1+3)*s^2 + (P1-3)*s^3 + s^4; P1:=0; P2:=1; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; expt shows that P - Pa = b*(s^3 + s^5 + 3*s^6 + s^7 + 3*s^8 + 6*s^9 + 3*s^10 + 6*s^11 + 10*s^12 + 6*s^13 + 10*s^14 + ..) = s^3*(1-s+s^2)/((1-s^3)^2*(1-s)) Pb := b*s^3*(1-s+s^2)/((1-s^3)^2*(1-s)); "size of function = order of leading term, at pole of order 3, at s=1" It is obviously 1/9. Magma can't do PowerSeries -> MeromorphicFunction, OrderOfPole, LeadingTerm, etc. Maybe they will want to take this on board? P1:=0; P2:=1; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; --> degree P2 - P1 - 1 b := 1; Pb := b*s^3*(1-s+s^2)/((1-s^3)^2*(1-s)); --> degree b*1/9 P := Pa + Pb; > Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; > Pb := b*s^3*(1-s+s^2)/((1-s^3)^2*(1-s)); > P:=Pa+Pb; > P; 1 + s^2 + 2*s^3 + s^4 + 2*s^5 + 4*s^6 + 2*s^7 + 4*s^8 + 7*s^9 + 4*s^10 + 7*s^11 + 11*s^12 + 7*s^13 + 11*s^14 + 16*s^15 + 11*s^16 + 16*s^17 + 22*s^18 + 16*s^19 + 22*s^20 + 29*s^21 + 22*s^22 + 29*s^23 + 37*s^24 + 29*s^25 + 37*s^26 + 46*s^27 + 37*s^28 + 46*s^29 + 56*s^30 + 46*s^31 + 56*s^32 + 67*s^33 + 56*s^34 + 67*s^35 + 79*s^36 + 67*s^37 + 79*s^38 + 92*s^39 + 79*s^40 + 92*s^41 + 106*s^42 + 92*s^43 + 106*s^44 + 121*s^45 + 106*s^46 + 121*s^47 + 137*s^48 + 121*s^49 + O(s^50) > P*&*[1-s^i: i in [2,3,3]]; 1 + s^9 + O(s^50) I try to add 1/5(2,2) K5 := CyclotomicField(5); ep5^-1/((1-ep5^2)*(1-ep5^2)); // Answer 1/5*(ep5^3 - 2*ep5^2 + ep5) So the contribution contr5 is 1/(1-t^5)*1/5*(t^2-2t^3+t^4) this should add -1/5 to A^2 (as calculated from P1, P2). So Pc := -1/5*1/(1-s)^2; Pd := 1/(1-s^5)*1/5*(s^2-2*s^3+s^4); > P1:=1; P2:=3; > Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; > Pb := b*s^3*(1-s+s^2)/((1-s^3)^2*(1-s)); > Pc := -1/5*s^2*1/(1-s)^3; > Pd := 1/(1-s^5)*1/5*(s^2-2*s^3+s^4); > P:=Pa+Pb+Pc+Pd; // gives 1 + s + 3*s^2 + 5*s^3 + 7*s^4 + 11*s^5 + .. > P*&*[1-s^i: i in [1,2,2,3,3,5]]; 1 - s^4 - s^5 + s^6 - s^7 - 3*s^8 + 3*s^9 + s^10 - s^11 + s^12 + s^13 - s^17 + O(s^50) > P*&*[1-s^i: i in [1,2,2,3,3,5,6]]; 1 - s^4 - s^5 - s^7 - 3*s^8 + 3*s^9 + 2*s^10 + 2*s^13 + 3*s^14 - 3*s^15 - s^16 - s^18 - s^19 + s^23 + O(s^50) ===================== curve of type 1/4(3) Y(16) in PP(1,3,4,4,4) curve of 1/4(1,3) one 1/3(1,1,1) singularity S(16) in PP(3,4,4,4) iso S(4) in PP(3,1,1,1) (write B for Oh(1) here). S(4) has KS = -2B and 1/3(1,1,1) as its only singularity. B^2 = 4/3 H^0(S,kB) = 1 + 1/2k(k+2)B^2 - 1/3 (if k ==2 (mod 3) or 0. Check: if k = -2 then 1 + 0 if k = -1 then 1 + 1/2(-1)(+1)(4/3) - 1/3 if k = 0 then 1 + 0 if k = 1 then 1 + 1/2(1)(3)(4/3) - 0 if k = 2 then 1 + 1/2(2)(4)(4/3) - 1/3 S(16) has a 1/4 orbifold curve along Ga : (x=0) in 3B, and the polarisation is A = KS + (3/4)Ga = -2B + (3/4)Ga == (1/4)B. It satisfied 3A == 1/4 Ga, because = -6B + (9/4)Ga 4A = B A^2 = 1/12. PolyRR(S,A) written in terms of A, K(S,orb) gives chi(nA) = 1 + n(n-1)A^2/2 = 1 + n(n-1)/24. The actual values come from [nA] = nA -(3/4)Ga, -(1/2)Ga, -(1/4)Ga, 0 and KS = [K(S,orb)] = K(S,orb) - (3/4)Ga. Thus H^0(S(16),nA) = 1 if n = 0 0 if n = 1, because = H^0(S,-2B) 0 if n = 2, because = H^0(S,-4B+(6/4)Ga-(1/2)Ga) = H^0(S,-B) 1 if n = 3, because = H^0(S,-6B+(9/4)Ga-(1/4)Ga) = H^0(S,Oh) H^0(S,-2nB+(3n/4)Ga -(3/4)Ga, -(1/2)Ga, -(1/4)Ga, 0) for n >= 2 which means H^0(S,(-8k-2+(12k+3)/4(3B)-(3/4)3B)) = H^0(S,(k-2)B) if n = 4k+1 H^0(S,(-8k-4+(12k+6)/4(3B)-(2/4)3B)) = H^0(S,(k-1)B) if n = 4k+2 H^0(S,(-8k-6+(12k+9)/4(3B)-(1/4)3B)) = H^0(S,kB) if n = 4k+3 H^0(S,kB) if n = 4k. Write this as ActRR([nA]) = 1 + (k-2)kB^2/2 if n = 4k+1 1 + (k-1)(k+1)B^2/2 if n = 4k+2 1 + k(k+2)B^2/2 if n = 4k+3 1 + k(k+2)B^2/2 if n = 4k or same -1/3 if the reduced value is 2 mod 3. (Just means round down.) S : PowerSeriesRing(Q,50); BB := 4/3; // this is the degree of 4A or the degree of S(4) in PP(3,1,1,1) P := 1 + &+ [(1 + Floor(k*(k+2)*BB/2))*s^(4*k) : k in [1..20]] + &+ [(1 + Floor((k-2)*k*BB/2))*s^(4*k+1) : k in [1..20]] + &+ [(1 + Floor((k-1)*(k+1)*BB/2))*s^(4*k+2) : k in [0..20]] + &+ [(1 + Floor(k*(k+2)*BB/2))*s^(4*k+3) : k in [0..20]] ; / / 1 + s^3 + 3*s^4 + s^6 + 3*s^7 + ..; Looks nice enough P* &*[1-s^i : i in [3,4,4,4]]; // 1 - s^16 + O(s^50) The formula in terms of P1, P2 is P1 := 0; P2 := 0; Pa := (1+(P1-3)*s+(P2-3*P1+3)*s^2+(P1-3)*s^3+s^4)/(1-s)^3; The difference is the sum of orbifold corrections: Pcor := P-Pa; // Pcor is 3*s^3 + 8*s^4 + 9*s^5 + 15*s^6 + Pcor *&*[1-s^i: i in [3,4,4]]; 3*s^3 + 8*s^4 + 9*s^5 + 12*s^6 + 9*s^7 + 8*s^8 + 3*s^9 // it needs the whole denom [3,4,4] K3 := CyclotomicField(3); ep3^-1*1/(1-ep3)^2; // effect of having 1/3(1,1) sing on plurigenera is // 1/3*s^2/(1-s)^3-1/3*s^2*/(1-s^3), which equals s^3/((1-s)^2*(1-s^3)) P3cor := s^3/((1-s)^2*(1-s^3)); P4cont := P-Pa-P3cor; P4cont*(1-s)*(1-s^4)^2; // 2*s^3 + 4*s^4 + 4*s^6 + 2*s^7 Conclusion: the effect of having 1/3(1,1) is to add s^3/((1-s)^2*(1-s^3)) The effect of having a curve Ga of 1/4(3) of that degree is to add (2*s^3 + 4*s^4 + 4*s^6 + 2*s^7)/((1-s)*(1-s^4)^2); Try it out from scratch P1 := 0; P2 := 0; Pa := (1+(P1-3)*s+(P2-3*P1+3)*s^2+(P1-3)*s^3+s^4)/(1-s)^3; n := 2; // number of P(1/3(1,1)) Pb := n*s^3/((1-s)^2*(1-s^3)); b := 1; // degree Ga(1/4(3)) eq b*1/8 Pc := b*(s^3 + 2*s^4 + 2*s^6 + s^7)/((1-s)*(1-s^4)^2); P:=Pa+Pb+Pc; P; P* &* [(1-s^i) : i in [3,4,4]]; ================ Now let's do some curves of 1/5(4). It's even easier that the 1/4(3) case. [ 1, 4, 5, 5, 5, 20 ], [ 1, 4, 5, 5, 10, 25 ], [ 1, 4, 5, 10, 10, 30 ], [ 1, 4, 5, 10, 20, 40 ], [ 1, 4, 5, 15, 20, 45 ], [ 1, 4, 5, 20, 30, 60 ], Y(20) in PP(1,4,5,5,5) pass to the surface S(20) in PP(4,5,5,5) iso S(4) in PP(4,1,1,1), that is iso PP^2 with a marked quartic Ga as 1/5(4) curve. KS = -3B, whereas A = K(S,orb) = -3+(4/5)Ga == (-3 + 16/5)B == (1/5)B A has 4A = (1/4)Ga, and 5A = B. Also A^2 = 1/25. So PolyRR(nA) = 1 + 1/2*n(n-1)*1/25. [nA] = nA - (4/5)Ga or -(3/5)Ga or -(2/5)Ga or -(1/5)Ga or 0. We know this gives (1-t^20)/(1-t^4)(1-t^5)^3. P := (1-s^20)/((1-s^4)*(1-s^5)^3)); P1 := 0; P2 := 0; Pa := (1+(P1-3)*s+(P2-3*P1+3)*s^2+(P1-3)*s^3+s^4)/(1-s)^3; P-Pa; gives (2*s^3 + 6*s^4 + 12*s^5 + 14*s^6 + 18*s^7 + 18*s^8 + 14*s^9 + 12*s^10 + 6*s^11 + 2*s^12)/(1-s^4)*(1-s^5)^2; ================Scrap: I suspect that the coeffs 8 should be 9, and the factor (1-t^3) in the denom is not needed: Factorization(t^6+3*t^5+3*t^4+4*t^3+3*t^2+3*t+1); [ , ] PP := Ptemp - 3*s^3*(1+2*s+2*s^2+s^3)/((1-s)*(1-s^4)^2); -t^4 - 6*t^5 - 3*t^6 + 5*t^8 + 3*t^9 PP := Ptemp + 3*s^3*(1+2*s+2*s^2+s^3)/((1-s)*(1-s^4)^2); (3*t^3 + 8*t^4 + 9*t^5 + 12*t^6 + 9*t^7 + 8*t^8 + 3*t^9); (t^3 + t^5 + 2*t^6 + 6*t^7 + 4*t^8 + 4*t^9 + 2*t^10 + 6*t^11 + 4*t^12 + 4*t^13 + 2*t^14 + 5*t^15 + 4*t^16 + 3*t^17) P4cont*(1-s)*(1-s^4)^2; Factorization(t^3 + 2*t^4 + 2*t^6 + t^7);x ============================= start again with S(12) in PP(2,3,3,3) P1 := 0, P2 := 1; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^12)/&*[1-s^i : i in [2,3,3,3]]; P-Pa; 1/2*(P-Pa); (1/2*(P-Pa)) * &* [1-s^i : i in [1,3,3]]; // s^3 -s^4 + s^5 i.e. the effect of adding this 1/3(2) curve is an integer multiple of s^3(1 -s + s^2)/(1-s)*(1-s^3)^2. This has deg 1/9. ======== S(16) in PP(3,4,4,4) P1:=0; P2:=0; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^16)/&*[1-s^i : i in [3,4,4,4]]; P3corr := s^3/((1-s)^2*(1-s^3)); // corrects for 1/3(1,1) 1/2*(P-Pa-P3cor); 1/2*(P-Pa-P3cor)* &*[1-s^i : i in [1,4,4]]; // s^3 + 2*s^4 + 2*s^6 + s^7 i.e. the effect of adding this 1/4(3) curve is an integer multiple of s^3(1 +2s + 2s^3 + s^4)/(1-s)*(1-s^4)^2. This has deg 6/16. ======== S(20) in PP(4,5,5,5) P1:=0; P2:=0; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^20)/&*[1-s^i : i in [4,5,5,5]]; P-Pa; 1/2*(P-Pa)* &*[1-s^i : i in [1,5,5]]; // s^3 + 2*s^4 + 3*s^5 + s^6 + 3*s^7 + 2*s^8 + s^9 i.e. the effect of adding this 1/5(4) curve is an integer multiple of s^3(1+2*s+3*s^2+s^3+3*s^4+2*s^5+s^6)/(1-s)*(1-s^5)^2. = s^3 (1 - s + s^2) (1 + 3t + 5t^2 + 3t^3 + t^4) Factorization(1+2*t+3*t^2+t^3+3*t^4+2*t^5+t^6); [ , ] ======== S(36) in PP(5,6,6,18) P1:=0; P2:=0; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^36)/&*[1-s^i : i in [5,6,6,18]]; Need to correct for 1/5(1,3): K5 := CyclotomicField(5); ep5^-1/((1-ep5)*(1-ep5^3)); // 1/5*(-2*ep5^3 - ep5^2 - 2*ep5) This means I need to take off something like P5corr := s^3/((1-s)*(1-s^3)*(1-s^5)); // - 1/5*(1/(1-s^5))*(-s^2+2*s^3+-s^4) // S11 in PP(1,1,3,5) has 1/3(1,1) and 1/5(1,3) P1:=2; P2:=3; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^11)/&*[1-s^i: i in [1,1,3,5]]; P-Pa; P-Pa-s^3/((1-s)^2*(1-s^3)); (P-Pa-s^3/((1-s)^2*(1-s^3)))*[1-s^i : i in [1,3,5]]; (P-Pa-s^3/((1-s)^2*(1-s^3)))* &*[1-s^i : i in [1,3,5]]; Factorization(t^3+t^4+2*t^5+t^6+t^7); // t^3*(1+t^2)*(1+t+t^2) P5corr := s^3*(1+s^2)*(1+s+s^2)/&*[1-s^i : i in [1,3,5]]; (P-Pa-P5corr)*&*[1-s^i : i in [1,6,6]]; // s^3 + 2*s^4 + 3*s^5 + 4*s^6 + 2*s^7 + 4*s^8 + 3*s^9 + 2*s^10 + s^11 Factorization(t^3+2*t^4+3*t^5+4*t^6+2*t^7+4*t^8+3*t^9+2*t^10+t^11); i.e. the effect of adding this 1/6(5) curve is an integer multiple of s^3(1+2*s+3*s^2+4*s^3+2*s^4+4*s^5+3*s^6+2*s^7+s^8)/(1-s)(1-s^6)^2; ======== S(42) in PP(6,7,7,21) // This has 2 x 1/3(1,1) away from a curve Ga of 1/7(6). // S7 in PP(1,1,1,3) has 1/3(1,1) P1:=3; P2:=6; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^7)/&*[1-s^i: i in [1,1,1,3]]; P-Pa; P-Pa-s^3/((1-s)^2*(1-s^3)); P3corr := s^3/((1-s)^2*(1-s^3)); P1:=0; P2:=0; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^42)/&*[1-s^i : i in [6,7,7,21]]; (P-Pa-P3corr)*&*[1-s^i: i in [1,7,7]]; Factorization(t^3+2*t^4+3*t^5+4*t^6+5*t^7+3*t^8+5*t^9+4*t^10+3*t^11+2*t^12+ t^13); // s^3*(1+2*s+3*s^2+4*s^3+5*s^4+3*s^5+5*s^6+4*s^7+3*s^8+2*s^9+s^10) i.e. the effect of adding this 1/7(6) curve is an integer multiple of s^3(1+2*s+3*s^2+4*s^3+5*s^4+3*s^5+5*s^6+4*s^7+3*s^8+2*s^9+s^10)/(1-s)(1-s^7)^2; ======== I begin to detect a pattern. s^3/(1-s)(1-s^r)^2 times r=3: 1-s+s^2 deg 1 r=4: 1+2s+2s^3+s^4 deg 6 r=5: 1+2*s+3*s^2+s^3+3*s^4+2*s^5+s^6 deg 13 r=6: 1+2*s+3*s^2+4*s^3+2*s^4+4*s^5+3*s^6+2*s^7+s^8 deg 22 r=7: 1+2*s+3*s^2+4*s^3+5*s^4+3*s^5+5*s^6+4*s^7+3*s^8+2*s^9+s^10 deg 33 I guess the general form for general r: 1 + 2s + 3s^2 + .. (r-2)s^(r-3) + (r-4)s^(r-2) + (r-2)s^(r-1) + (r-1)s^r + .. down to 2s^(2r-5) + s^(2r-4) r:= 8; temp:=&+[(i+1)*s^i:i in [0..r-3]]+(r-4)*s^(r-2) +&+[(2*r-3-i)*s^i:i in [r-1..2*r-3]]; Pccorr8 := s^3*temp*1/((1-s)*(1-s^8)^2); Can't find any suitable surfaces, but try the CY 3-fold [ 3, 5, 8, 8, 24, 48 ], This has 2 x 1/3 (2,2,2), 1/5(3,3,4) and Ga of type 1/8(3.5). ======== S(80) in PP(7,8,24,40) This has 1/7(8,40) = 1/7(1,5) and 1/24(7,40) = 1/24(7,16) in addition to the desired curve Ga of 1/8(7). // Digression: Treat S15 in P(1,1,5,7) to find P7corr P1 := 2; P2 := 3; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^3; P := (1-s^15)/&*[1-s^i : i in [1,1,5,7]]; (P-Pa)*&*[1-s^i : i in [1,5,7]]; P eq Pa + s^3*S!(1+t+2*t^2+2*t^3+3*t^4+2*t^5+2*t^6+t^7+t^8)/&*[1-s^i : i in [1,5,7]]; Pcorr7 := s^3*(1+s+2*s^2+2*s^3+3*s^4+2*s^5+2*s^6+s^7+s^8)/&*[1-s^i : i in [1,5,7]]; r := 8; curvecorr := ============ Start again: [ 1, 1, 1, 1, 3, 7 ], P1 := 3; P2 := 6; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^7)/&*[1-s^i : i in [1,1,1,1,3]]; P-Pa; s^3 + 3*s^4 + 6*s^5 + 11*s^6 + .. (P-Pa)*&*[1-s^i: i in [1,1,1,3]]; // s^3 i.e. the sing 1/3(1,1,1) contributes s^3/(1-s)^3(1-s^3) [ 1, 1, 1, 2, 2, 7 ] P1 := 2; P2 := 5; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^7)/&*[1-s^i : i in [1,1,1,2,2]]; P-Pa; (P-Pa)*&*[1-s^i : i in [1,1,2,2]]; // -s^3 i.e. the line Ga of 1/2(1,1) with degree 1/4 contributes -s^3/(1-s)^2(1-s^2)^2 // deg -3/4 [ 1, 1, 1, 2, 4, 9 ], This has a line Ga of 1/2, with deg Ga = 1/8 and 1/4(1,1,2) on it. P1 := 2; P2 := 4; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^9)/&*[1-s^i : i in [1,1,1,2,4]]; P-Pa; (P-Pa)*&*[1-s^i : i in [1,1,2,4]]; // s^4 // s^4/(1-t)^2(1-t^2)(1-t^4); // N.B. It is not clear from this how it breaks down into a contr from the line and a separate contr from the nonisolated 1/4. Preferred answer because no t^3 in it. It means that we calc the contr of 1/4(1,1,2) including curve of 2 of deg 1/8. // [ 1, 1, 1, 3, 5, 11 ], This has 1/3(1,1,1) and 1/5(1,1,3); we already know the first contr. P1 := 2; P2 := 3; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^11)/&*[1-s^i : i in [1,1,1,3,5]]; P3corr := -s^3/((1-s)^3*(1-s^3)); P-Pa+P3corr; (P-Pa+P3corr)*&*[1-s^i : i in [1,1,1,5]]; // s^3 + s^5 // this is the effect of having a divisor 2/5 P on nonsingular curve C. NB. Can do the general 1/r(1,1,r-2) case from the orbifold curve case: For r odd: Contribution of 1/r(1,1,r-2) is // (s^3 + s^5 + .. s^r)/(1-s)^3(1-s^r) h:=1; g :=1; Pa := S!((1+h*t+g*t^2+h*t^3+t^4)/(1-t)^2); r := 7; a := 3; Pb := &+[Floor(i*a/r)*s^i : i in [3..60]]; // (s^3 + s^5 + s^7)/(1-s)(1-s^7) [ 1, 1, 1, 5, 7, 15 ], This is a check; I predict that the only contribution is (s^3 + s^5 + .. s^r)/(1-s)^3(1-s^r) P1 := 2; P2 := 3; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P7corr := (s^3 + s^5 + s^7)/((1-s)^3*(1-s^r)); (1-s^15)/&*[1-s^i:i in [1, 1, 1, 5, 7]] eq Pa + P7corr; // true [ 1, 1, 1, 4, 6, 13 ] similar to above [ 1, 1, 1, 2, 4, 9 ], has a line Ga of 1/2, with deg Ga = 1/(2*3*13) plus nonisolated 1/6(1,1,4) and 1/4(1,1,2) on it. P1 := 2; P2 := 3; // these are the P1, P2 of the surface section Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^13)/&*[1-s^i : i in [1,1,1,4,6]]; P-Pa; (P-Pa)*&*[1-s^i : i in [1,1,4,6]]; // s^3 + 2*s^4 + 2*s^5 + 3*s^6 + 2*s^7 + 2*s^8 + s^9 i.e. the contribution from this curve and it nonisolated qt points is s^3(1+2*s+2*s^2+3*s^3+2*s^4+2*s^5+s^6)/(1-s)^2(1-s^4)(1-s^6) P eq Pa + s^3*(1 + 2*s + 2*s^2 + 3*s^3 + 2*s^4 + 2*s^5 + s^6)/((1-s)^2*(1-s^4)*(1-s^6)); // true [ 1, 1, 2, 2, 2, 8 ], This is the simplest example of a nonisolated locus -- a curve of 1/2 having degree 8/2^3 = 4/4. P1:=1; P2:=4; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^8)/&*[1-s^i : i in [1,1,2,2,2]]; P-Pa; 1/4*(P-Pa)*&*[1-s^i : i in [1,1,2,2]]; // -s^3 This curve contributes -4*s^3/(1-s)^2(1-s^2)^2. [ 1, 1, 2, 2, 3, 9 ], The singularity is a line Ga of 1/2(1,1) with degree 1/4, and as with the 7 case above, it should contributes -s^3(1+s+s^2)^2/(1-s)^2(1-s^2)2 // deg 1/4 P1:=1; P2:=3; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^9)/&*[1-s^i : i in [1,1,2,2,3]]; P eq Pa + -s^3/((1-s)^2*(1-s^2)^2); // true [ 1, 1, 2, 2, 4, 10 ], This has a line of 1/2 of degree 10/(2.2.4) = 5/8 with a nonisolated 1/4(1,1,2) on it. Similar to [ 1, 1, 1, 2, 4, 9 ] above, but not exactly. P1:=1; P2:=3; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^10)/&*[1-s^i : i in [1,1,2,2,4]]; P-Pa; (P-Pa)*&*[1-s^i : i in [1,1,2,4]]; // -2*s^3 + s^4 - 2*s^5 [ 1, 1, 2, 2, 5, 11 ] This has 1/5(1,2,2) and a line of 1/2 of degree 1/4. P1:=1; P2:=3; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^11)/&*[1-s^i : i in [1,1,2,2,5]]; P-Pa -s^3/((1-s)^2*(1-s^2)^2); (P-Pa -s^3/((1-s)^2*(1-s^2)^2))*&*[1-s^i : i in [1,2,2,5]]; // -3*s^3 - 3*s^4 - 2*s^5 - 3*s^6 - 3*s^7 Factorization(-3*t^3 - 3*t^4 - 2*t^5 - 3*t^6 - 3*t^7); This seems to say that 1/5(1,2,2) makes the contr -s^3(3 + 3*s + 2*s^2 + 3*s^3 + 3*s^4)/(1-s)(1-s^2)^2(1-s^5) [ 1, 1, 2, 3, 3, 10 ] A curve Ga of 1/3(1,2), of degree 1/9 P1:=1; P2:=2; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^10)/&*[1-s^i : i in [1,1,2,3,3]]; P-Pa; (P-Pa)*&*[1-s^i : i in [1,1,3,3]]; // 2*s^3 + s^4 + 2*s^5 The curve Ga of 1/3(1,2), of degree 1/9 contributes s^3(2 + s + 2*s^2)/(1,1,3,3) [ 1, 1, 2, 4, 4, 12 ], A curve Ga of 1/2, of degree 12/2.4.4 = 3/8 and emb 3 x 1/4(1,1,2). P1:=1; P2:=2; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^12)/&*[1-s^i : i in [1,1,2,4,4]]; P-Pa; 1/3*(P-Pa)*&*[1-s^i : i in [1,1,2,4]]; // s^4 i.e. curious, the curve contr 3*s^4/(1,1,2,4), exact 3 times the contr of the line Ga of 1/2, with deg Ga = 1/8 and 1/4(1,1,2) on [ 1, 1, 1, 2, 4, 9 ]. [ 1, 1, 2, 4, 7, 15 ], The same line Ga of 1/2 with deg Ga = 1/8 and a single 1/4(1,1,2). Try to use it to determine contr of 1/7(1,2,4). P1:=1; P2:=2; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^15)/&*[1-s^i : i in [1,1,2,4,7]]; P-Pa-s^4/&*[1-s^i : i in [1,1,2,4]]; (P-Pa-s^4/&*[1-s^i : i in [1,1,2,4]])*&*[1-s^i: i in [1,1,2,7]]; // s^4 + s^5 + s^6 + 2*s^7 + s^8 + s^9 + s^10 So guess that 1/7(1,2,4) contributes s^4*(1 + s^3)/[1,1,2,7] with hindsight: d := 15; A := [1,1,2,4,7]; B := [[7,1,2,4]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; // t^4 [ 1, 1, 2, 5, 8, 17 ], d:=17; A:=[1, 1, 2, 5, 8]; B := [[5,1,1,3]]; P(d,A) - PA(A) - Pb(B) - 1/16*c2; As well as isolated 1/5(1,1,3), this has a line Ga of 1/2, with deg Ga = 1/16, and a single 1/8(1,2,5) with hindsight: d := 17; A := [1,1,2,5,8]; B := [[5,1,1,3]]; D := P(d,A) - PA(A) - Pb(B); D*&*[1-t^i : i in [1,1,2,8]]; // -t^9 - t^6 - t^3 [ 1, 1, 2, 6, 8, 18 ] a line Ga of 1/2, with deg Ga = 3/16, and a single 1/8(1,1,6) [ 1, 1, 2, 7, 11, 22 ] only isolated 1/7(1,2,11) = 1/7(1,2,4) K7 := CyclotomicField(7); ep7^-1/&*[1-ep7^i : i in [1,2,4]]; //1/7*(-ep7^5-ep7^4+ep7^3-ep7^2+ep7+1) Pcor7 := 1/7*1/(1-s^7)*(s+s^2-s^3+s^4-s^5-s^6); 1/7*(s-3*s^2+s^3)/(1-s)^4-Pcor7; // -s^4-2*s^5-4*s^6-7*s^7-11*s^8-16*s^9 P1:=1; P2:=2; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^22)/&*[1-s^i : i in [1,1,2,7,11]]; P eq Pa - 1/7*(s-3*s^2+s^3)/(1-s)^4 + Pcor7; // true [ 1, 1, 2, 8, 12, 24 ] This has curve Ga of 1/2 of deg 1/8 with nonisolated 1/4(1,1,2) P1:=1; P2:=2; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^24)/&*[1-s^i : i in [1,1,2,8,12]]; P eq Pa + s^4/((1-s)^2*(1-s^2)*(1-s^4)); // true [ 1, 1, 3, 3, 7, 15 ], From above: the sing 1/3(1,1,1) contributes s^3/(1-s)^3(1-s^3) K7 := CyclotomicField(7); ep7^-1/&*[1-ep7^i : i in [1,3,3]]; // 1/7*(ep7^5-ep7^4-2*ep7^3+2*ep7^2+ep7-1) Pcor7 := 1/7*1/(1-s^7)*(-s+s^2+2*s^3-2*s^4-s^5+s^6); 1/7*(s-5*s^2+s^3)/(1-s)^4 + Pcor7; // Pcor3 := s^3/((1-s)^3*(1-s^3)); P1:=1; P2:=1; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^15)/&*[1-s^i : i in [1,1,3,3,7]]; P eq Pa + 1/7*(s-5*s^2+s^3)/(1-s)^4 + Pcor7 + 5*Pcor3; =============== General rule: the periodic fractional contribution of 1/r(a,b,c) is the coefficients of 1/(1-ep^a)(1-ep^b)(1-ep^c). The degree contribution is 1/r(a1*s+a2*s^2+a1*s^3)/(1-s)^4 where a1 and a2 cancel the frac contribution to P1 and P2 and the numerator has pleasing symmetric shape. e.g. the sing 1/3(1,1,1) contributes s^3/((1-s)^3*(1-s^3)) K3 := CyclotomicField(3); ep3^-1/(1-ep3)^3; ep3^-1/(1-ep3)^3; // 1/9*(-ep3 + 1) // therefore frac contrib = 1/9*1/(1-s^3)*(s-s^2) Pcor3 := 1/9*1/(1-s^3)*(s-s^2); // 1/9*s - 1/9*s^2 + 1/9*s^4 - 1/9*s^5 From the first two coefficients only, Pd3 := 1/9*(-s+5*s^2-s^3)/(1-s)^4; Pcor3 + Pd3 eq s^3/((1-s)^3*(1-s^3)); // true 1/11(1,1,9) We know the contr will be (s^3 + s^5 + s^7 + s^9 + s^11)/(1-s)^3(1-s^11); K11 := CyclotomicField(11); ep11^-1/((1-ep11)^2*(1-ep11^9)); Pc11 := 1/11*1/(1-s^11)*(5*s+5*s^2+6*s^3+3*s^4+2*s^5-2*s^6-3*s^7-6*s^8-5*s^9-5*s^10); -5*ep11^9 - 5*ep11^8 - 6*ep11^7 - 3*ep11^6 - 2*ep11^5 + 2*ep11^4 + 3*ep11^3 + 6*ep11^2 + 5*ep11 + 5 Pc11 + 1/11*(-5*s+15*s^2-5*s^3)/(1-s)^4 eq (s^3 + s^5 + s^7 + s^9 + s^11)/((1-s)^3*(1-s^11)); // true =============== [ 1, 1, 3, 9, 13, 27 ], This has 3 x 1/3(1,1,1) and 1/13(1,3,9) P1:=1; P2:=1; Pa := (1 + (P1-3)*s+ (P2-3*P1+3)*s^2 + (P1-3)*s^3 + s^4)/(1-s)^4; P := (1-s^27)/&*[1-s^i : i in [1,1,3,9,13]]; K13 := CyclotomicField(13); ep13^-1/&*[1-ep13^i : i in [1,3,9]]; /* 1/13*(-2*ep13^11 - 3*ep13^10 - 2*ep13^9 + 2*ep13^8 - 3*ep13^7 - 3*ep13^6 + 3*ep13^5 + 3*ep13^4 - 2*ep13^3 + 2*ep13^2 + 3*ep13 + 2) */ Pc13 := 1/13*1/(1-s^13)*(2*s^1 + 3*s^2 + 2*s^3 - 2*s^4 + 3*s^5 + 3*s^6 - 3*s^7 - 3*s^8 + 2*s^9 - 2*s^10 - 3*s^11 - 2*s^12); Pd13 := 1/13*(-2*s+5*s^2-2*s^3)/(1-s)^4; Pc13+Pd13; // s^5 + 2*s^6 + 3*s^7 + 5*s^8 + 8*s^9 + 11*s^10 + .. P eq Pa + 3*s^3/((1-s)^3*(1-s^3)) + Pc13+Pd13; // true ============================================= /* This function computes the PERIODIC contribution to Hilbert series of an isolated orbifold point 1/r(a,b..). It assumes that the univariate polynomial ring Q[t] is defined and that the input list L = [a1,a2,.. ] consists of coprime elements. */ function Pc(r,L) if &or[GreatestCommonDivisor([r,a]) ne 1 : a in L] // other mugtrap then error "Error: Not Coprime"; end if; A := (t^r-1) div (t-1); B := t*&*[1-t^i : i in L]; h_throwaway, al_throwaway, be := XGCD(A,B); return r*t*be; end function; /* This function computes the GROWING contribution to Hilbert series of an isolated orbifold point 1/r(a,b..). It assumes that the univariate polynomial ring Q[t] is defined and that the input list L = [a1,a2,.. ] consists of coprime elements. */ function Pd(r,L) n := #L; f := (1-t)^(n+1)*Pc(r,L); return &+ [-Coefficient(f,k)*t^i where k is Min(i,n+1-i) : i in [1..n] ] / (1-t)^(n+1); end function; ============================================= // Want a CY 4-fold with 1/4(1,1,3,3) and 1/5(1,2,3,4)? a1 := -3; a2 := 3; B := [[4,1,1,3,3],[5,1,2,3,4]]; Pa := (1 + a1*t + a2*t^2 + a2*t^3 + a1*t^4 + t^5)/(1-t)^5; P := Pa + &+[1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; ============================================= // Want an orbicurve with 1/8(1) and 1/15(2)? a1 := -1; a2 := 0; a3 := 0; a4 := 0; Pa := (1 + a1*t + a2*t^2 + a3*t^3 + a4*t^4 + a4*t^5 + a3*t^6 + a2*t^7 +a1*t^8 + t^9)/(1-t)^2; B := [[8,1],[15,8]]; P := Pa + &+[1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; S!P; That is, C(31) in PP(1,8,15). It is a nonsingular elliptic curves with K{C,orb} = 7A, where A = 1/8 P + 2/15 Q ======== // CY 3-fold with 3 x 1/3(1,1,1) and 1/13(1,3,9) P1:=1; P2:=1; Pa := (1 + (P1-3)*t+ (P2-3*P1+3)*t^2 + (P1-3)*t^3 + t^4)/(1-t)^4; B := [[3,1,1,1],[3,1,1,1],[3,1,1,1],[13,1,3,9]]; P := Pa + &+[1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; S!P; P*&*[1-t^i : i in [1,1,3,9,13]]; // -t^27 + 1 ===== Y(5) in PP(1,1,1,1,1) P1 := 5; P2 := 15; // so a1, a2 come from (1+5*t+15*t^2)*(1-t)^4; // 1 + t + t^2 - 34*t^3 .. a1 := 1; a2 := 1; // to match this up to term 2 Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; S!Pa; Pa*&*[1-t^i : i in [1,1,1,1,1]]; // gives 1 - t^5; ===== Y(6) in PP(1, 1, 1, 1, 2) (1+4*t+11*t^2)*(1-t)^4; // 1 + t^2 - 24*t^3 .. a1 := 0; a2 := 1; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; S!Pa; Pa*&*[1-t^i : i in [1,1,1,1,2]]; // gives 1 - t^6; ===== Y(7) in PP(1, 1, 1, 1, 3) (1+4*t+10*t^2)*(1-t)^4; // 1 - 20*t^3 .. a1 := 0; a2 := 0; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; B := [[3,1,1,1]]; // basket of 1/3(1,1,1) P := Pa + &+[1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; S!P; P*&*[1-t^i : i in [1,1,1,1,3]]; // -t^7 + 1 ===== Y(8) in PP(1,1,1,1,4); a1 := 0; a2 := 0; B := []; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,1]]; // t^4 + 1 P*&*[1-t^i : i in [1,1,1,1,4]]; // -t^8 + 1 ===== Y(7) in PP(1,1,1,2,2) (1+3*t+8*t^2)*(1-t)^4; // 1 - t + 2*t^2 - 18*t^3 .. a1 := -1; a2 := 2; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; In this case we don't know the formula, but we know the answer a1 := -1; a2 := 2; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^7)/&*[1-t^i : i in [1,1,1,2,2]]; P-Pa; // this is the contr from the curve S!(P-Pa); // -s^3 - 2*s^4 - 5*s^5 - 8*s^6 - 14*s^7 - 20*s^8 (P-Pa)*&*[1-t^i : i in [1,1,2,2]]; // -t^3 Conclude: a curve Ga of 1/2 with deg 1/4 and genus 0 contributes -t^3/PP(1,1,2,2) ==== // with hindsight // Y(7) in PP(1,1,1,2,2) d:=7; A:=[1,1,1,2,2]; B := []; D := P(d,A) - PA(A) - Pb(B); -t^3/&*[1-t^i : i in [1,1,2,2]]; // contr of curve Ga of deg 1/2^2 ==== Y(8) in PP(1, 1, 1, 2, 3) a1 := -1; a2 := 1; B := [[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,2,3]]; // -t^8 + 1 ==== Y(9) in PP(1, 1, 1, 2, 4) a1 := -1; a2 := 1; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; Curve Ga of 1/2 with emb 1/4(1,1,2). Need to calculate the contrib P := (1-t^9)/&*[1-t^i : i in [1,1,1,2,4]]; (P-Pa)*&*[1-t^i : i in [1,1,2,4]]; // t^4 The conclusion is that a curve Ga of 1/2 with deg 1/8 and genus 0 and emb 1/4(1,1,2) makes contr +t^4/PP(1,1,2,4) ==== // with hindsight // Y(9) in PP(1,1,1,2,4) d:=9; A:=[1,1,1,2,4]; B := []; D := P(d,A) - PA(A) - Pb(B); // t^4/&*[1-t^i : i in [1,1,2,4]]; // This is the contr of curve of 2 of deg 1/8 with emb 1/4. I think of it // as including 1/8 of deg of curve, so curve now counts as 0. ==== Y(10) in PP(1, 1, 1, 2, 5) a1 := -1; a2 := 1; B := []; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,2,5]]; // -t^10 + 1 ==== Y(9) in PP(1, 1, 1, 3, 3) a1 := -1; a2 := 0; B := [[3,1,1,1],[3,1,1,1],[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,3,3]]; // -t^9 + 1 ==== Y(11) in PP(1, 1, 1, 3, 5) a1 := -1; a2 := 0; B := [[3,1,1,1],[5,3,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,3,3]]; // -t^11 + 1 ==== Y(12) in PP(1, 1, 1, 3, 6) a1 := -1; a2 := 0; B := [[3,1,1,1],[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,3,6]]; // -t^12 + 1 ==== Y(13) in PP(1, 1, 1, 4, 6) A curve Ga of 1/2 of degree 1/24 with emb 1/4(1,1,2) and 1/6(1,1,4) a1 := -1; a2 := 0; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^13)/&*[1-t^i : i in [1,1,1,4,6]]; (P-Pa)*&*[1-t^i : i in [1,1,4,6]]; // t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3 Thus the curve contributes (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3)/PP(1,1,4,6) ?? This has degree 13/24 whereas Ga only has deg 1/24. ?? ?? Note that Pa itself only gives deg 0. ==== Y(13) in PP(1, 1, 1, 4, 6) with hindsight d := 13; A := [1,1,1,4,6]; B := []; D := P(d,A)-PA(A)-Pb(B); // (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3)/&*[1-t^i : i in [1,1,4,6]]; D - t^4/&*[1-t^i : i in [1,1,2,4]]; // (t^7 + t^6 + t^5 + t^4 + t^3)/&*[1-t^i : i in [1,1,2,6]]; ==== Y(15) in PP(1, 1, 1, 5, 7) a1 := -1; a2 := 0; B := [[7,1,1,5]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,5,7]]; // -t^15 + 1 ==== Y(16) in PP(1, 1, 1, 5, 8) a1 := -1; a2 := 0; B := [[5,1,1,3]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,5,8]]; // -t^16 + 1 ==== Y(18) in PP(1, 1, 1, 6, 9) a1 := -1; a2 := 0; B := [[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P*&*[1-t^i : i in [1,1,1,6,9]]; // -t^18 + 1 ==== Y(8) in PP(1, 1, 2, 2, 2) (1+2*t+6*t^2)*(1-t)^4; A curve Ga of 1/2 of degree 8/2^3 = 1 and genus 3. We don't know what contr it makes a1 := -2; a2 := 4; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^8)/&*[1-t^i : i in [1,1,2,2,2]]; P-Pa; S!(P-Pa); (P-Pa)*&*[1-t^i : i in [1,1,2,2]]; // -4*t^3 The conclusion is that the curve Ga of 1/2 of degree 8/2^3 = 1 and genus 3 contributes (-4*t^3)/PP(1,1,2,2) ==== Y(9) in PP(1, 1, 2, 2, 3) (1+2*t+2*t^2)*(1-t)^4; // 1 - 2*t + 5*t^4 a1 := -2; a2 := 3; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^9)/&*[1-t^i : i in [1,1,2,2,3]]; (P-Pa)*&*[1-t^i : i in [1,1,2,2]]; // -t^3 Here the curve Ga of 1/2 of deg 1/4 and genus 0 contributes -t^3/PP(1,1,2,2) ==== Y(10) in PP(1, 1, 2, 2, 4) a1 := -2; a2 := 3; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^10)/&*[1-t^i : i in [1,1,2,2,4]]; (P-Pa)*&*[1-t^i : i in [1,1,2,4]]; // -2*t^3 + t^4 - 2*t^4 The curve Ga of 1/2 of deg 5/8 and genus 2 (probably?) with emb 1/4(1,1,2) contributes (-2*t^3 + t^4 - 2*t^4)/PP(1,1,2,4) ==== Y(11) in PP(1, 1, 2, 2, 5) a1 := -2; a2 := 3; B := [[5,1,2,2]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^11)/&*[1-t^i : i in [1,1,2,2,5]]; (P-Pa-&+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B])*&*[1-t^i : i in [1,1,2,2]]; // -t^3 The curve Ga of 1/2 of deg 1/4 contributes -t^3/PP(1,1,2,2). ==== Y(12) in PP(1, 1, 2, 2, 6) a1 := -2; a2 := 3; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^12)/&*[1-t^i : i in [1,1,2,2,6]]; (P-Pa)*&*[1-t^i : i in [1,1,2,2]]; // -2*t^3 The curve Ga of 1/2 of deg 1/2 contributes -2*t^3/PP(1,1,2,2). ==== Y(10) in PP(1, 1, 2, 3, 3) a1 := -2; a2 := 2; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^10)/&*[1-t^i : i in [1,1,2,3,3]]; (P-Pa)*&*[1-t^i : i in [1,1,3,3]]; // 2*t^3 + t^4 + 2*t^5 The curve Ga of 1/3(1,2) of deg 1/9 contributes (2*t^3 + t^4 + 2*t^5)/PP(1,1,3,3). ==== Y(11) in PP(1, 1, 2, 3, 4) a1 := -2; a2 := 2; B := [[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^11)/&*[1-t^i : i in [1,1,2,3,4]]; (P-Pa-&+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B])*&*[1-t^i : i in [1,1,2,4]]; // t^4 Curve Ga of 1/2 of deg 1/8 with one emb 1/4(1,1,2) contributes t^4/PP(1,1,2,4) ==== Y(12) in PP(1, 1, 2, 3, 5) a1 := -2; a2 := 2; B := [[5,1,1,3]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^12)/&*[1-t^i : i in [1,1,2,3,5]]; P eq Pa + &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; // true ==== Y(13) in PP(1, 1, 3, 3, 5) a1 := -2; a2 := 1; B := []; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; Pb := &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P := (1-t^13)/&*[1-t^i : i in [1,1,3,3,5]]; (P-Pa-Pb)*&*[1-t^i : i in [1,1,3,3]]; // 3*t^5 + 2*t^4 + 3*t^3 The curve Ga of 1/3(1,2) of deg 1/9 contributes (3*t^3 + 2*t^4 + 3*t^5)/PP(1,1,3,3). ==== Y(16) in PP(1, 1, 3, 3, 8) a1 := -2; a2 := 1; B := []; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; Pb := &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P := (1-t^16)/&*[1-t^i : i in [1,1,3,3,8]]; (P-Pa-Pb)*&*[1-t^i : i in [1,1,3,3]]; ==== Y(13) in PP(1, 1, 3, 4,4) a1 := -2; a2 := 1; B := [[3,1,1,1]]; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; Pb := &+S where S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; P := (1-t^13)/&*[1-t^i : i in [1,1,3,4,4]]; (P-Pa-Pb)*&*[1-t^i : i in [1,1,4,4]]; // 2*t^7 + 4*t^6 + 3*t^5 + 4*t^4 + 2*t^3 Curve Ga of 1/4(1,3) degree 1/4^2 contributes 2*t^7 + 4*t^6 + 3*t^5 + 4*t^4 + 2*t^3 (P(13,[1, 1, 3, 4,4]) - Pa(2,0) - Pb([[3,1,1,1]]) )*&*[1-t^i : i in [1,1,4,4]]; 2*t^7 + 4*t^6 + 3*t^5 + 4*t^4 + 2*t^3 ==== Y(17) in PP(1, 1, 3, 4, 8) d := 17; A := [1, 1, 3, 4, 8]; B := [[3,1,1,1]]; (P(d,A) - Pa(2,0) - Pb(B) )*&*[1-t^i : i in [1,1,4,8]]; Curve of 1/4(1,3) of degree 1/(4*8) with emb 1/8(1,3,4) contr (2*t^11+3*t^10+3*t^9+4*t^8+3*t^7 +4*t^6+3*t^5+3*t^4+2*t^3)/PP(1,1,4,8) or (2*t^10 - t^9 + 3*t^8 - t^7 + 3*t^6 - t^5 + 2*t^4)/PP(1,1,4,8) ==== Y(15) in PP(1, 1, 3, 5, 5) d := 15; A := [1, 1, 3, 5, 5]; B := [[5,1,1,3] : i in [1..3]]; P(d,A) - Pa(2,0) - Pb(B); // 0 ==== Y(17) in PP(1, 1, 3, 5, 7) d := 17; A := [1, 1, 3, 5, 7]; B := [[3,1,1,1], [5,1,1,3], [7,1,1,5]]; P(d,A) - Pa(2,0) - Pb(B); // 0 ==== Y(19) in PP(1, 1, 3, 5, 9) d := 19; A := [1, 1, 3, 5, 9]; B := [[5,1,1,3]]; (P(d,A) - Pa(2,0) - Pb(B) )*&*[1-t^i : i in [1,1,3,9]]; Curve of 1/3(1,2) of degree 1/(3*9) with emb 1/9(1,3,5) contributes (2*t^11 + 2*t^10 + 3*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 3*t^5 + 2*t^4 + 2*t^3)/PP(1,1,3,9) ==== Y(19) in PP(1, 1, 3, 6, 8) d := 19; A := [1, 1, 3, 6, 8]; B := []; (P(d,A) - Pa(2,0) - Pb(B) )*&*[1-t^i : i in [1,3,6,8]]; Curve of 1/3(1,2) of deg 1/(3*6) with emb 1/6(1,2,3) plus curve of 1/2 of deg 1/(6*8) with emb 1/6(1,2,3) together contribute (3*t^15 + 6*t^14 + 10*t^13 + 14*t^12 + 17*t^11 + 21*t^10 + 21*t^9 + 21*t^8 + 17*t^7 + 14*t^6 + 10*t^5 + 6*t^4 + 3*t^3)/PP(1,3,6,8) ==== Y(7) in PP(1,1, 1, 2, 2) d := 7; A := [1,1,1,2,2]; B := []; (P(d,A) - Pa(3,2) - Pb(B) )*&*[1-t^i : i in [1,1,2,2]]; Curve of 1/2 of degree 1/(2*2) contributes -t^3/PP(1,1,2,2) ==== Y(9) in PP(1,1, 1, 2, 4) d := 9; A := [ 1, 1, 1, 2, 4 ]; B := []; (P(d,A) - Pa(3,1) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; Curve of 1/2 of degree 1/(2*4) with emb 1/4(1,1,2) contributes t^4/PP(1,1,2,4) P(d,A) eq PA(A) + Pb(B) + 1/(2*4)*Phalfc() + Pemb2(2); // true ==== Y(13) in PP(1,1, 1, 4, 6) d := 13; A := [ 1, 1, 1, 4, 6 ]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; Curve of 1/2 of degree 1/(4*6) with emb 1/4(1,1,2) and 1/6(1,1,4) contributes (t^9+2*t^8+2*t^7+3*t^6+2*t^5+2*t^4+t^3)/PP(1,1,4,6) P(d,A) eq PA(A) + Pb(B) + 1/(4*6)*Phalfc() + Pemb2(2) + Pemb2(3); // true ==== Y(14) in PP(1, 1, 2, 3, 7) d := 14; A := [1, 1, 2, 3, 7]; B := [[3,1,1,1]]; P(d,A) - PA(A) - Pb(B); // 0 ==== Y(13) in PP(1, 1, 2, 3, 6) d := 13; A := [1, 1, 2, 3, 6]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,2,3,6]]; Curve of 1/3(1,2) of deg 1/(3*6) with emb 1/6(1,2,3) plus curve of 1/2 of deg 1/(6*8) with emb 1/6(1,2,3) together contribute (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3)/PP(1,2,3,6) ==== Y(12) in PP(1, 1, 2, 4, 4) d := 12; A := [1, 1, 2, 4, 4]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; Curve of 1/2 of deg 12/(2*4*4) with 3 x emb 1/4(1,1,2) contrib 3*t^4/PP(1,1,2,4) P(d,A) eq PA(A) + Pb(B) + 12/(2*4*4)*Phalfc() + 3*Pemb2(2); // true ==== Y(14) in PP(1, 1, 2, 4, 6) d := 14; A := [1, 1, 2, 4, 6]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; Curve of 1/2 of deg 14/(2*4*6) with emb 1/4(1,1,2) and 1/6(1,1,4) contrib (2*t^8 + 3*t^6 + 2*t^4)/PP(1,1,4,6) P(d,A) eq PA(A) + Pb(B) + 14/(2*4*6)*Phalfc() + Pemb2(2) + Pemb2(3); // true ==== Y(15) in PP(1, 1, 2, 4, 7) d := 15; A := [1, 1, 2, 4, 7]; B := [[7,1,2,4]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; Curve of 1/2 of deg 1/(2*4) with emb 1/4(1,1,2) contrib (t^4)/PP(1,1,2,4) ==== Y(16) in PP(1, 1, 2, 4, 8) d := 16; A := [1, 1, 2, 4, 8]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; Curve of 1/2 of deg 16/(2*4*8) = 1/4 with 2 x emb 1/4(1,1,2) contrib (2*t^4)/PP(1,1,2,4) ==== Y(16) in PP(1, 1, 2, 5, 7) d := 16; A := [1, 1, 2, 5, 7]; B := [[5,1,2,2],[7,1,1,5]]; P(d,A) - PA(A) - Pb(B); // 0 ==== Y(17) in PP(1, 1, 2, 5, 8) d := 17; A := [1, 1, 2, 5, 8]; B := [[5,1,1,3]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; Curve of 1/2 of deg 1/(2*8) with emb 1/8(1,2,5) contrib (-t^9 - t^6 - t^3)/PP(1,1,2,8) ==== Y(18) in PP(1, 1, 2, 6, 8) d := 18; A := [1, 1, 2, 6, 8]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; Curve of 1/2 of deg 18/(2*6*8) = 3/16 with emb 1/8(1,1,6) contrib (t^8 + t^6 + t^4)/PP(1,1,2,8) ==== Y(20) in PP(1, 1, 3, 5, 10) d := 20; A := [1, 1, 3, 5, 10]; B := [[3,1,1,1], [5,1,1,3], [5,1,1,3]]; P(d,A) eq PA(A) + Pb(B); ==== Y(24) in PP(1, 1, 2, 8, 12) d := 24; A := [1, 1, 2, 8, 12]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; // t^4 Curve of 1/2 of deg 24/(2*8*24) = 1/8 with emb 1/4(1,1,2); Same contrib as Y(9) in PP(1, 1, 1, 2, 4) ==== Y(21) in PP(1, 1, 2, 7, 10) d := 21; A := [1, 1, 2, 7, 10]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,10]]; // t^10 + t^7 + t^4 Curve of 1/2 of deg 1/(2*10) with emb 1/10(1,2,7) contrib t^10 + t^7 + t^4 ==== Y(20) in PP(1, 1, 2, 6, 10) d := 20; A := [1, 1, 2, 6, 10]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,6]]; // t^6 + t^4 Curve of 1/2 of deg 20/(2*6*10) with emb 1/6(1,1,4) contrib // t^6 + t^4 ==== Y(32) in PP(1, 1, 6, 8, 16) d := 32; A := [1, 1, 6, 8, 16]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,6,8]]; /* 2*t^13+3*t^12+4*t^11+6*t^10+6*t^9+8*t^8+6*t^7+6*t^6+4*t^5+ 3*t^4+2*t^3 */ Curve of 1/2 of deg 32/(6*8*16) = 1/24 with emb 1/6(1,1,4) and 2 x 1/8(1,1,6) ==== Y(24) in PP(1, 1, 6, 8, 8) d := 24; A := [1, 1, 6, 8, 8]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; // 2*t^9 + 3*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 3*t^4 + 2*t^3 Curve of deg 24/(6*8*8) = 1/16 with emb 3 x 1/8(1,1,6) contrib (2*t^9 + 3*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 3*t^4 + 2*t^3)/PP(1,1,2,8) ==== [ 1, 1, 5, 8, 10, 25 ], d := 25; A := [ 1, 1, 5, 8, 10]; B := [[5,1,1,3], [5,1,1,3]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,8,10]]; /* t^16 + t^15 + t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 3*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + t^6 + t^5 + t^4 eq t^4*(t^9-1)/(t^3-1) * (t^7-1)/(t-1) /PP(1,1,8,10); */ Curve of 1/2 of deg 1/(8*10) with emb 1/8(1,2,5) and 1/10(1,1,8) ======= d := 28; A := [ 1, 1, 4, 8, 14]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; Curve of 1/2 of deg 28/(4*8*14) = 1/16 with emb 3 x 1/4(1,1,2) and 1/8(1,1,6) // 2*t^9 + 4*t^8 + 2*t^7 + t^6 + 2*t^5 + 4*t^4 + 2*t^3 // [ 1, 1, 4, 8, 14, 28 ], ======= [ 1, 1, 4, 4, 6, 16 ], d := 16; A := [1, 1, 4, 4, 6]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; // (2*t^9 + 5*t^8 + 4*t^7 + 6*t^6 + 4*t^5 + 5*t^4 + 2*t^3) Curve of 1/2 of deg 16/(4*4*6) = 1/6 with emb 1/6(1,1,4) and 4 x 1/4(1,1,2) ======= [ 1, 1, 1, 4, 6, 13 ], d := 13; A := [ 1, 1, 1, 4, 6]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; // (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3) A curve Ga of 1/2 of degree 1/24 with emb 1/4(1,1,2) and 1/6(1,1,4) ======= [ 1, 1, 4, 6, 6, 18 ], d := 18; A := [ 1, 1, 4, 6, 6]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; A curve of 1/2 of deg 18/(4*6*6) = 1/8 and emb 1/4(1,1,2) and 3 x 1/6(1,1,4) // 2*t^9 + 4*t^8 + 4*t^7 + 7*t^6 + 4*t^5 + 4*t^4 + 2*t^3/ [1,1,4,6] ======= [ 1, 1, 4, 12, 18, 36 ], d := 36; A := [ 1, 1, 4, 12, 18]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,4,6]]; A curve of 1/2 of deg 36/(4*12*18) = 1/24 with emb 3 x 1/4(1,1,2) and 1/6(1,1,4) contrib (2*t^9 + 4*t^8 + 4*t^7 + 5*t^6 + 4*t^5 + 4*t^4 + 2*t^3)/[1,1,4,6] ======= [ 1, 1, 1, 2, 4, 9 ], This has a line Ga of 1/2, with deg Ga = 1/8 and emb 1/4(1,1,2) on it. d := 9; A := [ 1, 1, 1, 2, 4]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; // t^4/[1,1,2,4] ================= comparing [ 1, 1, 4, 6, 6, 18 ], [ 1, 1, 1, 2, 4, 9 ], it is possible that 3 x 1/6(1,1,4) contr 2*t^9 + 3*t^8 + 4*t^7 + 6*t^6 + 4*t^5 + 3*t^4 + 2*t^3/ [1,1,4,6] ======= [ 1, 2, 2, 3, 7, 15 ], Line of 1/2 with deg 1/4 and no emb d := 15; A := [ 1, 2, 2, 3, 7]; B := [[7,2,2,3]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,2]]; // Line of 1/2 with deg 1/4 and no emb -t^3/[1,1,2,2] ======= [ 1, 1, 6, 10, 12, 30 ], d := 30; A := [ 1, 1, 6, 10, 12]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,12]]; deg Ga = 30/(6*10*12) = 1/24, emb 2 x 1/6(1,1,4) and 1/12(1,1,10) contr (2*t^13 + 3*t^12 + 2*t^11 + 3*t^10 + 2*t^9 + t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 3*t^4 + 2*t^3) / [1,1,2,12] ======= [ 1, 2, 2, 8, 11, 24 ], d := 24; A := [1, 2, 2, 8, 11]; B := [[11,1,2,8]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,2]]; // -3*t^3 Ga has deg 3/4. ======= [ 1, 2, 3, 4, 7, 17 ], d := 17; A := [ 1, 2, 3, 4, 7]; B := [[3,1,1,1],[7,1,2,4]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; // -t^5 - t^4 - t^3 Ga has deg 1/(2*4) and 1/4(2,3,3) ======= [ 1, 2, 3, 4, 10, 20 ] d := 20; A := [ 1, 2, 3, 4, 10]; B := [[3,1,1,1]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,2]]; // -t^3 // Ga has deg 20/(2*4*10) = 1/4 and no emb, contrib -t^3/[1,1,2,2] ======= [ 1, 2, 3, 8, 13, 27 ], d := 27; A := [ 1, 2, 3, 8, 13 ]; B := [[13,2,3,8]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; // (-t^9 - t^6 - t^3)/PP(1,1,2,8) Curve of 1/2 deg 1/(2*8) = 1/16 with emb 1/8(1,2,5) Same as [ 1, 1, 2, 5, 8, 17 ]. ======= [ 1, 2, 3, 11, 16, 33 ], d := 33; A := [ 1, 2, 3, 11, 16]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,16]]; // t^14 - t^13 + t^11 - t^10 + t^9 - t^7 + t^6 ======= [ 1, 2, 4, 4, 5, 16 ], d := 16; A := [ 1, 2, 4, 4, 5]; B := [[5,2,4,4]]; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,4]]; // 4*t^4 curve has deg 1/2, 4 x 1/4(1,1,2) ======= [ 1, 2, 2, 8, 13, 26 ], d := 26; A := [1, 2, 2, 8, 13]; B := []; (P(d,A) - PA(A) - Pb(B) )*&*[1-t^i : i in [1,1,2,8]]; // Curve of deg 26/(2*2*8) = 13/16 with 1/8(1,2,13) contr (-4*t^9 - 3*t^7 - t^6 - 3*t^5 - 4*t^3)/[1,1,2,8] ======= [ 1, 1, 3, 6, 10, 21 ], d := 21; A := [ 1, 1, 3, 6, 10]; B := [[3,1,1,1] : i in [1..3]]; -10*(P(d,A) - (PA(A) + Pb(B) + 1/(6*10)*c2 + c6))*&*[1-t^i: i in [1,1,1,10]]; P(d,A) eq PA(A) + Pb(B) + 1/(6*10)*c2 + c6 + c10136; ======= [ 1, 1, 4, 4, 6, 16 ], d:=16; A:=[ 1, 1, 4, 4, 6]; B := []; P(d,A) eq PA(A) + Pb(B) + 16/(4*4*6)*c2 + 4*c4 + c6; ======= [ 1, 1, 4, 4, 10, 20 ], d := 20; A := [ 1, 1, 4, 4, 10]; B := []; P(d,A) eq PA(A) + Pb(B) + 20/(4*4*10)*c2 + 5*c4; ======= [ 1, 1, 4, 6, 6, 18 ], d := 18; A := [ 1, 1, 4, 6, 6]; B := []; P(d,A) eq PA(A) + Pb(B) + 18/(4*6*6)*c2 + c4 + 3*c6; ======= [ 1, 1, 4, 6, 8, 20 ], d := 20; A := [ 1, 1, 4, 6, 8]; B := []; P(d,A) eq PA(A) + Pb(B) + 20/(4*6*8)*c2 + 2*c4 + c6 + c8; ======= [ 1, 1, 4, 6, 12, 24 ], d:=24; A:=[ 1, 1, 4, 6, 12]; B:=[]; P(d,A) eq PA(A) + Pb(B) + 24/(4*6*12)*c2 + 2*c4 + 2*c6; ======= [ 1, 1, 4, 8, 10, 24 ], d:=24; A:=[ 1, 1, 4, 8, 10]; B:=[]; 10*(P(d,A) - (PA(A) + Pb(B) + 24/(4*8*10)*c2 + 3*c4))*&*[1-t^i: i in [1,1,1,10]]; P(d,A) eq PA(A) + Pb(B) + 24/(4*8*10)*c2 + 3*c4 + c10; ======= [ 1, 1, 12, 16, 18, 48 ], Curve of 1/2 of degree 48/(12*16*18) = 1/72 with emb 1/4(1,1,2) at (y^4+z^3) and 1/6(1,1,4) at y(y^3+z^2) and 1/18(1,1,16) d:=48; A:=[ 1, 1, 12, 16, 18]; B := []; 18*(P(d,A) - (PA(A) + Pb(B) + 48/(12*16*18)*c2 + c4 + c6))*&*[1-t^i: i in [1,1,2,18]]; P(d,A) eq PA(A) + Pb(B) + 48/(12*16*18)*c2 + c4 + c18; ======= [ 1, 1, 9, 12, 22, 45 ], d:=45; A:=[ 1, 1, 9, 12, 22]; B:=[[3,1,1,1] : i in [1..3]]; c221912 := (P(d,A) - (PA(A) + Pb(B) + 1/(12*22)*c2 + Pemb2(6))); (-5/11*c2 + (P(d,A) - (PA(A) + Pb(B) + 1/(12*22)*c2 + Pemb2(6)))) *&*[1-t^i: i in [1,2,3,22]]; P(d,A) eq PA(A) + Pb(B) + 1/(12*22)*Phalfc() + Pemb2(6) + c221912; ======= [ 1, 1, 8, 11, 20, 41 ], d := 41; A :=[ 1, 1, 8, 11, 20]; B := [[11,1,1,9]]; (P(d,A) - (PA(A) + Pb(B) + 1/(8*20)*Phalfc() + ??); this has curve of 1/4(1,3), emb 1/8(1,3,4) and 1/20(1,8,11) ======= [ 1, 1, 2, 7, 10, 21 ], Curve of 1/2 of deg 1/(2*10) with emb 1/10(1,2,7) contrib t^10 + t^7 + t^4 d := 21; A :=[ 1, 1, 2, 7, 10]; B := []; P(d,A) - (PA(A) + Pb(B) + 1/(2*10)*Phalfc() + c10127); // 0 ======= [ 1, 1, 12, 16, 30, 60 ], d := 60; A := [ 1, 1, 12, 16, 30]; B := []; P(d,A) eq PA(A) + Pb(B) + 60/(12*16*30)*Phalfc() + Pemb2(2) + Pemb2(3) + Pemb2(8); ======= [ 1, 1, 5, 8, 14, 29 ], d := 29; A := [ 1, 1, 5, 8, 14]; B := [[5,1,1,3]]; P(d,A) - (PA(A) + Pb(B) + 1/(8*14)*Phalfc() + Pemb2(4) - 1/14*Phalfc() +(t^14+t^13+t^10+t^8+t^5+t^4)/&*[1-t^i : i in [1,1,2,14]]); ======= [ 1, 2, 17, 40, 60, 120 ], d := 120; A := [ 1, 2, 17, 40, 60]; B := [[17,2,6,9]]; P(d,A) - (PA(A) + Pb(B) + 120/(2*40*60)*Phalfc() + c201217); ======= [ 1, 2, 10, 13, 26, 52 ], d := 52; A := [ 1, 2, 10, 13, 26]; B := [[13,1,2,10], [13,1,2,10]]; P(d,A) - (PA(A) + Pb(B) + 52/(2*13*26)*Phalfc() +9/52*Phalfc()); ======= [ 1, 2, 10, 14, 17, 44 ], d := 44; A :=[ 1, 2, 10, 14, 17]; B := [[17,1,2,14]]; P(d,A) - (PA(A) + Pb(B) + 44/(2*10*14)*Phalfc() + c10127 - 11/70*Phalfc()); ======= [ 1, 2, 10, 23, 34, 70 ], d := 70; A := [ 1, 2, 10, 23, 34]; B := [[23,2,10,11]]; P(d,A) - (PA(A) + Pb(B) + 70/(2*10*34)*Phalfc() - 7/68*Phalfc()); c3411023 := (t^34 + t^33 + t^32 + t^30 + t^29 + t^28 + t^26 + t^23 + t^22 + t^20 + t^19 + t^18 + t^16 + t^15 + t^12 + t^10 + t^9 + t^8 + t^6 + t^5 + t^4)&*[1-t^i : i in [1,1,2,34]]; ======= [ 1, 2, 11, 14, 28, 56 ], d := 56; A := [ 1, 2, 11, 14, 28]; B := [[11,2,3,6]]; P(d,A) - (PA(A) + Pb(B) + 56/(2*14*28)*Phalfc() + 3/7*Phalfc()); ======= [ 1, 2, 14, 18, 21, 56 ], d := 56; A := [ 1, 2, 14, 18, 21]; also curve of 1/3 ======= [ 1, 2, 14, 33, 50, 100 ], d := 100; A := [ 1, 2, 14, 33, 50]; B := [[33,2,14,17]]; P(d,A) - (PA(A) + Pb(B) + 100/(2*14*50)*Phalfc() - 1/14*Phalfc()); ======= [ 1, 1, 8, 12, 14, 36 ], d := 36; A := [ 1, 1, 8, 12, 14]; P(d,A) - (PA(A) + Pb(B) + 36/(8*12*14)*Phalfc() - 3/112*Phalfc()); emb 1/4 and 1/8 seem to cancel! ======= [ 1, 2, 3, 10, 14, 30 ], d := 30; A := [ 1, 2, 3, 10, 14]; B := []; P(d,A) - (PA(A) + Pb(B) + 30/(2*10*14)*Phalfc() - 3/28*Phalfc()); ======= [ 1, 4, 4, 9, 14, 32 ], d := 32; A := [ 1, 4, 4, 9, 14]; B := [[9,1,4,4]]; P(d,A) - (PA(A) + Pb(B) + 8*Pemb2(2) + 32/(4*4*14)*Phalfc() + 3/28*Phalfc()); ======= [ 1, 4, 8, 9, 14, 36 ], d := 36; A := [ 1, 4, 8, 9, 14]; B := []; P(d,A) - (PA(A) + Pb(B) + Pemb2(4) + 4*Pemb2(2) + 36/(4*8*14)*Phalfc() + 3/28*Phalfc()); ======= [ 1, 4, 14, 33, 51, 103 ], d := 103; A := [ 1, 4, 14, 33, 51]; B := [[33,1,14,18],[51,4,14,33]]; also has a line of 1/3 ======= [ 1, 5, 8, 14, 28, 56 ], d := 56; A := [ 1, 5, 8, 14, 28]; B := [[5,3,4,3]]; P(d,A) - (PA(A) + Pb(B) + Pemb2(2)+ 56/(8*14*28)*Phalfc() - 1/7*Phalfc()); gives right contr at 2 x emb 1/14(1,5,8) ======= [ 1, 7, 11, 14, 16, 49 ] d := 49; A := [ 1, 7, 11, 14, 16]; B := [[11,1,3,7],[7,1,4,2],[7,1,4,2],[7,1,4,2]]; P(d,A) - (PA(A) + Pb(B) + Pemb2(2)+ 56/(8*14*28)*Phalfc() - 1/7*Phalfc()); 1/16(7,11,14) and 1/14(1,11,2) ======= [ 1, 8, 9, 14, 32, 64 ], d := 64; A := [ 1, 8, 9, 14, 32]; B := [[9,8,5,5]]; P(d,A) - (PA(A) + Pb(B) + 2*Pemb2(4)+ 64/(8*14*32)*Phalfc() + 3/28*Phalfc()); gives right contr at 1/14(1,4,9) ======= [ 1, 8, 14, 16, 25, 64 ], d := 64; A := [ 1, 8, 14, 16, 25]; B := [[25,1,8,16]]; P(d,A) - (PA(A) + Pb(B) + 4*Pemb2(4)+ 64/(8*14*16)*Phalfc() + 6/28*Phalfc()); gives right contr at 1/14(1,2,11) ======= [ 1, 8, 14, 19, 23, 65 ], d := 65; A := [ 1, 8, 14, 19, 23]; B := [[19,1,14,4],[23,1,8,14]]; P(d,A) - (PA(A) + Pb(B) + Pemb2(4)+ 1/(8*14)*Phalfc() + 0/28*Phalfc()); has emb 1/8(6,3,7) and 1/14(1,5,8) ======= [ 1, 1, 12, 16, 18, 48 ], d := 48; A := [ 1, 1, 12, 16, 18]; B := []; P(d,A) - (PA(A) + Pb(B) + Pemb2(2) + Pemb2(3) + Pemb2(9) + 48/(12*16*18)*Phalfc()); ======= [ 1, 2, 7, 10, 18, 38 ], d := 38; A := [ 1, 2, 7, 10, 18]; B := [[7,1,2,4]]; P(d,A) - (PA(A) + Pb(B) + c10127 + 38/(2*10*18)*Phalfc() + 13/90*Phalfc()); gives c181710:= (-t^4+t^5-t^8+t^9-t^11+t^13-t^14+t^17-t^18)/&*[1-t^i : i in [1,1,2,18]]; ======= [ 1, 2, 7, 18, 28, 56 ] d := 56; A := [ 1, 2, 7, 18, 28]; B := [[7,1,2,4] : i in [1,2]]; P(d,A) - (PA(A) + Pb(B) + 56/(2*18*28)*Phalfc() + 7/36*Phalfc()); gives same for c181710 ======= [ 1, 3, 18, 25, 46, 93 ] d := 93; A := [ 1, 3, 18, 25, 46]; B := [[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[25,1,3,21]]; P(d,A) - (PA(A) + Pb(B) + c181710 + 1/(18*46)*Phalfc() + 413/828*Phalfc()); > marker ============== Jobs to be continued: ============== [ 1, 2, 10, 23, 34, 70 ], [ 1, 2, 10, 24, 37, 74 ], [ 1, 2, 10, 25, 37, 75 ], [ 1, 2, 11, 14, 27, 55 ], [ 1, 2, 11, 14, 28, 56 ], [ 1, 2, 11, 15, 27, 56 ], [ 1, 2, 11, 16, 19, 49 ], [ 1, 2, 11, 25, 38, 77 ], [ 1, 2, 11, 26, 38, 78 ], [ 1, 2, 11, 27, 41, 82 ], [ 1, 2, 12, 15, 18, 48 ], [ 1, 2, 12, 15, 30, 60 ], [ 1, 2, 12, 16, 29, 60 ], [ 1, 2, 12, 18, 21, 54 ], [ 1, 2, 12, 18, 33, 66 ], [ 1, 2, 12, 28, 41, 84 ], [ 1, 2, 12, 30, 45, 90 ], [ 1, 2, 13, 17, 20, 53 ], [ 1, 2, 13, 18, 33, 67 ], [ 1, 2, 13, 30, 46, 92 ], [ 1, 2, 13, 31, 46, 93 ], [ 1, 2, 14, 18, 21, 56 ], [ 1, 2, 14, 19, 22, 58 ], [ 1, 2, 14, 32, 49, 98 ], [ 1, 2, 14, 33, 50, 100 ], [ 1, 2, 15, 20, 37, 75 ], [ 1, 2, 15, 35, 52, 105 ], [ 1, 2, 16, 21, 24, 64 ], [ 1, 2, 16, 22, 25, 66 ], [ 1, 2, 16, 22, 41, 82 ], [ 1, 2, 16, 37, 56, 112 ], [ 1, 2, 16, 38, 57, 114 ], [ 1, 2, 17, 23, 26, 69 ], [ 1, 2, 17, 23, 43, 86 ], [ 1, 2, 17, 40, 60, 120 ], [ 1, 2, 18, 24, 27, 72 ], [ 1, 2, 18, 24, 45, 90 ], [ 1, 3, 3, 3, 5, 15 ], [ 1, 3, 3, 4, 4, 15 ], [ 1, 3, 3, 4, 8, 19 ], [ 1, 3, 3, 5, 6, 18 ], [ 1, 3, 3, 5, 9, 21 ], [ 1, 3, 3, 5, 11, 23 ], [ 1, 3, 3, 7, 7, 21 ], [ 1, 3, 3, 7, 11, 25 ], [ 1, 3, 3, 7, 13, 27 ], [ 1, 1, 2, 3, 3, 10 ], The curve Ga of 1/3(1,2) of deg 1/9 contrib (2*t^3 + t^4 + 2*t^5)/PP(1,1,3,3). [ 1, 1, 2, 3, 6, 13 ], Curve of 1/3(1,2) of deg 1/(3*6) with emb 1/6(1,2,3) plus curve of 1/2 of deg 1/(2*6) with emb 1/6(1,2,3) together contribute (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3)/PP(1,2,3,6) [ 1, 1, 2, 6, 9, 19 ], Curve of 1/3 plus curve of 1/2 [ 1, 1, 3, 3, 5, 13 ], a1 := -2; a2 := 1; B := [[5,1,1,3]]; Curve Ga of 1/3(1,2) of degree 1/9 contrib (3*t^3 + 2*t^4 + 3*t^5)/PP(1,1,3,3). NB different from Y(10) in PP(1,1,2,3,3) above. [ 1, 1, 3, 3, 8, 16 ], a1 := -2; a2 := 1; Curve Ga of 1/3(1,2) of degree 1/9 contrib (4*t^3 + 3*t^4 + 4*t^5)//PP(1,1,3,3). [ 1, 1, 3, 4, 4, 13 ], Curve Ga of 1/4(1,3) degree 1/4^2 contrib 2*t^7 + 4*t^6 + 3*t^5 + 4*t^4 + 2*t^3 [ 1, 1, 3, 4, 8, 17 ], Curve of 1/4(1,3) of degree 1/(4*8) with emb 1/8(1,3,4) contrib (2*t^11+3*t^10+3*t^9+4*t^8+3*t^7 +4*t^6+3*t^5+3*t^4+2*t^3)/PP(1,1,4,8) [ 1, 1, 3, 5, 9, 19 ], Curve of 1/3(1,2) of degree 1/(3*9) with emb 1/9(1,3,5) contrib (2*t^11 + 2*t^10 + 3*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 3*t^5 + 2*t^4 + 2*t^3)/PP(1,1,3,9) [ 1, 1, 3, 6, 8, 19 ], Curve of 1/3 plus curve of 1/2 [ 1, 1, 3, 7, 12, 24 ], [ 1, 1, 3, 9, 13, 27 ], [ 1, 1, 3, 9, 14, 28 ], [ 1, 1, 3, 10, 15, 30 ], [ 1, 1, 4, 5, 5, 16 ], [ 1, 1, 4, 5, 10, 21 ], [ 1, 1, 4, 7, 12, 25 ], curve of 1/4 [ 1, 1, 4, 8, 10, 24 ], [ 1, 1, 4, 8, 14, 28 ], [ 1, 1, 4, 10, 15, 31 ], [ 1, 1, 4, 11, 16, 33 ], [ 1, 1, 4, 12, 18, 36 ], [ 1, 1, 5, 6, 12, 25 ], curve of 1/6 [ 1, 1, 5, 7, 7, 21 ], [ 1, 1, 5, 7, 13, 27 ], [ 1, 1, 5, 8, 10, 25 ], [ 1, 1, 5, 8, 14, 29 ], [ 1, 1, 5, 12, 18, 37 ], [ 1, 1, 5, 13, 19, 39 ], [ 1, 1, 5, 13, 20, 40 ], [ 1, 1, 6, 8, 10, 26 ], [ 1, 1, 6, 8, 15, 31 ], [ 1, 1, 6, 8, 16, 32 ], [ 1, 1, 6, 9, 16, 33 ], [ 1, 1, 6, 10, 12, 30 ], [ 1, 1, 6, 10, 18, 36 ], [ 1, 1, 6, 15, 22, 45 ], [ 1, 1, 6, 16, 24, 48 ], [ 1, 1, 7, 9, 11, 29 ], [ 1, 1, 7, 9, 17, 35 ], [ 1, 1, 7, 9, 18, 36 ], [ 1, 1, 7, 10, 12, 31 ], [ 1, 1, 7, 16, 24, 49 ], [ 1, 1, 7, 17, 26, 52 ], [ 1, 1, 8, 10, 12, 32 ], [ 1, 1, 8, 10, 20, 40 ], [ 1, 1, 8, 11, 20, 41 ], [ 1, 1, 8, 12, 14, 36 ], [ 1, 1, 8, 12, 22, 44 ], [ 1, 1, 8, 19, 28, 57 ], [ 1, 1, 8, 20, 30, 60 ], [ 1, 1, 9, 12, 14, 37 ], [ 1, 1, 9, 12, 22, 45 ], [ 1, 1, 9, 21, 31, 63 ], [ 1, 1, 9, 21, 32, 64 ], [ 1, 1, 10, 13, 15, 40 ], [ 1, 1, 10, 23, 35, 70 ], [ 1, 1, 11, 15, 17, 45 ], [ 1, 1, 11, 15, 28, 56 ], [ 1, 1, 11, 26, 39, 78 ], [ 1, 1, 12, 16, 18, 48 ], [ 1, 1, 12, 16, 30, 60 ], [ 1, 2, 2, 2, 3, 10 ], [ 1, 2, 2, 2, 5, 12 ], [ 1, 2, 2, 2, 7, 14 ], [ 1, 2, 2, 3, 3, 11 ], [ 1, 2, 2, 3, 4, 12 ], [ 1, 2, 2, 3, 6, 14 ], [ 1, 2, 2, 3, 7, 15 ], [ 1, 2, 2, 3, 8, 16 ], [ 1, 2, 2, 4, 5, 14 ], ============== Summary of jobs done: ============== Isolated B only. These are now routine [ 1, 1, 1, 1, 1, 5 ], nonsingular, a1 := 1; a2 := 1; B := []; [ 1, 1, 1, 1, 2, 6 ], nonsingular, a1 := 0; a2 := 1; B := []; [ 1, 1, 1, 1, 3, 7 ], has a1 := 0; a2 := 0; B := [ 1/3(1,1,1) ]; [ 1, 1, 1, 1, 4, 8 ], a1 := 0; a2 := 0; B := []; [ 1, 1, 1, 2, 3, 8 ], a1 := -1; a2 := 1; B := [[3,1,1,1]]; [ 1, 1, 1, 2, 5, 10 ], a1 := -1; a2 := 1; B := []; [ 1, 1, 1, 3, 3, 9 ], a1 := -1; a2 := 0; B := 3 x [3,1,1,1]; [ 1, 1, 1, 3, 5, 11 ], a1 := -1; a2 := 0; B := [[3,1,1,1],[5,3,1,1]]; [ 1, 1, 1, 3, 6, 12 ], a1 := -1; a2 := 0; B := 3 x [3,1,1,1]; [ 1, 1, 1, 5, 7, 15 ], a1 := -1; a2 := 0; B := [[7,1,1,5]]; [ 1, 1, 1, 5, 8, 16 ], a1 := -1; a2 := 0; B := [[5,1,1,3]]; [ 1, 1, 1, 6, 9, 18 ], a1 := -1; a2 := 0; B := [[3,1,1,1]]; [ 1, 1, 2, 3, 5, 12 ], a1 := -2; a2 := 2; B := [[5,1,1,3]]; [ 1, 1, 2, 3, 7, 14 ], B := [[3,1,1,1]]; [ 1, 1, 2, 5, 7, 16 ], B := [[5,1,2,2], [7,1,1,5]]; [ 1, 1, 2, 7, 11, 22 ], [ 1, 1, 3, 3, 4, 12 ], [ 1, 1, 3, 3, 7, 15 ], [ 1, 1, 3, 5, 10, 20 ], [ 1, 1, 3, 5, 5, 15 ], // 0 [ 1, 1, 3, 5, 7, 17 ], // 0 [ 1, 1, 3, 7, 9, 21 ], B := [[9,1,1,7],[3,1,1,1],[3,1,1,1]]; Isolated B + Curve of 1/2 + emb. These are rapidly becoming routine. [ 1, 1, 1, 2, 2, 7 ], Curve of 1/2(1,1) as only singularity, contrib -t^3/PP(1,1,2,2) [ 1, 1, 1, 2, 4, 9 ], Curve of 1/2 of degree 1/(2*4) with emb 1/4(1,1,2) contrib t^4/PP(1,1,2,2) [ 1, 1, 1, 4, 6, 13 ], Y(13) in PP(1, 1, 1, 4, 6) A curve Ga of 1/2 of degree 1/24 with emb 1/4(1,1,2) and 1/6(1,1,4) a1 := -1; a2 := 0; Pa := (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; P := (1-t^13)/&*[1-t^i : i in [1,1,1,4,6]]; (P-Pa)*&*[1-t^i : i in [1,1,4,6]]; // t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3 Thus the curve contributes (t^9 + 2*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 2*t^4 + t^3)/PP(1,1,4,6) ?? This has degree 13/24 whereas Ga only has deg 1/24. ?? ?? Note that Pa itself only gives deg 0. Curve of 1/2 of degree 1/(4*6) with emb 1/4(1,1,2) and 1/6(1,1,4) contrib (t^9+2*t^8+2*t^7+3*t^6+2*t^5+2*t^4+t^3)/PP(1,1,4,6) [ 1, 1, 2, 2, 2, 8 ], a1 := -2; a2 := 4; Curve Ga of 1/2 of degree 8/2^3 = 1 and genus 3 contrib -4*t^3/PP(1,1,2,2) [ 1, 1, 2, 2, 3, 9 ], a1 := -2; a2 := 3; Here the curve Ga of 1/2 of deg 1/4 and genus 0 contrib -t^3/PP(1,1,2,2) [ 1, 1, 2, 2, 4, 10 ], a1 := -2; a2 := 3; The curve Ga of 1/2 of deg 5/8 and genus 2 (probably?) with emb 1/4(1,1,2) contrib (-2*t^3 + t^4 - 2*t^4)/PP(1,1,2,4) [ 1, 1, 2, 2, 5, 11 ], The curve Ga of 1/2 of deg 1/4 contrib -t^3/PP(1,1,2,2). [ 1, 1, 2, 2, 6, 12 ], a1 := -2; a2 := 3; The curve Ga of 1/2 of deg 1/2 contrib -2*t^3/PP(1,1,2,2). [ 1, 1, 2, 3, 4, 11 ], Curve Ga of 1/2 of deg 1/8 with one emb 1/4(1,1,2) contrib t^4/PP(1,1,2,4) [ 1, 1, 2, 4, 4, 12 ], Curve of 1/2 of deg 12/(2*4*4) with 3 x emb 1/4(1,1,2) contrib 3*t^4/PP(1,1,2,4) [ 1, 1, 2, 4, 6, 14 ], Curve of 1/2 of deg 14/(2*4*6) = 7/24 with emb 1/4(1,1,2) and 1/6(1,1,4) contrib (2*t^8 + 3*t^6 + 2*t^4)/PP(1,1,4,6) [ 1, 1, 2, 4, 7, 15 ], Curve of 1/2 of deg 1/(2*4) with emb 1/4(1,1,2) contrib (t^4)/PP(1,1,2,4) [ 1, 1, 2, 4, 8, 16 ], Curve of 1/2 of deg 16/(2*4*8) = 1/4 with 2 x emb 1/4(1,1,2) contrib (2*t^4)/PP(1,1,2,4) [ 1, 1, 2, 5, 8, 17 ], Curve of 1/2 of deg 1/(2*8) with emb 1/8(1,2,5) contrib (-t^9 - t^6 - t^3)/PP(1,1,2,8) [ 1, 1, 2, 6, 8, 18 ], Curve of 1/2 of deg 18/(2*6*8) = 3/16 with emb 1/8(1,1,6) contrib (t^8 + t^6 + t^4)/PP(1,1,2,8) [ 1, 1, 2, 7, 10, 21 ], Curve of 1/2 of deg 1/(2*10) with emb 1/10(1,2,7) contrib t^10 + t^7 + t^4 [1, 1, 2, 6, 10, 20] Curve of 1/2 of deg 20/(2*6*10) = 1/6 with emb 1/6(1,1,4) contrib t^6 + t^4 [ 1, 1, 3, 6, 10, 21 ], B := [[3,1,1,1] : i in [1..3]]; Curve of 1/2 deg 1/(6*10) with emb 1/10(1,3,6) [ 1, 1, 4, 4, 6, 16 ], Curve of 1/2 of deg 16/(4*4*6) = 1/16 with emb 4 x 1/4(1,1,2) and 1/6(1,1,4) [ 1, 1, 4, 4, 10, 20 ], Curve of 1/2 of deg 1/16 with emb 5 x 1/4(1,1,2) [ 1, 1, 4, 6, 6, 18 ], OK [ 1, 1, 4, 6, 8, 20 ], OK [ 1, 1, 4, 6, 12, 24 ], OK [ 1, 1, 6, 8, 8, 24 ], Curve of 1/2 deg 24/(6*8*8) = 1/16 with emb 3 x 1/8(1,1,6) contrib (2*t^9 + 3*t^8 + 2*t^7 + 3*t^6 + 2*t^5 + 3*t^4 + 2*t^3)/PP(1,1,2,8) [ 1, 1, 6, 8, 16, 32 ], Curve of 1/2 of deg 32/(6*8*16) = 1/24 with emb 1/6(1,1,4) and 2 x 1/8(1,1,6) // My precious functions // =============== /* This function computes the PERIODIC contribution to Hilbert series of an isolated orbifold point 1/r(a,b..). It assumes that the univariate polynomial ring Q[t] is defined and that the input list L = [a1,a2,.. ] consists of coprime elements. */ function Pc(r,L) if &or[GreatestCommonDivisor([r,a]) ne 1 : a in L] // other mugtrap then error "Error: Not Coprime"; end if; A := (t^r-1) div (t-1); B := t*&*[1-t^i : i in L]; h_throwaway, al_throwaway, be := XGCD(A,B); return r*t*be; end function; /* This function computes the GROWING contribution to Hilbert series of an isolated orbifold point 1/r(a,b..). It assumes that the univariate polynomial ring Q[t] is defined and that the input list L = [a1,a2,.. ] consists of coprime elements. */ function Pd(r,L) n := #L; f := (1-t)^(n+1)*Pc(r,L); return &+ [-Coefficient(f,k)*t^i where k is Min(i,n+1-i) : i in [1..n] ] / (1-t)^(n+1); end function; function Pa(n1,n2) /* Part I of Hilbert series of CY 3-fold depending on n1 = number of 1, n2 = number of 2. (1-t)^4*(1 + P1*t + P2*t^2) = (1 + a1*t + a2*t^2) mod t^3. where P1 is n1 and P2 is (n1 + 1 chews 2) + n2. */ a1 := n1-4; a2 := Binomial(n1+1,2) + n2 - 4*a1 - 10; return (1 + a1*t+ a2*t^2 + a1*t^3 + t^4)/(1-t)^4; end function; function PA(A) /* the same as Pa */ n1:= #[a : a in A | a eq 1]; n2:= #[a : a in A | a eq 2]; return Pa(n1,n2); end function; function Pb(B) S := [ FieldOfFractions(R) | 1/r*(1/(1-t^r)*Pc(r,L) + Pd(r,L)) where r is b[1] where L is b[2..#b] : b in B]; return &+S; end function; function P(d,A) return (1-t^d)/&*[1-t^i : i in A]; end function; /* Contr of a 1/r(1,r-1) curve Ga is a * t^3 * ((1-t^(r-2)) div (1-t)) * ((1-t^r) div (1-t)) - b * t^{r+1} all over the standard denom 1/&*[1-t^i : i in [1,1,r,r]]. Note the funny way of putting in the parameters: b = deg Ga and deg_Ga(E1-E{r-1}) = 2*r*a - 2*b. Comment. */ function Ppc(r,a,b) X := t^3*((1-t^(r-2)) div (1-t)) * ((1-t^r) div (1-t)); Y := -t^(r+1); denom := &*[1-t^i : i in [1,1,r,r]]; return (a*X+b*Y)/denom; end function; /* The contr of a curve of 1/2 of deg 1. (Multiply by deg Ga.) */ function Phalfc() return (-4*t^3)/&*[1-t^i : i in [1,1,2,2]]; end function; /* The contr of an emb 1/2r(1,1,2r-2). (Note the parameter is r.) */ function Pemb2(r) return -(r-1)/(4*r)*Phalfc() + &+[t^(2*i) : i in [2..r]]/&*[1-t^i: i in [1,1,2,2*r]]; end function; c2 := (-4*t^3)/&*[1-t^i : i in [1,1,2,2]]; c4 := (1/2*t^5 + t^4 + 1/2*t^3)/&*[1-t^i : i in [1,1,2,4]]; c6 := (2/3*t^7 + t^6 + 2/3*t^5 + t^4 + 2/3*t^3)/&*[1-t^i : i in [1,1,2,6]]; c8 := (3/4*t^9 + t^8 + 3/4*t^7 + t^6 + 3/4*t^5 + t^4 + 3/4*t^3)/ &*[1-t^i : i in [1,1,2,8]]; c10 := 1/10*(8*t^10+2*t^9+6*t^8+4*t^7 +4*t^6+6*t^5+2*t^4+8*t^3)/&*[1-t^i : i in [1,1,1,10]]; c12 := (5/6*t^13 + t^12 + 5/6*t^11 + t^10 + 5/6*t^9 + t^8 + 5/6*t^7 + t^6 + 5/6*t^5 + t^4 + 5/6*t^3)/&*[1-t^i : i in [1,1,2,12]]; c8125 := (-3/4*t^9+1/4*t^7-t^6+1/4*t^5-3/4*t^3)/&*[1-t^i : i in [1,1,1,8]]; c8125 eq 3/16*c2*(1+t) + (t^5-t^6+t^7)/&*[1-t^i : i in [1,1,1,8]]; c8233 := - 9/16*Phalfc() + (t^8-2*t^7+3*t^6-2*t^5+t^4)/&*[1-t^i : i in [1,1,2,8]]; c10136 := -1/10*(6*t^10+4*t^9-8*t^8+8*t^7+8*t^6 -8*t^5+4*t^4+6*t^3)/&*[1-t^i: i in [1,1,1,10]]; c10136 eq 3/20*c2 + (-t^4+t^5-t^7+t^9-t^10)/&*[1-t^i : i in [1,1,2,10]]; c10136 := 9/52*Phalfc() + (-t^10+t^9-t^7+t^5-t^4)/&*[1-t^i : i in [1,1,2,10]]; c10127 := (t^4+t^7+t^10)/&*[1-t^i : i in [1,1,2,10]]; c141310 := (t^15+t^13+t^12+2*t^9+t^6+t^5+t^3)/&*[1-t^i : i in [1,1,2,10]]; c14158 := (t^14+t^13+t^10+t^8+t^5+t^4)/&*[1-t^i : i in [1,1,2,14]]); c221912 := 5/11*Phalfc() + (-t^24+2*t^23+t^21-t^20+2*t^19+t^17-t^16+t^15 +t^13-t^12+t^11+2*t^9-t^8+t^7+2*t^5-t^4)/&*[1-t^i: i in [1,2,3,22]]; c201217 := - 11/40*Phalfc() + (-2*t^21-t^19-t^18-t^17-2*t^15-t^13-t^12 -t^11-2*t^9-t^7-t^6-t^5-2*t^3)/&*[1-t^i : i in [1,1,2,20]]; c3411023 := (t^34+t^33+t^32+t^30+t^29+t^28+t^26+t^23+t^22+t^20+t^19+ t^18+t^16+t^15+t^12+t^10+t^9+t^8+t^6+t^5+t^4)&*[1-t^i : i in [1,1,2,34]]; c4 := -1/8*c2 + (t^4)/&*[1-t^i: i in [1,1,2,4]]; c6 := -1/6*c2 + (t^4+t^6)/&*[1-t^i: i in [1,1,2,6]]; c8 := -3/8*c2 + (t^4+t^6+t^8)/&*[1-t^i: i in /[1,1,2,8]]; c10 := -1/5*c2 + (t^4+t^6+t^8+t^10)/&*[1-t^i: i in [1,1,2,10]]; c12 := -5/24*c2 + (t^4+t^6+t^8+t^10+t^12)/&*[1-t^i: i in [1,1,2,12]]; c18 := -2/9*c2 + (t^4 + t^6 + t^8 + t^10 + t^12 + t^14 + t^16 + t^18)/&*[1-t^i: i in [1,1,2,18]]; c2r := -(r-1)/(4*r)*c2 + &+[t^(2*i) : i in [2..r]]/&*[1-t^i: i in [1,1,2,2*r]]; -(r-1)/(4*r)*Phalfc() + (t^4-t^(2*r+2))/&*[1-t^i: i in [1,1,2,2,2*r]];