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Abstract
I give a general formula for the Hilbert series of a polarised n-

dimensional orbifold (for example, with isolated orbifold points). The
result comes from orbifold RR, and so ultimately from equivariant RR
(the Atiyah–Singer Lefschetz trace formula); however, the formula is
organised so that no Chern or Todd classes appear explicitly, and no
Dedekind sums. The formula reduces much of my work over 20 years
to a few lines of computer algebra.

For dramatic effect, I state a simple case of the theorem first, leaving
definitions and explanations for later.

Theorem 1 Let X,
⊕
OX(i) be a simply polarised n-fold with n ≥ 2. As-

sume that X is projectively Gorenstein with canonical weight kX and has a
basket of isolated orbifold points B =

{
1
r
(a1, . . . , an)

}
as its only singularities.

Then the Hilbert series PX(t) =
∑

n≥0 h
0(X,OX(n))tn of X is

PX(t) = PI(t) +
∑
B

Porb(1
r
(a1, . . . , an), kX), (1)

with initial term PI(t) and orbifold terms Porb(1
r
(a1, . . . , an), kX) charac-

terised as follows:

• The initial term PI(t) = A(t)
(1−t)n+1 has denominator (1 − t)n+1, and nu-

merator A(t) a Gorenstein symmetric polynomial of degree the coindex
c = kX + n+ 1 of X, so that PI(t) equals P (t) up to degree

[
c
2

]
.

• Each orbifold term Porb(1
r
(a1, . . . , an), kX) = B(t)

(1−t)n(1−tr) has denomina-

tor (1− t)n(1− tr), and numerator B(t) the unique Laurent polynomial

supported in
[[

c
2

]
+ 1,

[
c
2

]
+ r − 1

]
which is

the inverse modulo
1− tr

1− t
= 1 + t+ · · ·+ tr−1 of

∏ 1− tai
1− t

.
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The initial term PI(t) determines and is determined by the first
[
c
2

]
pluri-

genera, and is 0 if c < 0. The coefficients of the orbifold terms are general
Dedekind sums, but are determined by conceptually very simple ice cream
functions (see Example 2; they are given by easy computer algebra routines.

Example 2 (“Ice cream on Wednesdays, Fridays and Sundays”)
The step function i 7→ [3i/7] is familiar. As Hilbert series, it gives

P (t) :=
∑
i≥0

[3i/7]ti = 0 + 0t+ 0t2 + t3 + t4 + 2t5 + 2t6 + 3t7 + · · · (2)

This series takes the closed form

P (t) =
t3 + t5 + t7

(1− t)(1− t7)
. (3)

In fact, since [3i/7] increases cumulatively by 1 at i = 3, 5, 7 mod 7, it follows
that (1− t)P (t) is the sum of ti taken over the jumps

(1− t)P (t) =
∑
i≥0

ti = t3 + t5 + t7 + t10 + · · · (4)

repeating periodically with period 7. Multiplying by (1− t7) cuts this down
to the first week’s ration of ice cream.

The numerator t3+t5+t7 is the inverse of (1−t5)/(1−t) = 1+t+t2+t3+t4

modulo (1− t7)/(1− t) = 1+ t+ t2 + t3 + t4 + t5 + t6 + t7 (here 5 is the inverse
of 3 mod 7). Proof: the product (1 + t+ t2 + t3 + t4)(t3 + t5 + t7) consists of
15 terms, distributed equitably among the 7 powers of t modulo t7, except
for 3× t7, so that (1 + t+ t2 + t3 + t4)(t3 + t5 + t7) =

1 + t + t2 + t3 + t4

+ t3 + t4 + t5 + t6 + t7

+ t5 + t6 + t7 + t8 + t9

≡ 3 + 2t+ 2t2 + · · ·+ 2t6 mod 1− t7

≡ 1 mod 1 + t+ t2 + t3 + t4 + t5 + t6.

There are several other meaningful expressions for P (t): working modulo
1 + t + t2 + t3 + t4 + t5 + t6, one can view the bounty t3 + t5 + t7 as famine
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−t − t2 − t4 − t6 (“no ice cream on Mondays, Tuesdays, Thursdays and
Saturdays”), that is,

P (t) =
t3 + t5 + t7

(1− t)(1− t7)
=

1

(1− t)2
+
−t− t2 − t4 − t6

(1− t7)
. (5)

Either of these functions can be shifted up or down, e.g., to give

t−4 + t−2 + 1

(1− t)(1− t7)
or
−t−1 − t− t2 − t4

(1− t)(1− t7)
, etc., (6)

“ice cream rations start one week (or one day) before term”.
Or the macroeconomic view is that [3i/7] is the linear function 3i/7 with

periodic corrections, giving

P (t) =
3

7
× 1

(1− t)2
+
−3/7t− 6/7t2 − 2/7t3 − 5/7t4 − 1/7t5 − 4/7t6

1− t7
. (7)

The coefficients here are Dedekind sums. We will see that the general
Porb and general Dedekind sums are obtained by minor variations on this
simple calculation.

1 Introduction

1.1 Terminology

Definition 3 A simply polarised orbifold with isolated orbifold points is a
variety X polarised by a sheaf of graded algebras

⊕
OX(i) satisfying:

• X is a projective n-fold over a field k (e.g., k = C), and OX(m) is an
ample invertible sheaf for some m > 0;

• X has at most isolated orbifold singularities 1
r
(a1, . . . , an), and locally

at each point, each O(i) is isomorphic to the ith eigensheaf of the µr
action.

I say simply polarised to mean Z-graded or N-graded (as opposed to lattice
polarised or graded by a more complicated semigroup).
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I assume in this introduction that orbifold behaviour occurs at isolated
points in codimension ≥ 2, so n = dimX ≥ 2. (The methods also apply to
orbifold behaviour in codimension 1 or 0 after some elementary stacky pre-
liminaries; see 1.3 for orbifold curves.) Then the O(i) are divisorial sheaves,
and O(i) = OX(iA) for an ample Weil divisor A. In this case the graded
structure sheaf

⊕
OX(i) is specified by A or O(1) = O(A).

Under the assumptions of Definition 3, the graded ring

R(X) = R
(
X,
⊕
OX(i)

)
=
⊕
i≥0

H0(X,OX(i)) (8)

is a finitely generated k-algebra, of the form R(X) = k[x0, . . . , xN ]/IX with
weighted generators xi ∈ H0(X,OX(wi)) and a weighted homogeneous ideal
IX . The affine variety CX = SpecX is the weighted cone over X; the grading
induces an action of the multiplicative groupGm onR(X) and CX that defines
the quotient X = ProjR(X) = (CX \ 0)/Gm. Under my assumptions, CX
is nonsingular outside the origin, and the orbifold behaviour of X,

⊕
OX(i)

comes from isolated orbits with cyclic isotropy subgroups µr ⊂ Gm. The
generators xi give CX ⊂ AN+1 and X ⊂ P(w0, . . . , wN), where AN+1 is affine
space with coordinates x0, . . . , xN and PN(w0, . . . , wN) is weighted projective
space (wps or wPN) with homogeneous coordinates xi of weight wi.

Definition 4 Write Pi(R) = dimk Ri for the dimension of the ith graded
piece of a finitely generated graded ring R =

⊕
i≥0 Ri; by abuse, I call

Pi(X) = Pi(R(X)) = h0(X,O(i)) the ith plurigenus of X. The Hilbert
series of R(X) or of X is the formal power series

PX(t) = PR(X)(t) =
∑
i≥0

Pi(R)ti. (9)

It is known to be a rational function Num(t)/
∏

(1− twj) with denominator
corresponding to the generators of R. The main point of this paper is that
the generating function PX(t) is often simpler than the individual Pi(X). My
problem is to calculate PX(t) under extra conditions.

Definition 5 I say that X,
⊕
OX(i) is projectively Gorenstein if R(X) is a

Gorenstein graded ring. This is equivalent (compare [GW] and [W]) to the
following cohomological conditions:

• Hj(X,OX(i)) = 0 for all j with 0 < j < dimX and all i;
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• the ith graded piece Ri of R(X) equals the complete linear system
H0(X,OX(i)) (a projective normality assumption, already implicit in
the definition of R(X));

• the orbifold canonical sheaf of X is of the form ωX = OX(kX) for some
integer kX , the canonical weight of X.

The final condition is stated here for n ≥ 2, when ωX is a divisorial sheaf.
See 1.3 for orbifold behavior in codimension 1.

Definition 6 (Mukai [Mu]) Let X be a projectively Gorenstein simply
polarised orbifold with isolated orbifold points as above. The coindex of X
is defined by c = kX + n+ 1 where kX is as in Definition 5 and n = dimX.

Remark 7 The coindex is invariant under passing to a hyperplane section
(of weighted degree 1), since the canonical class increases by 1 by adjunction,
while the dimension decreases by 1. Mukai’s definition is well known for
nonsingular projectively Gorenstein varieties when c ≥ 0. Clearly,

• Pn has coindex 0;

• a quadric hypersurface Q ⊂ Pn+1 has coindex 1;

• a normal elliptic curve, del Pezzo surface or Fano 3-fold of index 2 has
coindex 2;

• a canonical curve, K3 surface or anticanonical Fano 3-fold has coin-
dex 3;

• a surface of general type or Calabi–Yau 3-fold has coindex 4.

See Remark 9 for their Hilbert series.

1.2 Model theorem

Theorem 8 A nonsingular projectively Gorenstein variety X has Hilbert
series

PX(t) =
Num(t)

(1− t)n+1
, (10)

where Num(t) is a symmetric polynomial of degree c = coindexX.
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Proof This is an elementary consequence of Hirzebruch Riemann–Roch,
plus the vanishing assumption in Definition 5 and Serre duality.

In detail, RR implies that χ(OX(i)) is a polynomial of degree n in i:

χ(OX(i)) = χ(OX(iA)) =

∫
ch(iA) · Td(X), (11)

where A = c1(OX(1)). By the vanishing assumption there is no intermediate
cohomology, and by Serre duality hn(O(i)) = h0(O(kX − i)), so that

χ(OX(i)) = h0(X,O(i)) + (−1)nhn(X,O(i))

= Pi(X) + (−1)nPkX−i(X). (12)

In particular Pi(X) is a polynomial in i of degree n for i ≥ kX + 1.
(Note that when kX < 0, this says that H0(OX(i)) = Hn(OX(i)) = 0 for all
intermediate values kX + 1 < i < 0; this is the reason a nonsingular Fano
n-fold has Fano index −kX ≤ n+ 1.)

It follows that (1− t)n+1PX(t) is a polynomial of degree kX + n+ 1 = c.
Indeed, when I multiply PX(t) by (1 − t), the ith coefficient of the product
(1− t)PX(t) is Pi(X)− Pi−1(X); now differencing a polynomial of degree n
gives a polynomial of degree n− 1, and therefore Pi(X)− Pi−1(X) equals a
polynomial of degree n− 1 in i for i ≥ kX + 2, and so on by induction.

Now Serre duality implies that PX(t) satisfies the functional equation

tkXP (1/t) = (−1)n+1P (t) (13)

under t 7→ 1/t. To prove this, consider the formal sum
∑

i∈Z χ(OX(i))ti.
Since by Serre duality

χ(OX(i)) = Pi(X) + (−1)nPkX−i(X) (14)

with Pi(X) = 0 for i < 0 and PkX−i(X) = 0 for i > kX , it makes sense to
divide the formal sum up as a formal power series PX(t) in positive powers of
t plus (−1)ntkXPX(1/t), which is tkX times a power series in negative powers
of t. On the other hand, multiplying the formal sum formally by (1− t)n+1

gives zero, since χ(OX(i)) is a polynomial of degree n in i. This proves (13).
(13) implies that the numerator of P (X) is a symmetric polynomial, and

completes the proof. QED
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Remark 9 For low values of c, the numerator Num(t) in (10) is

coindex Num(t)

c = 0 1
c = 1 1 + t
c = 2 1 + dt+ t2

c = 3 1 + (g − 2)t+ (g − 2)t2 + t3

c = 4 1 + at+ bt2 + at3 + t4

c = 5 1 + at+ bt2 + bt3 + at4 + t5

(15)

This is the Hilbert series converse of Remark 7. The form of these poly-
nomials is familiar: for example, a regular surface of general type has c = 4,
with a = pg − 3 and b = K2 − (2pg − 4). The formula itself works perfectly
well even if pg = 0, so a = −3. The sum of the coefficients, that is Num(1),
equals the degree of the polarised variety X.

My convention is to take the first [c/2] coefficients of Num(t) as the basic
global invariants of X. One effect is that we study Hilbert series in terms
of plurigenera themselves; relating the initial plurigenera to the topological
invariants of X (the Todd classes, the terms in

∫
ch(iA) Td(X) of Hirzebruch

RR) becomes a secondary issue.
The classic case is when R(X) has a regular sequence x0, . . . , xn in de-

gree 1; geometrically, this means that |OX(1)| is a free linear system. Then
R(X) is a free graded module over the polynomial ring k[x0, . . . , xn], and its
generators map one-to-one to a k-vector space basis of the Artinian quotient
ring R(X)/(x0, . . . , xn); the Hilbert numerator of R(X) is the Hilbert series

of this Artinian quotient. Passing to the numerator of PX(t) = Num(X)
(1−t)n+1 has

the effect of normalising X to dimension −1.

1.3 Temporary workaround in the curve case

My treatment so far has avoided the full graded structure sheaf of X,OX(i)
by assuming that X only has orbifold behaviour in codimension ≥ 2, so
that X is normal and OX(i) = OX(iA) with A a Q-Cartier Weil divisor,
determined by O(1) = O(A). However, orbifold behaviour in codimension 1
and 0 is natural and simple, and can’t be avoided if we want a treatment of
orbifolds that includes induction by restriction to smaller strata. Then the
simple O(i) = O(iA) device does not work: it is not true that the sheaf OX(i)
is determined by OX(1), because the multiplication maps OC(i)⊗OC(j)→
OC(i+ j) are no longer isomorphisms in codimension 1.
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The way around this in the curve case is simple and well known:1

Recipe 11 Replace A by a Q-divisor that includes the fractional term b
r
P

for each orbifold point P of type 1
r
(a) on C, where b is the inverse of a modulo

r; that is, write

A = A0 +
∑
B

b

r
P with A0 an integral divisor.

At the same time, replace KC by KC,orb = KC +
∑
B
r−1
r
P .

Then OX(i) = OX(iA) := OX([iA]), Serre duality takes the correct form,
and the graded ring R(C,A) is Gorenstein with canonical weight kC ∈ Z if
and only if KC,orb = kCA.

Discussion I explain why the construction is right, leaving the details to
you (see Demazure [De] and Watanabe [W]); this also appears subliminally
in many places in papers by Kawamata, Reid, Shokurov, and others.

The assumption on C is that at each orbifold point, the local parameter
zP of the complex curve C is zP = wrP , where wP is the orbinate (orbifold
coordinate, that is, the coordinate on the overlying orbifold cover), and the µr

1Other drafts of the same remark:
The point can be viewed in terms of stacks: the space is only the underlying space
|X| (or coarse moduli space) for the bigger structure X,

⊕
O(i). In particular, a general

orbifold has a graded dualising sheaf ωX(i) = OX(kX − i).
The material of 1.1 uses the traditional “well-formed” device of higher dimensional

geometry that allows one to avoid mentioning stacks when the orbifold behaviour is in
codimension ≥ 2: work with a Weil Q-Cartier divisor A and set OX(i) = OX(iA).

Remark 10 (Orbifold in codim 0 and 1) When n = 1, the orbifold points in codi-
mension 1 require extra care: the notation O(i) = OX(iA) only makes sense after intro-
ducing a Q-Weil divisor A =

∑ aj
rj
Ej , as in Demazure [De], and O(1) does not determine

O(i). Orbifold curves are pretty simple (see Section 7); however, to handle orbifold be-
haviour in codimension 1 the graded structure sheaf

⊕
O(i) must be specified. There

are in any case theoretical advantages in thinking of
⊕
O(i) systematically as a graded

structure sheaf.
The final condition is stated here for n ≥ 2, when ωX is a divisorial sheaf. More care is

needed to handle orbifold behavior in codimension 1: namely, rather than a single dualising
sheaf ωX , we need the graded dualising sheaf of the graded structure sheaf

⊕
OX(i). The

case n = 1 (orbifold curves) can be treated in terms of fractional divisors A =
∑ ai

ri
Pi and

the orbifold canonical class KC,orb = KC +
∑ ri−1

ri
Pi; see 1.3, [De] and [W].
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action is wP 7→ εawP . The sheaf OC(i) consists locally of the ith eigensheaf
of this action; that is, it consists of monomials wmP with m ≥ 0 and am ≡ i
mod r, that is m ≡ bi mod r, together with power series consisting of sums
of these (formal, convergent or algebraic power series, according to taste).
Therefore the sheaf OC(i) is based by wP to the [ bi

r
] power. In the same way,

the orbifold canonical class is based by dwP , which is equal to a constant

times w
r−1
r

P dzP .

Exercise 12 If C is an orbifold curve with a basket B = {P, 1
r
(a)}, and⊕

OC(i) is represented by O(iA) as just discussed, then R(C,
⊕
OC(i)) is

Gorenstein with index kC if and only if a + kC ≡ 0 mod r for each P ∈ B,
and then its Hilbert series is given by

PC(t) = PI +
∑
B

Porb(1
r
(a), kC) (16)

where as in Theorem 1, the initial term PI is 1
(1−t)2 times a Gorenstein sym-

metric polynomial of degree kC + 2. Each orbifold term is obtained by cal-
culating b, the inverse of a mod r, and taking 1−tb

1−t modulo 1−tr
1−t written out

as a Laurent polynomial supported in the appropriate interval.

Example 13 Let C = P
1 and take A = 3

5
P + 1

2
Q − R (where P,Q,R ∈ C

are distinct points); then KC,orb = 4
5
P + 1

2
Q − 2R, so −7A ∼ KC,orb. One

sees that R(C,A) = k[x, y] where wt x, y = 2, 5. In degree 2, x vanishes at
P to order 1

5
, so P = (0, 1) is a 1

5
(2) orbifold point with x as orbinate. Note

that 1
10

= 3
5

+ 1
2
− 1 and

P (C,A) =
1

(1− t2)(1− t5)
=

t−2

(1− t)(1− t2)
+

−t−2 − t
(1− t)(1− t5)

The case of P1(a, b) with any coprime a, b is similar.

Example 14 The weighted projective line X = P(2, 5) has orbifold points
of type 1

5
(2) and 1

2
(5) = 1

2
(1), in the global context kX = −7. The initial

term PI = 0 whenever c < 0. The orbifold terms are

Pper(
1
5
(2)) =

1

1− t5
× 1

5
× (−3t− t2 − 4t3 − 2t4),

Ptot(
1
5
(2),−7) = Pper +

−t−2 + t−1 − (2/5)t

(1− t)2
=

−t−2 − t
(1− t)(1− t5)

, (17)
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and

Pper(
1
2
(1)) =

1

1− t2
× 1

2
× (−t),

Ptot(
1
2
(1),−7) = Pper +

t−2 − t−1 + 1− (1/2)t

(1− t)2
=

t−2

(1− t)(1− t2)
. (18)

Adding these gives

−t−2 − t
(1− t)(1− t5)

+
t−2

(1− t)(1− t2)
=

1

(1− t2)(1− t5)
. (19)

Although mystifying at first sight, these calculations are really very easy,
and understanding them illuminates the general case. In (17), the terms

1
1−t5 (−3

5
t− 1

5
t2− 4

5
t3− 2

5
t4) are the periodically repeating fractional parts lost

on rounding down OC(3i
5
P ). Since the plurigenera are integers, I must add

some global term to compensate (thus adding to the degree in the polynomial
part of RR); adding 3

5
t in the numerator of Pgrow would give

1

1− t5

(
−3

5
t− 1

5
t2 − 4

5
t3 − 2

5
t4
)

+
3

5
× t

(1− t)2

= t2 + t3 + 2t4 + 3t5 + 3t6 + 4t7 + 4t8 + 5t9 + 6t10 + · · ·

=
t2 + t4 + t5

(1− t)(1− t5)
, (20)

the natural integral growth of [3i
5

], incrementing when i ≡ 2, 4 or 0 mod 5.
However, in the context k = −7, I want the contribution to be symmetric of
degree −7 in the sense of the functional equation (13). So rather than add
3
5
t in the numerator I add −t−2 + t−1− 2

5
t; the numerator −t−2− t in (17) is

symmetric of degree −1, so that the whole contribution Ptot has degree −7.
In (18) the numerator t−2 is symmetric of degree −4 (because the only

term t−2 is the centre of the symmetry), so Ptot again has degree −7.

1.4 Isolated orbifold singularities

Now letX be projectively Gorenstein with isolated orbifold singularities, with
kX and c as in Definitions 5–6. The ingredients in the plurigenus formula are
as follows:
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• the dimension n;

• the canonical weight kX (see Definition 5);

• the coindex c = kX + n+ 1;

• the first [c/2] plurigenera Pi(X) for i = 1, . . . , [c/2];

• a basket B of isolated orbifold points B = {1
r
(a1, . . . , an)}, with r ≥ 2.

For an orbifold point 1
r
(a1, . . . , an), the isolated assumption is that each

a1, . . . , an ∈ [1, r − 1] is coprime to r.

My assumption that X is projectively Gorenstein with ωX = OX(kX)
implies that each 1

r
(a1, . . . , an) ∈ B satisfies

kX +
n∑
j=1

aj ≡ 0 mod r. (21)

I now use these ingredients to cook up an initial term PI,X(t), and for
each point 1

r
(a1, . . . , an) ∈ B an orbifold contribution Porb(1

r
(a1, . . . , an), kX),

each computed by a simple recipe, so that

PX(t) = PI,X(t) +
∑
B

Porb

(
1
r
(a1, . . . , an), kX

)
. (22)

Note that “initial term” certainly does not mean “leading term”: it fixes up
the initial plurigenera, but not the leading order of growth.

Definition 15 (Initial term) The initial term PI,X(t) is

PI,X(t) =
A(t)

(1− t)n+1
, (23)

where A(t) is a symmetric polynomial of degree c with integer coefficients,
uniquely determined by the condition that the formal power series PI,X has
the given Pi(X) as coefficient of ti up to i = [c/2] (with P0 = 1 if c ≥ 0).

If c < 0 then also [c/2] < 0, and PI = 0.

Recipe 16 (1) Set A0 =
∑[c/2]

i=0 Pit
i (this is 0 is c < 0);
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(2) set A1 = (1−t)n+1A0 and P ′i = coefficient of ti in A1 for i = 0, . . . , [c/2];

(3) finally, set A(t) =
∑c

i=0 P
′′
i t
i where P ′′i = P ′i or P ′c−i.

Example 17 Take n = 3, c = 5, P1 = 3, P2 = 7, A0 = 1 + 3t + 7t2; then
A1 = (1− t)4A0 = 1− t + t2 + · · · , so that PI(t) : 1−t+t2+t3−t4+t5

(1−t)4 ; you check

that PI(t) = 1+2t3+t6

(1−t)3(1−t2)
is the Hilbert series of the nonsingular canonical

3-fold X(6, 6) ⊂ P(1, 1, 1, 2, 3, 3).

Definition 18 (Orbifold term) Let 1
r
(a1, . . . , an) and kX be as above. Its

orbifold contribution is defined by

Porb

(
1
r
(a1, . . . , an), kX

)
=

B(t)

(1− t)n(1− tr)
, (24)

where the numerator B(t) is

• the inverse modulo
1− tr

1− t
= 1 + t+ · · ·+ tr−1 of

∏(
1− tai
1− t

)
• as a Laurent polynomial with support in [γ + 1, γ + r − 1], where
γ = [c/2].

Magma function 19 function Qorb(r,LL,k)

L := [ Integers() | i : i in LL ]; // allows empty list

if (k + &+L) mod r ne 0 then

error "Error: Canonical weight not compatible";

end if;

n := #LL;

Pi := &*[ R | 1-t^i : i in LL];

h := Degree(GCD(1-t^r, Pi));

// degree of GCD(A,B) // -- simpler calc?

l := Floor((k+n+1)/2+h);

// If l < 0 we need a kludge to avoid programming

// genuine Laurent polynomials

de := Maximum(0,Ceiling(-l/r));

m := l + de*r;

A := (1-t^r) div (1-t);

B := Pi div (1-t)^n;

H,al_throwaway,be:=XGCD(A,t^m*B);

return t^m*be/(H*(1-t)^n*(1-t^r)*t^(de*r));

end function;
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Given 1
r
(a1, . . . , an), in the context of KX = kA, the calculation is the

Euclidean algorithm for the hcf of

A :=
tr − 1

t− 1
= 1 + t+ · · ·+ tr−1, and B :=

∏ tai − 1

t− 1
. (25)

Write h = hcf(A,B) (which is 1 in the current case, since the ai are coprime
to r) and l =

[
k+n+1

2

]
+ deg h. (The l just translates the support of the

Laurent polynomial.) Now calculate the hcf by the Euclidean algorithm in
the form

hcf(A, tlB) =: H = αA + βtlB, (26)

and return βtl

H(1−t)n(1−tr) . Since β is in the range [0, r− 2] it follows that β+ l

is in the range
[
l, l + r − 2

]
, as required.

1.5 Some progress on Hilbert series of CY orbifolds

The general formula is

PI +
∑
B∈B

Porb(B, 0) +
∑
C∈C

PC(C)

here (1) the initial term is

PI =
1 + at+ bt2 + at3 + t4

(1− t)4
.

In the point sum, each B = 1
r
(a1, a2, a3), and the term is

Porb(B, 0) =
Num

(1− t)3(1− tr)
where, in the isolated case, Num is the unique polynomial with support in
[3, r] which is the inverse of

∏n
i=1

1−tai
1−t ; in general you also have to take out

1/(1− tb) for common factors, etc., and the function is the Magma function
Qorb Function 19.

In the curve sum, each C is of the form 1/r(a, r−a) plus extra data, and
the term is

PC =
Num

(1− t)2(1− tr)2
=

Num

[1, 1, r, r]

where Num is a symmetric polynomial of degree 2r+2 supported in [3, 2r−1].
Num has r − 1 arbitrary coefficients, and the initial expectation is that all
values in an open range will occur.

13



Remark 20 (Preliminary notes to myself) I think I have progress on
the 1-dim orbifold locus contributions, Namely, if X has transverse 1

r
(L)

singularities along a curve Γ, in the context of KX = OX(k), the contribution
is

A× Porb(
1

r
(L), k + r)× 1

(1− tr)
+B × ta

(1− t)n(1− tr)
(27)

where A and B are Gorenstein symmetric Laurent polynomials of given de-
gree and support. I’m not quite sure, but one prediction is that “most” A
and B within some range occur; but maybe there are divisibility or congru-
ence conditions, or at the other extreme, only one or two A and B allowed.
Each of A and B has approx (r − 1)/2 free coefficients, which is reasonable
since they contain implicitly the RR data for Γ,OΓ(i), the normal bundle to
Γ (with its Z/r eigendecomposition) and all their twists. In any case, any
choice of A and B give rise to Hilbert series with the right symmetry, so we
can make 10 billion baskets of CYs in the very near future.

Let’s try to say that more precisely. Porb(1
r
(L), k) is the contribution of

a single point 1
r
(L) on an m-fold, not necessarily isolated, where m = #L.

It has denominator (1 − t)m(1 − tr) and is Gorenstein symmetric of degree
k, and its numerator α is a Laurent polynomial of support of length < r,
uniquely determined by the condition that

h = hcf(F,G) = αF+βG, where F =
∏
a∈L

(1−ta) and G = 1−tr. (28)

The Magma function below says it all (and is to some extent tried and tested).
Now in (27), A is Gorenstein symmetric of degree 0 and has support in

[(−r + 1)/2, . . . , (r − 1)/2]. (e.g., for r = 13, something like

A = (1− t4 + t5 − t6 + t10)/t5 (29)

is allowed.) B is Gorenstein symmetric with

degB = k − 2a+ n+ r (30)

(so that the whole term in (27) has degree k), and has support in

[degB + (−r + 1)/2, degB + (r − 1)/2]. (31)

I still have to test this against the famous 7555 hypersurfaces to find out
how many A and B to expect.

14



2 A start on the proof

This follows the ideas of [YPG], Chapter III with just one new twist.
Suppose that I can reduce to M with action of G = µr having a single

isolated fixed point of type 1
r
(a1, . . . , an). Write π : M → X for the quotient

morphism and π∗OM =
⊕r−1

i=0 Li for the eigensheaf decomposition, where

Li =
{
f ∈ π∗OM

∣∣ ε∗(f) = εif for ε ∈ µr
}
.

I view the χ(Li) as r unknown quantities to be calculated.

3 Periodic term

A more straightforward approach to isolated orbifold points is to think of a
contribution that is periodic with period r, with the whole Porb made up of
Pper plus an initial term Pgrow.

Definition 21 (Periodic term) The periodic term of an isolated orbifold
point 1

r
(a1, . . . , an) is the rational function

Pper(
1
r
(a1, . . . , an)) =

Nper

1− tr
, (32)

where the numerator is the inverse modulo 1 + t + · · · + tr−1 of
∏

(1 − tai)
written out as

Nper(
1
r
(a1, . . . , an)) =

r−1∑
i=1

bit
i with bi ∈ Q. (33)

Example 22 Exercise: Pper(
1
5
(1, 2)) = 1

1−t5 (−1
5
t− 2

5
t3− 2

5
t4). [Hint: use the

cyclotomic identity
∏p−1

i=1 (1 − εi) = p to calculate 1/((1 − ε)(1 − ε2)) where
ε is a primitive 5th root of unity.]

See Lemma 25 for several more general recipes to calculate Pper, for the bi
as Dedekind sums, and for the Serre duality symmetry between them. This
part of the Hilbert series is rational and periodic, in particular bounded: the
denominator 1− tr just makes the terms from 1 to r − 1 repeat with period
r. The periodic part Pper(

1
r
(a1, . . . , an)) records the deviation of Pi(X) from

being a polynomial in i.
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Growing term The growing term depends on 1
r
(a1, . . . , an) and on the

global canonical weight kX (equivalently, the coindex c = kX + n+ 1). It is

Pgrow(1
r
(a1, . . . , an), k) =

B(t)

(1− t)n+1
, (34)

where B ∈ Q[t, t−1] is a Laurent polynomial uniquely determined by the
condition that

Nper(1− t)n +B(1 + t+ · · ·+ tr−1) (35)

is a rational linear combination of ti with [c/2] < i < [c/2] + r (a Laurent
polynomial supported in

[
[c/2] + 1, [c/2] + r− 1

]
). See Lemma 23 for a proof

and a recipe.

4 Some lemmas

I calculate the contributions

Ptot(
1
r
(a1, . . . , an), k) = Pper(

1
r
(a1, . . . , an)) + Pgrow(1

r
(a1, . . . , an), k) (36)

for an isolated quotient singularity 1
r
(a1, . . . , an) on a polarised variety with

K = kA.

Lemma 23 Consider a polynomial

B =
r−1∑
i=1

bit
i ∈ Q[t], (37)

and suppose given r, n ∈ N and an interval J = [d+ 1, . . . , d+ r− 1] of r− 1
consecutive integers. Then there exists a unique Laurent polynomial

A =
∑
j∈J

αjt
j ∈ Q[t, t−1] (38)

supported in J such that A− (1− t)nB is divisible by 1 + t+ · · ·+ tr−1:

A− (1− t)nB =
1− tr

1− t
L (39)

with L a Laurent polynomial.

16



It follows that

B

1− tr
+

L

(1− t)n+1
=

A

(1− t)n(1− tr)
. (40)

Later I write Pper = B
1−tr , Pgrow = L

(1−t)n+1 , so that Ptot = Pper + Pgrow =
A

(1−t)n(1−tr) .

Proof The quotient ring

V = Q[t]/(1 + t+ · · ·+ tr−1) (41)

is an (r − 1)-dimensional vector space based by 1, t, . . . , tr−2. However, t
maps to an invertible element of V , so that also

V = Q[t, t−1]/(1 + t+ · · ·+ tr−1), (42)

and the r − 1 elements tj for j ∈ J form another basis of V .
Therefore the class of (1 − t)nB modulo the ideal of Q[t, t−1] generated

by 1 + t+ · · ·+ tr−1 can be written in a unique way as a linear combination
of tj for j ∈ J . QED

Definition 24 The numerator

Nper(
1
r
(a1, . . . , an)) =

r−1∑
i=1

bit
i (43)

of Pper is defined as the inverse modulo 1 + t + · · · + tr−1 of
∏n

j=1(1 − taj),
and Pper itself is defined by

Pper =
Nper

1− tr
. (44)

Lemma 25 (1) When n = 1,

Nper(
1
r
(a)) =

1

r

r−1∑
i=1

−bi ti, (45)

where as usual

b is the inverse of a modulo r, and

in bi, the bar denotes smallest residue mod r.
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(2) For general n,

Nper(
1
r
(a1, . . . , an)) =

n∏
j=1

Nper(
1
r
(aj)) mod 1 + t+ · · ·+ tr−1. (46)

Proof of (1) Consider

(1− ta)

(
r−1∑
i=1

−bi ti
)

r−1∑
i=1

−bi ti +
r−1∑
i=1

bi ta+i (47)

Working modulo 1 + t + · · · + tr−1 allows me to substitute tr = 1, and to
subtract a scalar multiple of 1 + t + · · · + tr−1 or of t + t2 + · · · + tr. On
applying these rules, the right-hand side evaluates to r.

For example, r = 7 and a = 2; then b = 4 and we consider

−4t− t2 − 5t3 − 2t4 − 6t5 − 3t6; (48)

multiplying by 1− t2 gives

−4t −t2 −5t3 −2t4 −6t5 −3t6

+4t3 +t4 +5t5 +2t6 +6t7 +3t8;
(49)

according to my rules, I can replace 3t8 by 3t and 6t7 by 6 = (7 − 1), and
the whole sums to

7− (1 + t+ t2 + · · ·+ t6) = 7. (50)

In the general case, for clarity, break up the second sum as a sum over
a+ i ≤ r− 1 and another over a+ i ≥ r, and change the dummy index from
i to j = a+ i. Then the second sum is

r−1∑
j=a+1

b(j − a)tj +
r+a−1∑
j=r

b(j − a)tj−r

=
r−1∑
j=a+1

(bj − 1)tj + (r − 1)tr +
r+a−1∑
j=r+1

(bj − 1)tj. (51)

In fact, the coefficient of tj is bj − 1 whenever bj 6= 0. The only exception
is the coefficient of tr, which has b(j − a) = r − 1. Now in each term with
j ≥ r, substitute tr 7→ 1 to get (as in the example)

(1− ta)
∑
−biti = r − (1 + t+ · · ·+ tr−1) = r. (52)
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(The missing term i = a in the second sum has ab = 1, so its coefficient is
zero.) QED

5 Current status

An orbifold X has strata {Xi}i∈I and open strata X◦i = Xi \Xj, each with
a characteristic isotropy group; here because of the quasismooth simply po-
larised assumptions, the only isotropy groups are cyclic µri ⊂ C

∗. Write
n = dimX, di = dimXi, and assume that X is projectively Gorenstein with
canonical degree kX . I am gunning for a result of the following shape.

Conjecture 26 PX(t) is of the form
∑
Pi, where the denominator of Pi is

(1− t)n−di(1− tri)di+1 and its numerator is an integral Gorenstein symmetric
polynomial of given degree and support.

More precisely, the degree is such that the whole fraction Pi is Gorenstein
symmetric of degree kX , and the support is an interval I ⊂ Z of length
(di + 1)ri − 1, so that {ti

∣∣ i ∈ I} bases Z[t, t−1]/((1− tri)/(1− t)).

The problem is not so much to prove the conjecture, rather to understand
the terms in it well enough so that we can predict them. At the moment,
the interesting open question is the case of curve orbifold locuses, such as
those on a normal 3-fold orbifold (for example, the 7555 qsmooth CY hyper-
surfaces), or an orbifold surface (for example, the P2(a, b, c) with no factor
common to all of a, b, c). In the CY case (see Buckley [B]), an orbifold curve
C of transverse type 1/r(a, r − a) on a CY 3-fold may pass through some
nonisolated point singularities (“dissident points” in [B]), and the problem is
to write the term PC in terms of the degree of C and of its isotypical normal
bundles, and its basket singularities.

There are two main methods of proceeding:

(1) Reverse engineer examples. There are huge numbers of examples for
which most of the terms are known, and in particular cases one can
deduce new orbifold terms from old ones.

(2) Massage the formulas of [B] into my preferred form. The information
is practically all contained in [B], but not expressed in terms of integral
polynomials with given symmetry degree and support, and without the
nice interpretation in ice-cream terms.
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6 Parsing curves on CY in Magma

This is a little suite of Magma functions that provide a routine to reverse
engineer the plurigenus formula for each Y = Yd ⊂ P(a1, . . . , a5) for A =

[a1, . . . , a5, d] in the list of 7555 qsmooth hypersurface. Here P (A) = 1−td∏
(1−tai )

and PI(A) are obvious things. Bask(A) is selfcontained; it just calculates
the list [ai mod r, d mod r] for A = [a1, . . . , a5, d], and puts the singular
points and curves it finds into baskets B and C. PointTerms is the sum
over point terms, using the preprogrammed function Qorb. X(A) is the
sum of the curve terms, treated here as an unknown to be taken apart.
X(A) is supposed to be a sum of terms Num_r/Denom([1,1,r,r]) over the
baskets. The function PC determines the different numerators Num_r using
PartialFractionDecomposition plus a couple of little twists. It goes wrong
if Y has curves of singularities with index having a common factor (or maybe
also in other cases) – this is recent and only tested in a few hundred cases.

See below for examples of its use.
Given a quasismooth CY hypersurface Yd ⊂ P(a1, . . . , a5) in the form

A := [a1,..a5,d], parse it into the form PI (initial term) plus a sum
Porb(1

r
(a, b, c)) with 1

r
(a, b, c) in the PointBasket, plus a sum Ar/[1, 1, r, r]

where Ar is a symmetric polynomial of symmetric degree 2r + 2 supported
in [3, . . . , 2r − 1].

function P(A) return (1-t^A[6])/Denom(A[1..5]); end function;

function PI(A) // Initial term P_I, only for CY 3folds

n1 := #[i : i in A | i eq 1];

n2 := #[i : i in A | i eq 2];

return 1/(1-t)^4 *

(1 + (n1-4)*t + (n2+Binomial(n1-3,2))*t^2 + (n1-4)*t^3 + t^4);

end function;

function Bask(A);

B := []; C := [];

Relevant := [r : r in [2..A[5]] | r eq GCD([Integers()

| A[i] : i in [1..5] | A[i] mod r eq 0])];

for r in Relevant do

Amod := [a mod r : a in A ];

case [#[a : a in Amod[1..5] | a eq 0],#[a : a in Amod[6..6] | a eq 0]]:
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// when 0:; // no sing, do nothing when 4:; //error when 5:; //error

when [1,0]:

Append(~B, Insert(Exclude(Exclude(Amod[1..5],Amod[6]),0),1,r));

// end this case: If ai divides d then Pi not on X

when [2,1]:

// calculate the number S^0(d) in PP(ai,aj)

Num := Floor(A[6]/LCM([a : a in A[1..5] | a mod r eq 0]));

for i in [1..Num] do

Append(~B, Insert(Exclude(Exclude(Amod[1..5],0),0),1,r));

end for;

// end if; If r does not divides d then Lij is line of 1/r

when [2,0]:

Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),Amod[6]),1,r));

when [3,1]:; // necessarily r divides d and curve of 1/r

Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),0),1,r));

end case;

end for;

return B, C;

end function;

function PointTerms(B) return &+[K | Qorb(b[1],b[2..4],0) : b in B]; end

function;

function X(A) return P(A)-PI(A)-PointTerms(Bask(A)); end function;

function PC(A) // The curve terms P_C B,C := Bask(A); YY :=

PartialFractionDecomposition(X(A)/t^3*(1-t)^4); return

[t^3/(1-t)^4*&+[K|y[3]/y[1]^y[2] : y in YY | IsDivisibleBy(1-t^r,y[1])]

where r is c[1] : c in C]; end function;

===================

for example, a little segment from the famous 7555:

AA:=[[1,12,27,32,36,108],[1,12,27,40,40,120],[1,12,27,68,96,204],[1,12,

27,68,108,216],[1,12,32,39,45,129],[1,12,33,40,46,132],[1,12,33,92,138,

276],[1,12,39,52,52,156],[1,12,39,52,65,169],[1,12,39,52,92,196],[1,12,

39,52,103,207],[1,12,39,104,156,312],[1,12,40,93,134,280],[1,12,41,96,
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138,288],[1,12,42,98,141,294],[1,12,51,64,127,255],[1,12,51,64,128,256],

[1,12,53,120,186,372],[1,12,54,68,81,216],[1,12,54,122,189,378],[1,12,64

,153,230,460],[1,12,66,92,105,276],[1,12,66,158,237,474],[1,12,76,177,

266,532],[1,12,77,180,270,540],[1,12,78,104,117,312],[1,13,15,30,46,105]

,[1,13,21,28,62,125],[1,13,21,35,35,105],[1,13,21,35,69,139],[1,13,22,29

,52,117],[1,13,23,28,32,97],[1,13,28,56,98,196],[1,13,28,70,111,223],[1,

13,29,43,73,159],[1,13,29,44,74,161],[1,13,30,75,106,225],[1,13,34,41,88

,177],[1,13,34,61,108,217],[1,13,34,95,142,285],[1,13,41,96,150,301],[1,

13,41,109,163,327]];

> AA[34];

[ 1, 13, 28, 70, 111, 223 ]

> Bask(AA[34]);

[

[ 13, 1, 5, 7 ],

[ 28, 1, 13, 14 ],

[ 70, 1, 28, 41 ],

[ 111, 13, 28, 70 ]

]

[

[ 14, 1, 13 ]

]

> X(AA[34]);

(-t^22-t^20-t^18-t^17-t^16-t^15-t^14-t^13-t^12-t^10-t^8)

/(t^30-2*t^29+t^28-2*t^16+4*t^15-2*t^14+t^2-2*t+1)

> PartialFractionDecomposition(X(AA[34])/t^3*(1-t)^4);

[

<t + 1, 2, 5/49>,

<t^6 - t^5 + t^4 - t^3 + t^2 - t + 1, 1,

29/196*t^4 - 87/196*t^3 + 125/196*t^2 - 47/98*t - 3/98>,

<t^6 - t^5 + t^4 - t^3 + t^2 - t + 1, 2,

1/7*t^5 - 5/28*t^3 + 1/7*t^2 - 1/7*t + 5/28>,

<t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 1,

-1/4*t^4 + 1/4*t^3 - 1/4*t^2>,

<t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 2,

-1/2*t^5 - 1/4*t^3 - 1/4>

]

> [X(A) eq &+[K| x : x in PC(A)] : A in AA];
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// gives "true" 42 times, checking the routines don’t crash.

The above analyses existing examples, and can be quickly programmed to
analyse the Hilbert series of the 7555 hypersurfaces. I want to use these ideas
to predict new examples. The nicely generated CYs are sparse in the set of
all possible Hilbert series, so that if I modify PY (t) by a clumsy amount, it
is unlikely that the new PY will correspond to a Y that we can work with.
However, I can modify the above Num_r to make more delicate variations,
e.g.,

> A := [1,4,5,5,5,20];

is a hypersurface with curve Γ of 1/5(1, 4) contributing

(2t9 + 4t8 + 6t7 + 2t6 + 6t5 + 4t4 + 2t3)/[1, 1, 5, 5]

I modify it by changing the 6, 2, 6 in the middle to 5, 4, 5 (which should
remove a generator in deg 5, and leave the point singularities and the degree
of the curve unchanged).

> P1 := (1-t^20)/Denom([1,4,5,5,5]);

// the Hilbert series of Y(20) in PP(1,4,5,5,5)

> P2 := P1 + (-t^7+2*t^6-t^5)/Denom([1,1,5,5]);

> P2*Denom([1,4,5,5,6,9]);

t^30 - t^18 - t^12 + 1

That is, the modification gives Y (12, 18) ⊂ P(1, 4, 5, 5, 6, 9).
Or change the 4, 6, 2, 6, 4 in the middle to 3, 6, 4, 6, 3 (which should remove

a generator in deg 4 and add one in deg 6).

> P3 := P1 + (-t^8+2*t^6-t^4)/Denom([1,1,5,5]);

gives a plausible codim 4 guy with 9× 16 resolution.
Or change the Numerator of the Γ term to

(2t9 + 3t8 + 7t7 + 2t6 + 7t5 + 3t4 + 2t3)

> P4 := P1 - (t^8-t^7-t^5+t^4)/Denom([1,1,5,5]);

> P4*Denom([1,5,5,5,7,8,9]);

-t^40 + t^26 + t^25 + t^24 + t^23 + t^22 - t^18 - t^17 - t^16

- t^15 - t^14 + 1
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gives codim 3 candidate Y ⊂ P(1, 5, 5, 5, 7, 8, 9) with 5× 5 Pfaffian matrix of
degrees

5,6,7,8

7,8,9

9,10

11

We can play this game about a million times with the existing list.

> load "KS2"; // Loading "KS2"

> #AAKS2; // 14817

function BB(AA,r,a)

// find transverse 1/r(a,r-a) curves in list AA of CYs

BB0 := [A : A in AA

| (([r,a,r-a] in C) or ([r,r-a,a] in C)) where B,C is Bask(A)];

BB1 := [BB0[i] : i in [1..#BB0]

| &and[GCD(b[1],r) eq 1 : b in Bask(BB0[i])]];

return [BB1[i] : i in [1..#BB1] | (BB1[i][6] mod r) in [0,a,r-a]];

end function;

> AA := BB(AAKS2,5,2);

> #AA; // there are 19 of them

7 More ice cream

The second term in [BSz], Cor 3.3 is the sum

function Second(r,k)

return &+[ ikbar*(r-ikbar)*(r-2*ikbar)*t^i

where ikbar is (i*k mod r) : i in [1..r-1]] / (6*r*(1-t^r));

end function;

I subtract a little initial term from it to get rid of term in t and t2, of the
form

at+ bt2 + at3

(1− t)4
.
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Second(r,k)-(r-2*k)*(r-k)*k*(t+t^3)/6/r/(1-t)^4

+((r-2*k)*2*ka*(r+2*ka)*t^2/6/r/(1-t)^4

where ka is Min(k,r-k));

This gives nice quantities like

5, 2 7→ 3t5 − 2t4 + 3t3

[1, 1, 1, 5]
and

8, 3 7→ (8t7 − 12t6 + 17t5 − 12t4 + 8t3)(1 + t)

[1, 1, 1, 8]

Abstracting from that gives function called Nterm, of the form

integral symm polynom supported in [3..r]

[1, 1, 1, r]

with numerator Num uniquely determined by the condition

Num ∗ (1− tb)2(1− tr−b)/(1− t)3 ≡ 1 + tb mod (1− tr)/(1− t)

(note the side-step k 7→ b = inverse of k mod r). It would be jolly convenient
to be able to calculate directly in the ring Q[t]/((1− tr)/(1− t)). That is,

function Nterm(r,b)

return t^2*(t^(r-2)*(1+t^b)*InverseMod(Denom([b,b,r-b]) div (1-t)^3,

((1-t^r) div (1-t))) mod ((1-t^r) div (1-t)))/Denom([1,1,1,r]);

end function;

The t2 ∗ tr−2 is just a device for shifting the support into the interval
[3, . . . , r]. I can test this as much as I like:

for i in [1..20] do r := Random(500); k := Random(r);

if GCD(r,k) eq 1 then b := InverseMod(k,r);

r,k,Second(r,k)-(r-2*k)*(r-k)*k*(t+t^3)/6/r/(1-t)^4

+ ((r-2*k)*2*ka*(r+2*ka)*t^2/6/r/(1-t)^4

where ka is Min(k,r-k)) eq Nterm(r,b);

end if;

end for;

(That looks trivially easy, but it took me 3 days of arm-wrestling with the
computer to get it to work.) I think the deg Γ terms are basically simpler; I
hope this concludes the treatment of pure 1/r(a, r − a) curves.
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8 More notes on ice-cream

The two methods we have are working with are guessing from families of
examples, and figuring out how to sum the expressions in [B], [BSz] in closed
form. For the former consider P(r, . . . , r, a1, a2, . . . , an) with r repeated d+ 1
times and the ai coprime to r and to each other. This has a pure locus Pd

of transvers type 1/r(a1, a2, . . . , an) and only isolated points Then you can
subtract off all the junk, just leaving you with the contribution of the pure
1/r locus (of any dimension, any transverse cyclic orbifold). This lets us
step back a bit from the NC term of [B], [BSz], which is possibly confusing
because it treats the two isotypical normal bundles as sum and difference,
rather than two separate terms. Experiments suggest that the contribu-
tions should be some kind of compound ice cream function (maybe dou-
ble cone), with the main ingredients, as with Porb, derived from things like
InverseMod(ph(i), ph(r)) .

For example P(r, r, j) with r coprime to 3 and j ≡ 3 mod r. Set X
to be the actual Hilb series minus the Porb term for the isolated point
1/j(r, r). I treat X as the unknown to be investigated. Subtract off the
term Qorb(r,[j],kP+r)/(1-t^r) that corresponds to cutting by a zero-
dim section of the P1, and is the only part of the formula with denominator∏

a∈[1,r,r](1− ta).
X := 1/Denom(A) - Qorb(j,[r,r],kP) - Qorb(r,[j],kP+r)/(1-t^r);

Example 27 The following function calculates the contribution of a pure
curve P(r, r) of transverse type 1/r(3) for r = 1 or 5 mod 6. (The given
routine is for P(25, 25, 103).)

// i = 3 mod r, works for r = 1 or 5 mod 6

r:=25; a:=2; i:=3; j:=2*r*a+i; A:=[r,r,j]; kP := -&+A;

X:=1/Denom(A)-Qorb(j,[r,r],kP);

X-Qorb(r,[j],kP+r)/(1-t^r)

+ ( -(-1)^((r mod 6) div 3) *

InverseMod(t^((r+1) div 2)*ph(3),ph(r))

+ a*((1+t^3)*InverseMod(t*ph(3)^2,ph(r)) mod ph(r)) )

/t^(r*(a+1)-1)/Denom([1,1,r]);

Practically the same routine works for r = 2 or 4 mod 6, with the term
InverseMod(t^((r+1) div 2)*ph(3),ph(r)) replaced by

((1+t)*InverseMod(t^((r+2) div 2)*ph(3),ph(r)) mod ph(r)).
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There should be a more systematic solution without the case division.

8.1 Preliminary draft:

You get functions with numerators that for PP(11,11,376) look like:

154t9 + 17t8 + 120t7 + 51t6 + 86t5 + 86t4 + 51t3 + 120t2 + 17t+ 154

This a sum of two arithmetic progressions with step t2 starting out from the
ends. Dividing into classes mod 2r gives them as sums of two more-or-less
sensible terms: write r = r1 + r2 with ri = r±1

2
. Then the first term is

(1± tr1)(1∓ tr2)/(1− t2). The second is something that sums in closed form
like

−9t12 − 10t11 + t10 − t2 + 10t+ 9

(1− t2)(1 + t)
.

I hope we’ll eventually get this in into a more convincing form.

r:=11; a:=17; i:=2; j:=2*r*a+i;

A:=[r,r,j]; kP := -&+A; X:=1/Denom(A)-Qorb(j,[r,r],kP);

X - Qorb(r,[j],kP+r)/(1-t^r)

+ ((&*[1-(-t)^a : a in L] div (1-t^2) where L:=[(r+1) div 2,(r-1) div 2])

+ a*(((r-2)*(1-t^(r+1))+(r-1)*(t-t^r)-(t^2-t^(r-1))) div

+((1-t^2)*(1+t))))/t^((a+1)*r-1)/Denom([1,1,r]);

That did P(11, 11, 375), but it works for all odd r and all a.
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