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Abstract. We consider quasismooth polarized n-folds (X, D); then X
only has cyclic orbifold points (that is, cyclic quotient singularities). We
give an explicit orbifold Riemann–Roch formula for the Hilbert series of
(X, D), under the extra assumptions that X is projectively Gorenstein
with only isolated orbifold points. Our formula is a sum of terms each
of which is integral and Gorenstein symmetric of the same canonical
weight; the orbifold terms are called ice cream functions. This form of
the Hilbert series is particularly useful for computer algebra, and we
illustrate it on examples of K3 surfaces and Calabi–Yau 3-folds, and
show how to use it construct new families of projective n-folds.

These results apply also with higher dimensional orbifold strata (see
[6] and [19]), although the correct statements are considerably trickier.
We expect to return to this in future publications.

Contents

1. Introduction 2
1.1. The main result 3
1.2. Plan of the paper 4
1.3. Definitions and notation 4
2. Ice cream functions 6
2.1. Fun calculation 6
2.2. The function Inverse Mod 8
2.3. Dedekind sums as Inverse Mod 8
3. K3 surfaces and Fano 3-folds 14
4. Calabi–Yau 3-folds 15
5. The Riemann–Roch formula 22
5.1. The existence of the Riemann–Roch formula 23
5.2. The contribution from an orbifold point 25
5.3. Application to isolated orbifold points 28
6. Proof of the main theorem 28
7. Computer pseudocode 32
References 33

1991 Mathematics Subject Classification. 14Q15; 13P20.
Key words and phrases. Orbifold, orbifold Riemann–Roch, Hilbert series, weighted

projective varieties.

1



2 ANITA BUCKLEY, MILES REID, AND SHENGTIAN ZHOU

1. Introduction

Reid [YPG] introduced Riemann–Roch (RR) formulas for polarized orbi-
folds (X,D) with isolated orbifold locus, of the form

(1.1) χ(X,OX(D)) = (RR-type expression in D) +
X

P∈B
cP (D),

where the cP (D) are certain fractional contributions from the orbifold points
B, depending only on the local type of (X,D). The orbifold RR formula
of [YPG] has found numerous subsequent extensions and applications; see
for example Iano-Fletcher [11], Brown, Altınok and Reid [2], Buckley and
Szendrői [6], Chen, Chen and Chen [8] and Kawakita [13], and we expect
these ideas to be equally applicable in the study of higher dimensional vari-
eties.

A general RR formula for abstract orbifolds was first proved by Kawasaki
[14] by analytic tools. Toen [17] gave another proof using the algebraic
methods of Deligne–Mumford stacks. However, at present, how to use these
abstract results in practice to compute the dimension of RR spaces is not
well understood. Toen’s result was applied to weighted projective spaces
by Nironi [15] and to twisted curves by Abramovich and Vistoli [1]. Our
proof, like that of [YPG], is based on a reduction to Atiyah–Singer and
Atiyah–Segal equivariant Riemann–Roch [3], [4].

Let D be an ample Q-Cartier divisor on a normal projective n-fold X (we
usually work over C). The finite dimensional vector spaces H0(X,OX(mD))
fit together as a finitely generated graded ring

(1.2) R(X,D) =
M

m≥0

H0(X,OX(mD)),

with X ∼= ProjR(X,D) and the divisorial sheaf OX(mD) equal to the char-
acter sheaf OX(m) of the Proj. A surjection from a graded polynomial
ring

(1.3) k[x0, . . . , xN ] ≥ R(X,D) with wtxi = ai

corresponds to an embedding

(1.4) i : X ∼= ProjR(X,D) ↪→ P(a0, . . . , aN )

of X into a weighted projective space.
The Hilbert function m 7→ Pm(X,D) = h0(X,OX(mD)) and the Hilbert

series PX(t) =
P

m≥0 Pmtm encode the numerical data of R(X,D); it is
known that

Q
(1− tai) ·PX(t) is a polynomial where, as above, the ai are the

weights of the generators. The multiplicative group Gm (= C× if the ground
field is C) has a standard action on the graded ring R(X,D), with λ ∈ C×

multiplying Rm by λm; our aim is a character formula for the Hilbert series.
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1.1. The main result. For a quasismooth projectively Gorenstein orbifold
(X,D) with isolated orbifold points, Theorem 1.1 parses the Hilbert series
of (X,D) into simple pieces, each of which is integral and Gorenstein sym-
metric of the same degree kX . We call the orbifold contributions ice cream
functions. The result expresses PX(t) in a closed form that can be calcu-
lated readily as a few lines of computer algebra (see Section 7). See 1.3 for
a reminder and explanation of the definitions.

Theorem 1.1. Let (X,D) be a projectively Gorenstein quasismooth orbifold
X of dimension n ≥ 2 with only isolated orbifold points, that we write

B =
©
Q of type 1

r (b1, . . . , bn)
™

.

Then the Hilbert series of X is

(1.5) PX(t) = PI(t) +
X

Q∈B
P orb(Q, kX),

where
(i) the initial term has the form PI(t) = A(t)

(1−t)n+1 , where A(t) is the
unique integral palindromic (Gorenstein symmetric) Laurent poly-
nomial of degree c = kX +n+1 (the coindex) such that PI(t) equals
the series PX(t) up to and including degree

•
c
2

¶
. If c < 0 then PI = 0.

(ii) Each orbifold term for Q ∈ B of type 1
r (b1, . . . , bn) is of the form

P orb(Q, kX) = B(t)
(1−t)n(1−tr) , with

(1.6) B(t) = InvMod
≥ nY

i=1

1− tbi

1− t
,
1− tr

1− t
,
j c

2

k
+ 1

¥

the unique Laurent polynomial supported in
£•

c
2

¶
+ 1,

•
c
2

¶
+ r − 1

§

equal to the inverse of
Qn

i=1
1−tbi

1−t modulo 1−tr

1−t ; B(t) has integral
coefficients and is Gorenstein symmetric of degree kX + n + r.

Example 1.2. Consider the general hypersurface X10 ⊂ P(1, 1, 2, 2, 3) with
coordinates x1, x2, y1, y2, z. Then X10 is a 3-fold with 5× 1

2(1, 1, 1) orbifold
points along P1 hy1, y2i and a 1

3(1, 2, 2) point at Pz = (0, 0, 0, 0, 1). It has
canonical weight kX = 1 and coindex c = kX +n+1 = 5. The Hilbert series
is as follows: the initial term

(1.7) PI =
1− 2t + 3t2 + 3t3 − 2t4 + t5

(1− t)4
= 1 + t +

t + t2

(1− t)2
+ 2

t2 + t3

(1− t)4
,

handles P1 = 2, P2 = 5. The orbifold terms

(1.8) P orb(1
2(1, 1, 1), 1) = −t3

(1−t)3(1−t2) , P orb(1
3(1, 2, 2), 1) = −t3−t4

(1−t)3(1−t3)

take care of the periodicity, giving

PI + 5× P orb(1
2(1, 1, 1), 1) + P orb(1

3(1, 2, 2), 1) =
1− t10

(1− t)2(1− t2)2(1− t3)
.
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Here the numerator of PI is palindromic of degree c = 5, so that PI is
Gorenstein symmetric of degree 1. The two P orb terms are also integral and
Gorenstein symmetric of degree 1, and they start with t3, so do not affect
the first two plurigenera P1 and P2.
Caution: The initial term PI is designed to handle the first plurigenera
P1, . . . , Pb c

2c, but is definitely not the leading term of the Hilbert function
controlling the order of growth of the plurigenera: in this example X10 is a
canonical 3-fold with KX = O(1), of degree K3

X = 10
2×2×3 = 5

6 , whereas PI

on its own would correspond to degree K3 = 4 (as one reads from Num(1) =
sum of the coefficients of its numerator). In our formula, the orbifold points
contribute to the global order of growth of the plurigenera, in this case
5×−1

2 and −2
3 .

1.2. Plan of the paper. Section 2 defines ice cream functions as inverse
polynomials modulo 1 + t + · · · + tr−1; they contain the same information
as Dedekind sums. Section 3 relates the new viewpoint of this paper to
formulas currently in use for the Hilbert series of K3 surfaces, Fano 3-folds
and canonical 3-folds. Section 4 takes up the results of Buckley’s thesis [6]
on orbifold RR for polarized Calabi–Yau 3-folds, and parses their Hilbert
series into ice cream functions. Section 5 deals with the existence of the RR
formula for n-folds with isolated orbifold points and its precise shape, as a
preliminary to the proof of the main theorem in Section 6. Section 7 contains
pseudocode algorithms for the ice cream functions appearing throughout the
paper.

1.3. Definitions and notation. We work over an algebraically closed field
k of characteristic zero. A Weil divisor on a normal variety X is a formal
linear combination of prime divisors with integer coefficients. A Weil divisor
D is Q-Cartier if mD is Cartier for some integer m > 0.

A cyclic orbifold point or cyclic quotient singularity of type 1
r (b1, . . . , bn)

is the quotient π : An → An/µr, where µr acts on An by

(1.9) µr 3 ε : (x1, . . . , xn) 7→ (εb1x1, . . . , ε
bnxn).

We usually assume that no factor of r divides all the bi, which is equivalent
to the µr-action being effective; the orbifold point is isolated if and only if
all the bi are coprime to r. The sheaf π∗OAn decomposes as a direct sum of
eigensheaves

(1.10) Li =
©
f

ØØ ε(f) = εi · f for all ε ∈ µr
™

for i ∈ Z/r = Hom(µr, Gm),

which are divisorial sheaves.
The notation 1

r (b1, . . . , bn) refers to polarized orbifold points; in other
words, OX(1) = OX(D), and the orbinates xj of degree bj modulo r are
local sections of OX(bj). This is type 1

°
1
r (b1, . . . , bn)

¢
in the terminology of

[YPG], Definition 8.3.
A polarized variety (X,D) is quasismooth if its affine cone CX = SpecR(X,D)

is nonsingular outside the origin. In this case, the orbifold points of X
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arise from the orbits of the action of the multiplicative group Gm that are
pointwise fixed by a nontrivial isotropy group µr ⊂ Gm, necessarily the
cyclic subgroup of rth roots of unity for some r. In terms of X itself,
quasismooth holds if and only if X has locally cyclic quotient singularities
1
r (b1, . . . , bn) and the given Weil divisor D generates the local class group
Z/r = Hom(µr, Gm). Then the local index one cyclic cover defined by a
local identification OX(mD) ∼= OX is nonsingular.

Our assumption that X is normal and polarized by a Q-Cartier Weil di-
visor D (so that OX(i) ∼= OX(iD) for all i) implies that X has no orbifold
behaviour in codimension 0 or 1, or is well formed in the terminology of [11].
This assumption is good here because we work with n-folds for n ≥ 2 with
isolated orbifold locus. It means that the orbifold X as a scheme already
knows its local orbifold cover (the universal cover of X \ Sing X), which
simplifies the treatment, allowing us to circumvent the language of stacks
and the graded structure sheaf

L
i∈ZOX(i) (cf. Canonaco [7]). Some of

our examples involve fractional divisors on curves, and we leave the elemen-
tary treatment of the graded structure sheaf

L
i∈ZOX(i) in this case to the

conscientious reader.1
A polarized variety (X,D) is projectively Gorenstein if its affine cone or

the corresponding graded ring R(X,D) is Gorenstein; then ωX
∼= OX(kXD)

for some kX ∈ Z, called the canonical weight of (X,D).

Lemma 1.3. The Hilbert series PR(t) of a graded Gorenstein ring R satis-
fies the functional equation

(1.11) P (t) = (−1)n+1tkRP (1/t).
Here kR is the canonical weight of R (that is, ωR = R(kR)).

We refer to property (1.11) as Gorenstein symmetry of degree kX .

Proof. This follows from duality: R is a quotient of a weighted polynomial
ring A = k[x1, . . . , xN ] with wtxi = ai. A minimal free resolution
(1.12) R ← F0 ← F1 ← · · · ← Fγ ← 0,
has γ equal to the codimension N − dimR, and Fγ = A(−α) is the free
module of rank one and degree −α where α = kR +

P
ai is the adjunction

number for X = ProjR ⊂ P(a1, . . . , an). Duality gives Fγ−i
∼= HomA(Fi, Fγ)

so that, over the denominator
Q

(1−tai) corresponding to A = k[x1, . . . , xN ],
the numerator of the Hilbert series is a sum of terms td + (−1)γtα−d. §

For quasismooth X, the statement corresponds to Serre duality. However,
the proof only uses the definition and basic properties of Gorenstein graded
rings, without any assumptions on the singularities of SpecR or ProjR.

Following Mukai [16], we write c = kX + n + 1 for the coindex of (X,D).
By the adjunction formula, the coindex is invariant under passing to a hyper-
plane section of degree 1. For nonsingular varieties, we have:

1See Demazure [9] or Watanabe [18]; the latter also treats the graded dualising sheaf
for fractional divisors.
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Example 1.4.

projective space Pn has coindex 0;

a quadric Q ⊂ Pn+1 has coindex 1;

an elliptic curve, del Pezzo surface
or Fano 3-fold of coindex 2 has coindex 2;

a canonical curve, K3 surface
or anticanonical Fano 3-fold has coindex 3;

a canonical surface, Calabi–Yau 3-fold
or anticanonical Fano 4-fold has coindex 4.

All our concrete examples are subvarieties in weighted projective spaces.
See Iano-Fletcher [11] for definitions and properties.

2. Ice cream functions

2.1. Fun calculation. “Income 3
7 per day means ice cream on Wednesdays,

Fridays and Sundays”. Consider the step function i 7→
•

3i
7

¶
, where b c

denotes the rounddown or integral part. As Hilbert series, it gives

(2.1) P (t) =
X

i≥0

π
3i
7

∫
ti = 0 + 0t + 0t2 + t3 + t4 + 2t5 + 2t6 + 3t7 + · · · ,

with closed form

(2.2) P (t) =
t3 + t5 + t7

(1− t)(1− t7)
.

Indeed,
•

3i
7

¶
increments by 1 when i = 0, 3, 5 modulo 7, so that

(2.3) (1− t)P (t) = t3 + t5 + t7 + t10 + · · ·
is the sum over the jumps, that repeat weekly. Multiplying (2.3) by 1 − t7

cuts the series down to the first week’s ice cream ration:

(2.4) (1− t)(1− t7)P (t) = t3 + t5 + t7.

The numerator t3 + t5 + t7 can be seen as the

inverse of
1− t5

1− t
= 1+t+t2+t3+t4 mod

1− t7

1− t
= 1+t+t2+t3+t4+t5+t6.

Indeed, long multiplication gives

(2.5) (1 + t + t2 + t3 + t4)× (t3 + t5 + t7) =

t3 + t4 + t5 + t6 + t7 +
t5 + t6 + t7 + t8 + t9

t7 + t8 + t9 + t10 + t11

= t3 + t4 +2t5 +2t6 +3t7 +2t8 +2t9 + t10 + t11

≡3+2t+2t2 +2t3 +2t4 +2t5 +2t6≡ 1,
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where ≡ denotes equivalence modulo 1−t7

1−t ; here 5 = InvMod(3, 7) is the
inverse of 3 modulo 7. The product in (2.5) has 5 × 3 = 15 ≡ 1 mod 7
terms that distribute themselves equitably among the 7 congruence classes,
except that t7 appears once for each of the 3 terms in the second factor.
The same calculation works on replacing 3

7 by a general reduced fraction a
r ,

leading to the ice cream function InvMod(1−tb

1−t , 1−tr

1−t ) with b the inverse of a
mod r.

There are several other meaningful expressions for P (t). Under ≡, the
bounty t3 + t5 + t7 can be viewed as famine −t− t2 − t4 − t6 “no ice cream
on Mondays, Tuesdays, Thursdays or Saturdays”. In other words,

(2.6) P (t) =
t3 + t5 + t7

(1− t)(1− t7)
=

t

(1− t)2
+
−t− t2 − t4 − t6

(1− t)(1− t7)
.

Because t7 ≡ 1, we can shift the exponents of t up or down by 7:

(2.7)
t−4 + t−2 + 1
(1− t)(1− t7)

or
−t−1 − t− t2 − t4

(1− t)(1− t7)
so “ice cream rations from Monday before the start of term” or “famine from
the previous Saturday”. Of these possible shifts (as Laurent polynomials
with short support), t7i(t3 + t5 + t7) is Gorenstein symmetric of degree
10 + 14i, and t7i(−t−1 − t − t2 − t4) is Gorenstein symmetric of degree
3 + 14i, and no other.

In “macroeconomic” terms, the order of growth is the linear function 3i
7

with seasonal fractional corrections, that is,

(2.8) P (t) =
3
7
· t

(1− t)2
+
−3

7t− 6
7t2 − 2

7t3 − 5
7t4 − 1

7t5 − 4
7t6

1− t7

(“on Mondays, we lose 3
7 in small change”, etc.). Notice the coefficient 1

7 on
Friday: 5 is the inverse of 3 modulo 7, so as we enjoy our second ice cream
on Fridays, we lose 1

7 , the unit of small change.
The fractional divisor 3

7P on a nonsingular curve is an orbifold point
of type 1

7(5), with orbinate in L5 having genuine pole of order two, but
fractional zero of order 1

7 in lost change. The same considerations apply with
3
7 replaced by a general reduced fraction a

r , corresponding to the orbifold
point 1

r (b) with b the inverse of a mod r. Example 2.11 and Exercise 2.12
give examples of graded rings over curves involving this type of orbifold
points.

We can average out the seasonal corrections in (2.8) to sum to zero, giving

(2.9) P (t) =
3
7
· 2t− 1
(1− t)2

+
3
7 −

3
7t2 + 1

7t3 − 2
7t4 + 2

7t5 − 1
7t6

1− t7
,

where the coefficients σi
°

1
7(5)

¢
= 3

7 , 0,−3
7 , 1

7 , 2
7 , 2

7 ,−1
7 are Dedekind sums

(compare Exercise 2.9). Our main aim is to explain how to view the orbifold
contributions P orb in Theorem 1.1 as minor variations on this simple-minded
material.
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2.2. The function Inverse Mod. We start with the following basic result.

Theorem 2.1. Fix a polynomial F ∈ Q[t] of degree d with nonzero constant
term and nonzero term in td (say, monic).

(I) The quotient ring Q[t]/(F ) is a d-dimensional vector space over Q
and t is invertible in it, so that Q[t]/(F ) = Q[t, t−1]/(F ).

(II) Any range [tγ , . . . , tγ+d−1] of d consecutive Laurent monomials maps
to a Q-basis of Q[t]/(F ).

(III) If A ∈ Q[t] is coprime to F , we can write its inverse modulo F
uniquely as a Laurent polynomial B with support in [tγ , . . . , tγ+d−1].

This is all trivial. The leading term of F is nonzero, so 1, t, . . . , td−1

base Q[t]/(F ). The constant term of F is nonzero so t is coprime to F ,
hence invertible modulo F . Multiplication by t is an invertible linear map,
so multiplication by tγ for any γ ∈ Z takes a basis to another basis. If A
is coprime to F it is invertible in Q[t]/(F ), and its inverse has a unique
expression in any basis. §

Definition 2.2. We set InvMod(A,F, γ) = B with B as in (III); that is,
B ∈ Q[t, t−1] is the uniquely determined Laurent polynomial with support
in [tγ , . . . , tγ+d−1] such that AB ≡ 1 mod F ; for different intervals, these are
congruent modulo F , but different polynomials in general. We also write
InvMod(A,F ) with unspecified support for any inverse of A modulo F in
Q[t].

2.3. Dedekind sums as Inverse Mod. We now relate Dedekind sums to
the function InvMod. Fix positive integers r and b1, . . . , bn and set

(2.10) A =
nY

j=1

(1− tbj ) and F =
1− tr

hcf(1− tr, A)
.

The polynomial F is the monic polynomial with simple roots only at the
rth roots of unity with A(ε) 6= 0, or equivalently εbj 6= 1 for all bj . Since we
take out the hcf, A and F are coprime and Theorem 2.1, III applies to give
InvMod(A,F, γ), the inverse of A modulo F with support in [tγ , . . . , tγ+d−1]
(here d = deg F and γ ∈ Z is a free choice).

The case of isolated orbifold point is when b1, . . . , bn are coprime to r;
then hcf(1− tr, A) = 1− t and F = 1 + t + · · ·+ tr−1 has degree d = r − 1
and roots ε ∈ µr \ {1}, the nontrivial rth roots of 1. If r is prime then F
is the cyclotomic polynomial, and working modulo F is essentially the same
thing as setting t = ε a primitive rth root of unity.2

Algorithm 2.3. If γ ≥ 0 then tγA and F are coprime polynomials; set
d = deg F . The Euclidean algorithm in Q[t] provides a unique solution to
(2.11) tγAB + FG = 1,

2To stress that b1, . . . , bn are not all coprime to r, we may call σi the ith generalized
Dedekind sum.
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with B ∈ Q[t] a polynomial of degree < d. Then InvMod(A,F, γ) = tγB.
If γ < 0, choose some m with mr + γ ≥ 0, and solve

(2.12) tmr+γAB + FG = 1.

using the Euclidean algorithm. Then InvMod(A,F, γ) = tγB = tmr+γB/tmr.
This trick works because tmr ≡ 1 modulo F . (For more general polynomials
F , one needs to calculate powers of the matrix Mt corresponding to multi-
plication by t in Q[t]/(F ); in our case, M r

t = 1.)

Proposition 2.4. Consider the following r × r system of linear equations,
with unknowns σi indexed by i ∈ Z/r = Hom(µr, C×), and equations indexed
by ε ∈ µr.

(2.13)
r−1X

i=0

σiε
i =






0 if ε ∈ µbj for some j,
1

(1− ε−b1) · · · (1− ε−bn)
otherwise.

Then (2.13) is a nondegenerate system, with unique solution the Dedekind
sums

(2.14) σi = σi(1
r (b1, . . . , bn)) =

1
r

X

ε∈µr

εbj 6=1∀j

εi

(1− εb1) · · · (1− εbn)
,

where the sum runs over the roots of F (that is, all the rth roots of unity ε
giving nonzero denominator).

For M = (εij) is a Vandermonde matrix, with inverse N = (1
rε−ij). §

Lemma 2.5. Let β be a common divisor of r and some bj. Then

(2.15)
X

i≡d mod β

σi = 0 for any d mod β.

In other words, the average of σi over any coset of βZ/r ⊂ Z/r is zero.

This just rewrites the zeros in the first line of (2.13). For example

(2.16) σi( 1
14(1, 2, 5, 7)) =

1
14

(−2,−2,−1, 1
2 , 0,−1

2 , 1, 2, 2, 1,−1
2 , 0, 1

2 ,−1),

with σi + σ7+i =
P6

l=0 σ2l+i = 0 for each i.
The next result was first stated and proved in Buckley [5], Theorem 2.2,

following the ideas of [YPG].

Theorem 2.6. Let A and F be as in (2.10) and σi = σi(1
r (b1, . . . , bn)) as

in (2.13). Then the polynomial B(t) = A(t)
Pr

i=1 σr−iti is congruent to 1
modulo F . Equivalently,

(2.17) InvMod(A,F, γ) ≡
rX

i=1

σr−it
i ∈ Q[t]/(F ) for any γ.



10 ANITA BUCKLEY, MILES REID, AND SHENGTIAN ZHOU

Proof. Substitute t = ε any root of F in B and use (2.13) with the inverse
value of ε. This gives

(2.18) B(ε) = A(ε)
rX

i=1

σr−iε
i =

A(ε)Q
j(1− εbj )

= 1.

This holds for every root ε of F , so B(t)− 1 is divisible by F , that is,

(2.19) A(t)
rX

i=1

σr−it
i ≡ 1 mod F. §

Algorithm 2.7. The Dedekind sums σi are obtained as the coefficients of
an Inverse Mod polynomial. The point is just to average out the σi so that
any coset mod β adds to 0, as in Lemma 2.5.

In the coprime case, first calculate InvMod(A,F, 0) =
Pr−2

i=0 sr−iti by the
Euclidean algorithm. Then subtract aF where a = 1

r

Pr−2
i=0 sr−i, to give

InvMod(A,F, 0)− aF =
Pr−1

i=0 σr−iti, with σ1 = −a.

We use the following result in Section 6.

Corollary 2.8. Assume all the bi are coprime to r, so that F = 1−tr

1−t and
d = deg F = r − 1. Then for any γ,

(1− t)n
r−1X

i=0

σr−it
i ≡ InvMod

≥ nY

j=1

1− tbj

1− t
, F

¥
(2.20)

≡ InvMod
≥ A

(1− t)n
, F, γ + 1

¥
=

γ+r−1X

l=γ+1

θlt
l,

with integral coefficients θl =
Pn

s=0(−1)s
°n

s

¢
(σs−l − σs−γ) ∈ Z.

Proof of the corollary. The inverse of A/(1− t)n modulo F is congruent
to (1− t)n times InvMod(A,F, γ), that is, by Theorem 2.6, to

(2.21) (1− t)n
r−1X

i=0

σr−it
i =

nX

s=0

r−1X

i=0

(−1)s
µ

n

s

∂
σr−it

s+i.

Now work modulo F , and shift the terms of the double sum into the range
[γ +1, . . . , γ + r−1]. For terms with s+ i 6≡ γ mod r, just shift i modulo r,
bearing in mind that the Dedekind sum σr−i depends only on the subscript
r − i modulo r, and that tr ≡ 1. For l in the range, putting together the
terms with s + i ≡ l mod r gives

Pn
s=0(−1)s

°n
s

¢
σs−ltl.

This leaves the terms with s + i ≡ γ mod r; we handle these by sub-
tracting off a multiple of tγF = tγ + tγ+1 + · · · + tγ+r−1. This subtractsPn

s=0(−1)s
°n

s

¢
σs−γ from every term in the range. This proves the equality

in (2.20).
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We now prove that θl ∈ Z. Plugging in the values of the Dedekind sums
σi and summing over s by the binomial theorem gives

rθl =
nX

s=0

(−1)s
µ

n

s

∂ X

ε∈µr−{1}

εs−l − εs−γ

(1− εb1) · · · (1− εbn)

=
X

ε∈µr−{1}

(εr−l − εr−γ)(1− ε)n

(1− εb1) · · · (1− εbn)

=
X

ε∈µr−{1}
(εr−l − εr−γ)

nY

j=1

1− ε

1− εbj
.(2.22)

The second factor in the summand is a polynomial in ε with integral coeffi-
cients; indeed, the bj are coprime to r, so

(2.23)
1− ε

1− εbj
=

1− εajbj

1− εbj
= 1 + εbj + · · ·+ ε(aj−1)bj

where ajbj ≡ 1 mod r. Now
P

ε∈µr−{1} εβ ≡ −1 mod r for every β ∈ Z
(either r − 1 if β ≡ 0 or −1 if β 6≡ 0). Hence the expression in (2.22) is ≡ 0
mod r, so that θl ∈ Z.

Better proof. Replace the InvMod of a product in (2.20) by the product
of InvMods. Now InvMod

°
1−tbj

1−t , F, 1
¢

is an integral polynomial; indeed, it
is the ice cream function for aj

r where aj = InvMod(bj , r), by the calculation
of 2.1, (2.5). §

Exercise 2.9. The ice cream function of 2.1 corresponds to 1
7(5): the peri-

odic rounding loss of (2.9) is
6X

i=0

σ7−it
i = 1

7(3− 3t2 + t3 − 2t4 + 2t5 − t6)

≡ InvMod
°
1− t5, 1−t7

1−t

¢
,

whereas

(1− t)× 1
7(3− 3t2 + t3 − 2t4 + 2t5 − t6)

≡ t3 + t5 + t7 = InvMod
≥1− t5

1− t
,
1− t7

1− t
, 1

¥
.

Exercise 2.10 (Serre duality and Gorenstein symmetry).
(1) Prove that X projectively Gorenstein of canonical weight kX implies

that kX +
Pn

j=1 bj ≡ 0 mod r for each Q = 1
r (b1, . . . , bn).

(2) Prove that the σi are (−1)n symmetric under i 7→
P

bj − i. [Hint:
replace ε 7→ ε−1 in the characterization (2.13) of σi, or in the formula
(2.14).]

(3) Now suppose coprime, let θl be as in Corollary 2.8, and let kX be the
canonical weight. Prove that l1 + l2 ≡ k+n mod r implies θl1 = θl2 .
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Example 2.11. The weighted projective line X = P(5, 7) has kX = −12,
and has two orbifold points of type 1

7(5) and 1
5(2). Its Hilbert series

(2.24) PX(t) =
1

(1− t5)(1− t7)
satisfies Theorem 1.1: since c = −10 < 0, the initial term PI = 0. Then

PX(t) = P orb
°

1
7(5),−12

¢
+ P orb

°
1
5(2),−12

¢

=
t−4 + t−2 + 1
(1− t)(1− t7)

+
−t−4 − t−2

(1− t)(1− t5)
,

where −t−4 − t−2 = InvMod(1−t2

1−t , 1−t5

1−t ,−4).

Exercise 2.12. Games with the ice cream function of 2.1:
(1) An elliptic curve polarized by A = 3

7P embeds as C15 ⊂ P(1, 5, 7)
with canonical weight 2, that is KC,orb = 2A = 6

7P .
(2) A curve of genus 2 polarized by P + 3

7Q with P a Weierstrass point
embeds in P(1, 2, 3, 5, 7) as a Pfaffian with Hilbert numerator

1− t6 − t7 − t8 − t9 − t10 + t10 + t11 + t12 + t13 + t14 − t20.

(3) P1 polarized by −P +
P

3
3
7Qi (that is, three 1/7 orbifold points)

embeds in codimension 4 in P(3, 5, 5, 7, 7, 7) with Hilbert numerator

1− 3t10 − 3t12 − 3t14 + 2t15 + 6t17 + 6t19 + 2t21 − 3t22 − 3t24 − 3t26 + t36.

Ice Cream

Dedekind sums are the same as InvMod plus a bit of averaging
to zero. They give the R periodicity, with denom (1-t^R). We
have a mechanism, at least in the isolated case, that
replaces the fractional term based on Dedekind sums with an
integral symmetric term with denominator (1-t)^n*(1-t^r).
The trick in the isolated case is not to take InvMod(A,F),
but instead InvMod(A/(1-t)^n,F).

The whole game is
"taking Inverse of product (1-bi) modulo (1-t^r)". (*)

of course this is nonsense if we don’t take account of the
common factors between (1-t^bi) and (1-t^r). The Ice Cream
solution to this problem is to take out *all* the common
factors from both.

If we are doing 1/r(b1,.. bn), set ri = hcf(bi, r), so that
1-t^ri is the hcf of 1-t^bi and 1-t^r, and mu_ri fixes the
xi axis pointwise. The denominator of the Ice Cream function
is
D = product (1-t^ri) * (1-t^r).
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For the numerator, take
A = product (1-t^bi) / (1-t^ri)

and set
F = (1-t^r) / hcf(1-t^r, prod(1-t^ri)

We then replace the original motivating idea (*) by taking
InverseMod(A,F). The remaining issue is to shift the support
into a suitable range so that Num/D is Gorenstein symmetric
of degree k.

Usually the denominator D has degree quite a lot bigger than
n+r. The length of the range should be Degree(F) (usually
quite a lot smaller than r); the Numerator must be
Gorenstein symmetric of degree Degree(D)+k, so its range
should be centred at (Degree(D)+k)/2, and so it should start
at (Degree(D)-Degree(F)+k)/2.

e.g. 1/14[1,2,5,7]. The ri are [1,2,1,7]. The A is
(1-t^5)/(1-t). The F = 1-t+t^2-t^3+t^4-t^5+t^6 (the
cyclotomic polynomial of order 14), degree 6. The
denominator D is (1-t)^2*(1-t^2)*(1-t^7)*(1-t^14) has degree
25. k = -1, so the numerator should be Gorenstein symmetric
of degree 24, centred at 12, so supported in [10,14].

25 - 6 - 1 = 18, so half of it is 9

/* I think something like this works. */

function QQorb(r,LL,k)
L := [Integers() | i : i in LL]; // this allows empty list
if (k + &+L) mod r ne 0

then error "Error: Canonical weight not compatible";
end if;
n := #L;
rr := [GCD(l,r) : l in L];
A := &*[(1-t^(L[i])) div (1-t^(rr[i])) : i in [1..#L]];
F := (1-t^r) div GCD(1-t^r, &*[1-t^l : l in rr]);
D := Denom(rr cat [r]);
l := Floor((Degree(D)-Degree(F)+k+1)/2);
// Kludge avoids programming Laurent polynomials if l < 0.
de := Maximum(0,Ceiling(-l/r));
m := l + de*r;
G, al, be_throwaway := XGCD(t^m*A,F);
return t^m*al/(D*t^(de*r));
end function;
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3. K3 surfaces and Fano 3-folds

Our Main Theorem 1.1 correlates simply with known results on K3s and
Fano 3-folds (see Altınok, Brown and Reid [2]). Let (S,D) be a polarized K3
surface with a basket of orbifold points B = {1

r (a, r−a)}. [YPG], Appendix
to Section 8, gives

(3.1) σi =
r2 − 1
12r

− bi(r − bi)
2r

,

where ab = 1 modulo r and denotes the smallest nonnegative residue mod
r. By Theorem 2.6,

InvMod
≥
(1− ta)(1− tr−a),

1− tr

1− t

¥
= − 1

2r

r−1X

i=1

bi(r − bi)ti

and

InvMod
≥(1− ta)(1− tr−a)

(1− t)2
,
1− tr

1− t

¥
≡ −(1− t)2

2r

r−1X

i=1

bi(r − bi)ti

An immediate application of RR for surfaces [2, Theorem 4.6] gives that
the Hilbert series is

(3.2) PS(t) =
1 + t

1− t
+

t + t2

(1− t)3
· D2

2
−

X

B

1
1− tr

r−1X

i=1

bi(r − bi)
2r

ti.

Comparing the coefficients of t in (3.2) yields

(3.3) D2 = 2g − 2 +
X

B

b(r − b)
r

,

where the genus g is defined by P1 = h0(S,OS(D)) = g + 1 Then PS(t) =
PI +

P
B P orb, where

(3.4) PI =
1 + (g − 2)t + (g − 2)t2 + t3

(1− t)3
=

1 + t

1− t
+ (g − 1)

t + t2

(1− t)3
,

and

(3.5) P orb =
InvMod

≥
(1−tb)(1−tr−b)

(1−t)2 , 1−tr

1−t , 2
¥

(1− t)2(1− tr)
.

One checks that P orb = t+t2

(1−t)3 ·
b(r−b)

2r − 1
1−tr

Pr−1
i=1

bi(r−bi)
2r ti, as above.

Corollary 3.1. Let V be a Q-Fano 3-fold with basket B =
©

1
r (1, b, r − b)

™

of terminal quotient singularities. Its anticanonical ring has Hilbert series
of the form PV (t) = PI +

P
B P orb, with

(3.6) PI =
1 + (g − 2)t + (g − 2)t2 + t3

(1− t)4
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where h0(−KX) = g + 2 and −K3 = 2g − 2 +
P b(r−b)

r , and

(3.7) P orb =
InvMod

≥
(1−t)(1−tb)(1−tr−b)

(1−t)3 , 1−tr

1−t , 2
¥

(1− t)3(1− tr)
.

Proof. By [2, Theorem 4.6] the Hilbert series of (V,−KV ) equals
(3.8)

PV (t) =
1 + t

(1− t)2
− t + t2

(1− t)4
· K3

V

2
−

X

B

1
(1− t)(1− tr)

r−1X

i=1

bi(r − bi)
2r

ti. §

Example 3.2. Consider surfaces

• S5 ⊂ P(1, 1, 1, 2) with an orbifold point of type 1
2(1, 1) at Q =

(0, 0, 0, 1),
• S7 ⊂ P(1, 1, 2, 3) with orbifold points of types 1

2(1, 1) and 2
°

1
3(1, 2)

¢
,

• S11 ⊂ P(1, 2, 3, 5) with orbifold points of type 1
2(1, 1), 1

3(1, 2), 1
5(2, 3),

where Si is a general surface of degree i, for i = 5, 7, 11 in the corresponding
weighted projective space. All three surfaces have kSi = 0 and c = 3. The
Hilbert series parses as PSi(t) = PI +

P
Bi

P orb

PS5(t) =
1− t5

(1− t)3(1− t2)

=
1 + t3

(1− t)3
+

t2

(1− t)2(1− t2)
,

PS7(t) =
1− t7

(1− t)2(1− t2)(1− t3)

=
1− t− t2 + t3

(1− t)3
+

t2

(1− t)2(1− t2)
+

t2 + t3

(1− t)2(1− t3)
,

PS11(t) =
1− t11

(1− t)2(1− t2)(1− t3)
=

1− 2t− 2t2 + t3

(1− t)3

+
t2

(1− t)2(1− t2)
+

t2 + t3

(1− t)2(1− t3)
+

2t2 + t3 + t4 + 2t5

(1− t)2(1− t5)
.

4. Calabi–Yau 3-folds

Let (X,D) be a Calabi–Yau threefold polarized by a Q-Cartier Weil di-
visor D. Assume that (X,D) is quasismooth and well formed with the
following orbifold locus:

• isolated points Q of type s−1
°

1
s (a1, a2, a3)

¢
, such that a1+a2+a3 = 0

mod s
• curves C of generic type k

°
1
r (1,−1)

¢
.
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Then by [6, Corollary 3.3.], the Hilbert series can be written in the compact
form

PX(t) = 1 +
D3

6
· t3 + 4t2 + t

(1− t)4
+

c2(X) ·D
12

· t

(1− t)2

+
X

Q

P̃Q(t) +
X

C

P̃C(t),

where every curve C contributes

P̃C(t) = −deg D|C

√
1

1− tr

r−1X

i=1

i
ik(r − ik)

2r
ti +

rtr

(1− tr)2

r−1X

i=1

ik(r − ik)
2r

ti
!

+
NC

12r2
· 1
1− tr

r−1X

i=1

ik(r − ik)(r − 2 · ik)ti

and every singular point Q contributes

P̃Q(t) =
1

1− ts

s−1X

i=1

cQ(iD)ti, with

cQ(iD) =
1
s

X

ε∈µs

ε−i − 1
(1− ε−a1)(1− ε−a2)(1− ε−a3)

.

Theorem 4.1. Let (X,D) be a polarized Calabi–Yau 3-fold, and assume
that its singular locus B = {Q,C} consists of isolated points and Du Val
curves. Then the Hilbert series of X is of the form

(4.1) PX(t) = PI +
X

Q

P orb +
X

C

P per +
X

C

P grow,

where

P grow = deg D|C · rtr

(1− t)2(1− tr)2
·
√

inverse of
(1− ta)(1− tr−a)

(1− t)2

modulo
1− tr

1− t
supported in

h
−r +

lr

2

m
+ 2, . . . ,

jr

2

ki!

,

P per =
1

(1− t)3(1− tr)
·
µ

deg D|C ·DC-Num− NC

2r
·NC-Num

∂

and DC-Num, NC-Num are Gorenstein symmetric polynomials with support
[3, . . . , r].

Proof. For clarity we restrict to X having one isolated orbifold point Q of
type s−1

°
1
s (a1, a2, a3)

¢
and one orbifold curve C of type k

°
1
r (1,−1)

¢
. For a

bigger basket B, we just write
P

Q,
P

C in front of contributions.
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Write Pi = h0(X,OX(iD)) for the ith plurigenus of X. Comparing the
coefficients of t and t2 in the Hilbert series yields

D3 = P2 − 2P1 + 2cQ(D)− cQ(2D)

+
1
r

deg D|C
°
−k(r − k) + 2k(r − 2k)

¢

+
NC

12r2

≥
2k(r − k)(r − 2k)− 2k(r − 2k)(r − 2 · 2k)

¥
,

c2(X) ·D = −2
h
8cQ(D)− cQ(2D)− 8P1 + P2

+
1
r

deg D|C
°
−4k(r − k) + 2k(r − 2k)

¢

+
NC

12r2

≥
8k(r − k)(r − 2k)− 2k(r − 2k)(r − 2 · 2k)

¥i
.

Then the Hilbert series is

PX(t) =
1 + (P1 − 4)t + (P2 − 4P1 + 6)t2 + (P1 − 4)t3 + t4

(1− t)4

− t2cQ(2D) + (t− 4t2 + t3)cQ(D)
(1− t)4

+ P̃Q(t)

− deg D|C

√
1

1− tr

r−1X

i=1

i
ik(r − ik)

2r
ti +

rtr

(1− tr)2

r−1X

i=1

ik(r − ik)
2r

ti
!

+
NC

12r2
· 1
1− tr

r−1X

i=1

ik(r − ik)(r − 2 · ik)ti

+
1
2r

deg D|C
µ

t− 4t2 + t3

(1− t)4
k(r − k) +

2t2

(1− t)4
2k(r − 2k)

∂

− NC

12r2

√
t− 4t2 + t3

(1− t)4
k(r − k)(r − 2k) +

t2

(1− t)4
2k(r − 2k)(r − 2 · 2k)

!

.

First observe that the first part is PI(t): it equals PX(t) up to degree•
4
2

¶
= 2 and its numerator is Gorenstein symmetric of degree c = 4.

Next we prove that

(4.2) −t2cQ(2D) + (t− 4t2 + t3)cQ(D)
(1− t)4

+ P̃Q(t) = P orb.

In Dedekind sum notation, we get
(4.3)

−
≥
t2(σ−2 − σ0) + (t− 4t2 + t3)(σ−1 − σ0)

¥ s−1P
i=0

ti + (1− t)3
s−1P
i=0

(σ−i − σ0)ti

(1− t)3(1− ts)
.

By Theorem 2.6, the numerator equals the inverse of (1−ta1)(1−ta2)(1−ta3)
(1−t)3

modulo 1−ts

1−t . It is also easy to check that the numerator has the coefficients
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at 1, t, t2, ts+1 and ts+2 all 0, since a1+a2+a3 = 0 mod s implies σ−i = −σi.
Thus it is supported in [3, 4, . . . , s].

Clearly PI and P orb are invariant under t 7→ 1
t . This is compatible

with Serre duality, which for an n-fold X implies the functional equation
(−1)n+1PX(t) = tkX PX(1/t) (compare Proposition 6.4 and Exercise 2.10).

It remains to analyse the curve contribution. We parse it into three
sections that are also preserved under t 7→ 1

t . The terms involving NC sum
into

(4.4) −NC

2r
· NC-Num
(1− t)3(1− tr)

.

One checks directly that NC-Num has zero coefficients at 1, t, t2, tr+1, tr+2

and is thus supported in [3, . . . , r]. The following exercise will be useful.

Exercise 4.2. For all integers i and ak = 1 mod r, prove the equality:

− 1
2
σi(1

r (a, r − a)) + 1
2σ0(1

r (a, r − a))

+ σi(1
r (a, r − a, r − a))− σ0(1

r (a, r − a, r − a))

=
1

12r
ki(r − ki)(r − 2 · ki).

By the above exercise NC-Num equals

(4.5) −2(1− t)3
r−1X

i=1

µ
σi

°
1
r (a, r − a, r − a)

¢
− 1

2σi
°1
r
(a, r − a)

¢∂
ti.

The definition of σi gives

NC-Num ≡ −(1− t)3
r−1X

i=1

≥
σi

°
1
r (a, r − a, r − a)

¢

+ σi+r−a
°

1
r (a, r − a, r − a)

¢¥
ti

≡ −(1− t)3(1 + tr−a)
r−1X

i=1

σi
°

1
r (a, r − a, r − a)

¢
ti

≡ (1 + tr−a)(1− t)3
r−1X

i=1

σr−i
°

1
r (a, r − a, r − a)

¢
ti mod

1− tr

1− t
.

This, together with Theorem 2.6 shows, that NC-Num equals (1+tr−a) times
the inverse of (1−ta)(1−tr−a)2

(1−t)3 modulo 1−tr

1−t . Thus NC-Num can be obtained
as an ice cream function. In other words,

(4.6) NC-Num× (1− ta)(1− tr−a)2

(1− t)3
≡ 1 + tr−a mod

1− tr

1− t
.
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On the other hand, the terms involving deg D|C sum to

deg D|C · rtr

(1− t)2(1− tr)2
·
≥
inverse of

(1− ta)(1− tr−a)
(1− t)2

mod
1− tr

1− t

supported in
h
−r +

lr

2

m
+ 2, . . . ,

jr

2

ki¥
+ deg D|C · DC-Num

(1− t)3(1− tr)
,

where DC-Num denotes the polynomial

d r
2e+1X

i=3

≥
iσi − 3(i− 1)σi−1 + 3(i− 2)σi−2 − (i− 3)σi−3 + 2(σ1 − σ2)

¥
ti

+
rX

i=d r
2e+2

≥
(i− r)σi − 3(i− 1− r)σi−1

+ 3(i− 2− r)σi−2 − (i− 3− r)σi−3 + 2(σ1 − σ2)
¥
ti.

Note that the terms at t3+i and tr−i in DC-Num are the same, which implies
Gorenstein symmetry. The above result is a long, but elementary exercise
using only Corollary 2.8 for (1−ta)(1−tr−a)

(1−t)2 and

(4.7) σi
°

1
r (a, r − a)

¢
=

r2 − 1
12r

− ki(r − ki)
2r

,

where ak = 1 mod r. §

Lemma 4.3. DC-Num can be evaluated from an ice cream function.

Proof. Consider Inv(t) := the inverse of (1 − ta)(1 − tr−a) modulo 1−tr

1−t

supported in [1, . . . , r − 1]. Then Inv(t) =
Pr−1

i=1 (σi − σ0)ti and

(1− t)3 · Inv(t)0 = σ1 − σ0 + (2σ2 − 3σ1 + σ0)t

+
rX

i=3

(iσi − 3(i− 1)σi−1 + 3(i− 2)σi−2 − (i− 3)σi−3)) ti−1

+ terms at tr and tr+1.

The coefficients at t3, t4, . . . , td
r
2e+1 in the polynomial

(4.8) t

µ
(1− t)3 · Inv(t)0 − (σ1 − σ0)

1− tr

1− t
− (2σ2 − 3σ1 + σ0)t

1− tr

1− t

∂

are exactly the left hand side of the symmetric polynomial DC-Num. §

Example 4.4. Consider X66 ⊂ P(5, 6, 11, 11, 33). It is a Calabi–Yau with
−1

°
1
3(2, 2, 2)

¢
and −1

°
1
5(1, 1, 3)

¢
points and −1

°
1
11(5, 6)

¢
curve of degree 2

11 .
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The Hilbert series equals

(4.9)
1− t66

(1− t5)(1− t6)(1− t11)2(1− t33)
=

= PI + P orb1/3 + P orb1/5 + P grow1/11 + P per1/11

=
1− 4t + 6t2 − 4t3 + t4

(1− t)4
− t3

(1− t3)(1− t)3
+

t3(1 + t2)
(1− t5)(1− t)3

+
2t8(1 + t + t2 + t3 − t4 + t5 + t6 + t7 + t8)

(1− t)2(1− t11)2
− t6 + t8

(1− t)3(1− t11)
.

Moreover,
(4.10)

−t6 − t8 =
2
11

·DC-Num− 1
11

·NC-Num

=
2
11

(2t2 + 2t3 + 2t4 − 4t5 − t6 − 4t7 + 2t8 + 2t9 + 2t10)

− 1
11

(4t3 + 4t4 + 4t5 + 3t6 − 2t7 + 3t8 + 4t9 + 4t10 + 4t11).

Remark 4.5. We restricted our study to isolated singular points, since
P orb(t) for a dissident point 1

s (a1, a2, a3) is not uniquely determined as an
InvMod function supported on [3, . . . , s + 1]. The main reason is that
contributions from a dissident point on C already incorporate contributions
from C.

For example, X40 ⊂ P(2, 5, 8, 10, 15) is a Calabi–Yau with a −1
°

1
15(2, 5, 8)

¢

dissident point on a degree 4
15 curve of generic type 1

5(2, 3) and with a 1
2(1, 1)

orbifold line. In the proof of Theorem 4.1 we computed the Hilbert series

1− t40

(1− t2)(1− t5)(1− t8)(1− t10)(1− t15)
= PI + P grow1/2 + P per1/2 + P orb1/15 + P grow1/5 + P per1/5

=
1− 4t + 7t2 − 4t3 + t4

(1− t)4
− t3

(1− t)2(1− t2)2
+

−1
3t3∗ 2

3t4− 2
3t5∗ 2

3t6− 2
3t7∗t8− 4

3t9∗t10− 2
3t11∗ 2

3t12− 2
3t13∗ 2

3t14− 1
3t15

(1−t)3(1−t15)

+
4
15

5t5(1− t + t2)
(1− t)2(1− t5)2

− 4
3

2t3 − t4 + 2t5

(1− t)3(1− t5)
.
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Note that the only nonzero contribution from the 1
2 curve is P grow1/2 =

1
2

2(−t3)
(1−t)2(1−t2)2 . Note also, that the numerator of P per1/5 equals

−4
3
(2t3 − t4 + 2t5) =

4
15

·DC-Num− 4
5
·NC-Num

=
4
15

(−t3 − t4 − t5)− 4
5
(3t3 − 2t4 + 3t5).

On the other hand, P orb1/15 is not unique modulo 1 + t5 + t10 = 1−t15

(1−t5) .

The computer output for the inverse of (1−t2)(1−t5)(1−t8)
(1−t)3 modulo 1 + t5 + t10

supported in [5, . . . , 13] is

(4.11) −1
3
t5 +

2
3
t6 − 2

3
t7 +

4
3
t8 − 2t9 +

4
3
t10 − 2

3
t11 +

2
3
t12 − 1

3
t13,

which relates it to P orb1/15 in the following way

P orb1/15 =
−1

3t5 + 2
3t6 − 2

3t7 + 4
3t8 − 2t9 + 4

3t10 − 2
3t11 + 2

3t12 − 1
3t13

(1− t)3(1− t15)

+
−1

3t3 + 2
3t4 − 1

3t5

(1− t)3(1− t5)
.

In a mysterious way, P per and the contribution from P orb to the curve always
sum into a numerator with integer coefficients. In our example

(4.12) −4
3
(2t3 − t4 + 2t5) + (−1

3
t3 +

2
3
t4 − 1

3
t5) = −3t3 + 2t4 − 3t5.

It is work in progress to determine such contributions explicitly.

However, we are able to parse the Hilbert series for Calabi–Yaus with
dissident points on 1

2(1,−1) curves.

Theorem 4.6. The Hilbert series of a Calabi–Yau threefold X with orbifold
locus

• points Q of type s−1
°

1
s (a1, a2, a3)

¢
with a1 + a2 + a3 = 0 modulo s,

• curves C of generic type 1
2(1,−1) with index τC ,

is of the form

(4.13) PX(t) = PI +
X

Q

P orb −
X

C

deg D|C
2t3

(1− t)2(1− t2)2
.

Proof. We repeat the steps in the proof of Theorem 4.1, but also take into
account the dissident points on C. For a dissident point Q ∈ C we have
hcf(ai, s) = 2 for some i = 1, 2, 3 and therefore

(4.14) hcf
µ

(1− ta1)(1− ta2)(1− ta3),
1− ts

1− t

∂
= 1 + t.
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Note that most of the contributions due to the curves are 0. We get

(4.15) PX(t) = PI +
X

Q

P orb −
X

C

deg D|C
2t3

(1− t)2(1− t2)2
,

where PI equals PX(t) up to degree 2 and has a Gorenstein symmetric
numerator of degree 4 and
(4.16)

P orb =
inverse of (1−ta1)(1−ta2)(1−ta3)

(1−t)3 mod 1−ts

1−t supported in [3, . . . , s]

(1− t)3(1− ts)
. §

Examples 4.7. We test Theorem 4.6 on three Calabi–Yau hypersurfaces.
(1) X10 ⊂ P(11224) is a Calabi–Yau with a 1

2(1, 1) curve of degree 10
8 pass-

ing through a dissident point of type −1
°

1
4(1, 1, 2)

¢
. We used the computer

code in Section 7 to verify

PX(t) =
1− t10

(1− t)2(1− t2)2(1− t4)

=
1− 2t + 3t2 − 2t3 + t4

(1− t)4
+

t3 + t4

2(1− t)3(1− t4)
− 10

8
· 2t3

(1− t)2(1− t2)2
.

(2) X11 ⊂ P(11225) is a Calabi–Yau with a 1
2(1, 1) curve of deg 1

2 and an
isolated point of type −1

°
1
5(1, 2, 2)

¢
. Check that

PX(t) =
1− t11

(1− t)2(1− t2)2(1− t5)

=
1− 2t + 3t2 − 2t3 + t4

(1− t)4
+

−t3 + t4 − t5

(1− t)3(1− t5)
− 1

2
· 2t3

(1− t)2(1− t2)2
.

(3) X18 ⊂ P(1, 1, 2, 6, 8) is a Calabi–Yau with a 1
2(1, 1) curve of deg 18

6·8
and a dissident point of type −1

°
1
8(1, 1, 6)

¢
. Then

PX(t) =
1− t18

(1− t)2(1− t2)(1− t6)(1− t8)

=
1− 2t + 2t2 − 2t3 + t4

(1− t)4
+

3t3 + t4 + 2t5 + 2t6 + t7 + 3t8

4(1− t)3(1− t8)

− 3
8
· 2t3

(1− t)2(1− t2)2
.

5. The Riemann–Roch formula

In this section we show that formulas of type (1.1) for polarized orbifolds
exist and how to interpret them. This was done first in [YPG] for isolated
points and in [6] for orbifold curves of type 1

r (b, r − b).
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5.1. The existence of the Riemann–Roch formula. Let (X,D) be
a normal projective n-fold which is quasismooth and well formed (with
orbifold locus of any dimension). Choose a projective resolution of the
quotient singularities f : Y → X. For the divisorial sheaf OX(D), define
L = f∗(OX(D))/(torsion). Then L is a rank 1 torsion free sheaf on Y .

For an ample Cartier divisor H on X and some integers m,N , there exists
a surjection ON

X (−mH) ≥ OX(D) on X which pulls back to a surjection
ON

Y ⊗ f∗OX(−mH) ≥ L on Y . This yields an exact sequence

(5.1) 0 → K → ON
Y ⊗ f∗OX(−mH) → L→ 0.

Now f∗OY = OX since X is normal and Rif∗OY = 0 for i > 0 since quotient
singularities are rational in characteristic zero. Applying f∗ to (5.1) gives

0 → f∗K → ON
X (−mH) → f∗L →

R1f∗K → 0 → R1f∗L →
... → 0 →

...

Rn−1f∗K → 0 → Rn−1f∗L → 0.

(5.2)

This implies that Rn−1f∗L = 0, and for 1 ≤ i ≤ n− 2, the sheaf

(5.3) Rif∗L ∼= Ri+1f∗K
has support of codimension ≥ i+2 on X, since the fibre of f over the generic
point of any n− i− 1 dimensional subvariety has dimension ≤ i.

We also have f∗L ∼= OX(D). Denote the reflexive hull of L by OY (DY ).
As OX(D) is saturated, we have f∗OY (DY ) ∼= OX(D). Thus the exact
sequence

(5.4) 0 → L→ OY (DY ) → Q→ 0

gives rise to an injection

(5.5) f∗Q ↪→ R1f∗L ∼= R2f∗K.

Therefore f∗Q has support of codimension ≥ 3. Since Q is supported in
codimension ≥ 2 on Y , its Rif∗ has support of codimension ≥ i + 3.

By the above considerations, we can rewrite the Leray spectral sequence

(5.6) χ(Y,L) =
X

i
(−1)iχ(X,Rif∗L),

as

χ(X,OX(D)) = χ(Y,OY (DY ))−
X

i
(−1)iχ(X,Rif∗L)(5.7)

−
X

i
(−1)iχ(X,Rif∗Q)(5.8)

= χ(Y,OY (DY )) + P,(5.9)

where P is a contribution from sheaves supported on the singular locus X
of codimension ≥ 3. Our arguments imply that this contribution is local
analytic in a stronger sense: it depends only on the analytic type of the
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orbifold locus of X and the divisor D. In fact the resolution of singularities
can be chosen once and for all, and the constructions of L and Q are then
universal, so that a local analytic isomorphism of quotient singularities gives
a local analytic isomorphism between these sheaves.

The next step is to write DY and KY in terms of D and KX and the
exceptional divisors of the resolution. For a singular locus kS ∈ X of di-
mension k let {kSEj} be the exceptional hypersurfaces mapping surjectively
to kS under f . Recall that every singular point 0S (not necessarily isolated)
is locally analytically isomorphic to An/µr, thus the configuration of {0SEj}
depends only on the analytic singularity type of 0S. Then

(5.10) f∗KX = KY + N and f∗D = DY + M,

where

(5.11) N =
X

kS

kSX

j

γ
kS
j Ej and M =

X

kS

kSX

j

β
kS
j Ej , with

kSγj ,
kSβj ∈ Q.

Here f∗D is by definition 1
mf∗(mD) for an integer m which makes mD

Cartier.
Using Riemann–Roch [12, Appendix A] for the smooth n-fold Y we obtain

(5.12) χ(Y,OY (mDY )) = deg (ch(OY (mDY )) · Td(TY )) [n],

for

(5.13)
ch(OY (DY )) = 1 + DY + 1

2D2
Y + 1

6D3
Y + 1

24D4
Y + · · · ,

Td(TY ) = 1− 1
2KY + 1

12(K2
Y + c2)− 1

24KY c2−
1

720(K4
Y − 4K2

Y c2 − 3c2
2 + KY c3 + c4) + · · · ,

where we set ci = ci(TY ), and ci = 0 if i > n and ()[n] is the component
of degree n in the Chow ring A(Y )⊗Q. In particular, for DY = 0, we find
that the degree n term in Td(TY ) equals χ(OY ).

The projection formula gives

(5.14) (f∗D)i(f∗KX)n−i = DiKn−i
X for 0 ≤ i ≤ n.

Finally, using (5.7), Riemann–Roch for Y , (5.10), Definition (??) and the
birational invariance of χ(OX) = χ(OY ), we obtain

χ(X,OX(D)) = deg
≥
ch(OX(D)) · Td(TX)

¥
[n] + P(5.15)

+ intersection numbers involving M or N .(5.16)

The intersection numbers involving M or N are of the form

(5.17) M iN j(f∗D)j0(f∗KX)i0cn−i−j−i0−j0(Y ) for i + j > 0.

Therefore they depend on the singularities of X and contribute to the orb-
ifold basket part of the Riemann–Roch formula.

We conclude this section by noting that if (X,D) has a l
°

1
r (a1, . . . , an)

¢

singularity, then (X,mD) has a ml

°
1
r (a1, . . . , an)

¢
singularity for all positive

integers m. Here denotes the smallest residue mod r.
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5.2. The contribution from an orbifold point. The analytically invari-
ant contributions to RR from an orbifold locus, not necessarily isolated,
are computed on a model that contains such orbifold locus. We begin by
showing the existence of such projective varieties.

Proposition 5.1. Given 1
r (a1, . . . , an), we write aj1 , . . . , ajn−k for the com-

plement of the subset ai1 , . . . , aik . Assume that all ai1 , . . . , ain−1 , r have no
common factor. There exists a smooth projective n-fold Z together with an
action of µr with the following properties: the action fixes a number of points
on which a generator ε ∈ µr acts by

(5.18) ε : z1, . . . , zn 7→ εa1z1, . . . , ε
anzn.

If hcf(ai1 , . . . , aik , r) = αi1...ik 6= 1, these points lie on k-dimensional subva-

rieties which are fixed by ε
r

αi1...ik . Then ε
r

αi1...ik ∈ µαi1...ik
acts in the normal

direction of each k-fold by

(5.19) ε
r

αi1...ik : zj1 , . . . , zjn−k 7→ ε
r

αi1...ik
aj1zj1 , . . . , ε

r
αi1...ik

ajn−k zjn−k

and freely away from the k-fold.

Proof. We imitate the proof of (8.4) in [YPG]. Choose an integer l ≥ n
and consider action of µr on Pl+n(1, 1, . . . , 1) given by

(5.20) x1, x2, x3, x4, . . . , xl+n+1 7→ εa1x1, . . . , ε
anxn, xn+1, . . . , xl+n+1.

This action fixes Pl = {x1 = · · · = xn = 0} and acts in the normal direction
by

(5.21) x1, . . . , xn 7→ εa1x1, . . . , ε
anxn.

If hcf(ai1 , . . . , aik , r) = αi1...ik 6= 1, the action is not free on Pl+k = {xj1 =

· · · = xjn−k = 0}. This is fixed by ε
r

αi1...ik with normal action

(5.22) xj1 , . . . , xjn−k 7→ ε
r

αi1...ik
aj1xj1 , . . . , ε

r
αi1...ik

ajn−k xjn−k .

Another locus on which the action might not be free, is {xn+1 = · · · =
xl+n+1 = 0}. We avoid this locus by defining

(5.23) X ⊂ Pl+n/µr,

as a complete intersection of l general very ample divisors. Let Z be the
inverse image of X under the quotient Pl+n → Pl+n/µr. Such Z clearly
satisfies the conditions in the proposition. §

Let X be a projective threefold with a singularity of type 1
r (a1, . . . , an)

as described in Proposition 5.1.
Write π : Z → X for the quotient map and let Ll be the lth eigensheaf of

the action of ε ∈ µr on π∗OZ . Then

(5.24) π∗OZ =
r−1M

n=0

Ll
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implies

(5.25) Hp(Z,OZ) =
r−1M

l=0

Hp(X,Ll).

The group action on any f ∈ Ll is given by ε(f) = εl · f , thus

(5.26) Tr(ε : Hp(Z,OZ)) =
r−1X

l=0

hp(X,Ll) · εl

and

(5.27)
X

p

(−1)pTr(ε : Hp(Z,OZ)) =
r−1X

l=0

χ(X,Ll) · εl.

In order to simplify the notation, denote
P

p(−1)pTr(ε : Hp(Z,OZ)) by Aε.
Then

(5.28)
r−1X

l=0

χ(X,Ll) · εn = Aε and
r−1X

l=0

χ(X,Ll) = χ(OZ).

The last two formulas can be considered as a linear system of r equations
in χ(X,Ll) and variable ε,
(5.29)





1 1 1 . . . 1
1 ε ε2 . . . εr−1

1 ε2 ε4 . . . ε2(r−1)

. . . . . . . . . . . .
1 εr−1 . . . . . . ε









χ(X,L0)
χ(X,L1)
χ(X,L2)

...
χ(X,Lr−1)




=





χ(OZ)
Aε

Aε2

...
Aεr−1




.

Write χ(X,L0) = χ(OX) and eliminate χ(OZ) from the solution. We end
up with

χ(X,Ll) = χ(OX) +
1
r

r−1X

j=1

(ε−jl − 1)Aεj(5.30)

= χ(OX) +
1
r

X

ε∈µr

(ε−l − 1)Aε.

We can compute Aε for all ε ∈ µr by the following proposition.

Proposition 5.2. Let kZ be a k-dimensional subvariety in Z fixed by ε ∈ µs,
which acts in the normal direction of kZ by

(5.31) z1, . . . , zn−k 7→ εb1z1, . . . , ε
bn−kzn−k

and freely away from kZ. Let mj of the bjs be the same. Then Aε is a sum
over degree k intersections involving the Chern classes of the tangent and
normal bundles TkZ , NkZ . The coefficients of this sum are rational functions
in εbj with symmetric numerators and denominators

Q
j(1−εbj )mj+lj , where

0 ≤ lj ≤ k and
P

j lj ≤ k.
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Proof. The normal bundle NkZ = ⊕jNj decomposes according to the eigen-
values εbi . In our notation Nj has rank mj . Note that

P
j mj = n−k. Each

Nj might decompose further. Denote xjt the Chern classes of Nj . In partic-
ular, if Nj decomposes into mj line bundles, then xjt is the 1st Chern class
of the tth line bundle; on the other hand, if Nj is indecomposable, then xjt

is its tth Chern class. By the Atiyah–Singer–Segal equivariant RR formula
[3], [4, p. 565] we get

(5.32) Aε = deg

(
1 · Td(TkZ)

Q
j

Qmj

t=1(1− ε−bje−xjt )

)

k

.

It is an exercise to compute the power series expansion below for a 6= 1

(5.33)
1

1− ae−x
=

1
1− a

− a

(1− a)2
x +

a(1 + a)
2(1− a)3

x2

− a(1 + 4a + a2)
6(1− a)4

x3 +
a(1 + 11a + 11a2 + a3)

24(1− a)5
x4 + · · · .

The proposition follows by writing down the degree k elements in the Chow
ring A(kZ) of the product

(5.34) Td(TkZ) = 1 + 1
2c1 + 1

12(c2
1 + c2) + 1

24c1c2−
1

720(c4
1 − 4c2

1c2 − 3c2
2 − c1c3 + c4) + · · · ,

where ci = ci(TkZ), for 1 ≤ i ≤ k, and the power series expansions of all
1

1−ε−bj e
−xjt

. Observe that the rational coefficients of the latter expansions
have symmetric numerators. §

When εai 6= 1 for all i = 1, . . . , n, the fixed locus of ε is a number of
points. In this case it is a direct corollary of Proposition 5.2, that for each
point

(5.35) Aε =
1

(1− ε−a1) · · · (1− ε−an)
.

On the other hand, if αi1...ik corresponding to the subset {i1, . . . , ik} ⊂
{1, . . . , n} is different from 1, then ε ∈ µαi1...ik

fixes a k-fold whose generic
points are orbifold points of type 1

αi1...ik
(aj1 , . . . , ajn−k).

We can split the sum over {ε ∈ µr} into subsums over disjoint sets

(5.36)
{ε ∈ µr s.t. εai 6= 1 for all i = 1, . . . , n} and
{ε ∈ µr s.t. εai1 = · · · = εaik = 1} = {ε ∈ µαi1...ik

}.
This rewrites (5.30) as

(5.37) χ(X,Ll) = χ(OX)

+
1
r

X

ε∈µr
εai 6=1∀i=1,...,n

ε−l − 1
(1− ε−a1) · · · (1− ε−an)

+
1
r

X

ε∈µαi1...ik

(ε−l − 1)Aε,

where the Aε were described in Proposition 5.2.
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We view χ(OX) as the RR-type expression for the pair (X,Ln), where
Ln = 0 ∈ DivX ⊗Q is the Q−divisor corresponding to Ln. The rest of the
formula is a sum of contributions coming from

• points of type 1
r (a1, . . . , an), and

• k-folds of generic type 1
αi1...ik

(aj1 , . . . , ajn−k),

which are the singularities of (X,Ln).

Remark 5.3. The attentive reader will notice that the last two sections
use different approaches to obtain the same result. First we considered
resolution of singularities Y → X. To compute the contributions to RR from
the singularities explicitly, we would need to relate in a compact way all the
intersection numbers involving exceptional divisors. Second we constructed
an auxiliary µr cover of a model variety and used equivariant RR. This only
gave us the shape of the contributions to RR arising from the singularities.
For a more precise description on a polarized orbifold X with k dimensional
singular locus kX, we would need to consider a µr ⊕ · · ·⊕| {z }

k+1

µr cover π : Z → X

and rewrite our proofs for the eigensheaves of this action on π∗OZ . This way
the contributions to RR depend, not only on the singularity type of kX, but
also on the embedding of kX in X. The latter information determines the
splitting of the normal bundle of kZ over kX.

5.3. Application to isolated orbifold points. Note that a point P ∈ X
of type 1

r (a1, . . . , an) is isolated if and only if hcf(ai, r) = 1 for all i =
1, . . . , n. This means that for all i and 1 6= ε ∈ µr holds εai 6= 1. The
following theorem is a direct corollary of 5.1 and 5.2.

Theorem 5.4. Let (X,D) be a pair consisting of a normal projective n-fold
and a Q-Cartier divisor, which is quasismooth and well formed. Assume
further that the singularities of (X,D) consist of the isolated points Q ∈ X
of type l

°
1
r (a1, . . . , an)

¢
. Then for all positive integers m,

(5.38) χ(X,OX(mD)) = deg (ch(OX(mD)) · Td(TX)) [n] +
X

Q

cQ(mD),

where

(5.39) cQ(mD) =
1
r

X

16=ε∈µr

ε−lm − 1
(1− ε−a1) · · · (1− ε−an)

.

6. Proof of the main theorem

In this section we restrict to (X,D) with a basket of isolated orbifold
points B = {Q ∈ X of type 1

r (b1, . . . , bn)}. The main point of the decom-
position formula is that the contribution from the isolated orbifold points
depends only on the type 1

r (b1, . . . , bn) of the polarized orbifold point and the
canonical weight (compare the K3 surfaces and Fano 3-folds in Section 3).
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// Omit – this is well known
We start with a technical lemma.

Lemma 6.1. Let R(m) be a polynomial of degree n in variable m. Also let
{qi}i∈Z be a sequence that repeats periodically with period r.

(a) Assume that there exists an integer m0 ≥ 0, such that the power
series

P
m≥0 ρmtm satisfies ρm = R(m) for all m ≥ m0. Then (1−

t)n+1
≥P

m≥0 ρmtm
¥

is a polynomial in t of degree at most m0+n+1.
(b) (1− t)n+1

°P
m∈Z R(m)tm

¢
= 0.

(c) (1− tr)
°P

i∈Z qiti
¢

= 0.

Proof. (a) Multiplying our power series by 1−t gives (1−t)
≥P

m≥0 ρmtm
¥

=
· · ·+(R(m0 +1)−R(m0))tm0+1 +(R(m0 +2)−R(m0 +1))tm0+2 + · · · . For
all m ≥ m0 +1 in this power series, the mth coefficient is a polynomial in m
of degree n− 1, namely R(m)−R(m− 1). Repeating this step n + 1 times,
by induction implies (a).

(b) The coefficients of (1− t)
°P

m∈Z R(m)tm
¢

=
P

m∈Z(R(m) − R(m−
1))tm are polynomials of degree n− 1. Repeat this n + 1 times to finish the
proof of (b).

(c) This is obvious because

X

i∈Z
qit

i =
°
q0 + q1t + · · ·+ qr−1t

r−1
¢
√

X

i∈Z
tri

!

. §

We divide the proof of Theorem 1.1 into the following claims and propo-
sitions, analysing the shape and symmetry of the components in the decom-
position of P (t).

Under our assumptions we equate OX(mD) = OX(m) with isolated orb-
ifold points of type 1

r (b1, . . . , bn). By Theorem 5.4, we have

(6.1) χ(X,OX(m)) = deg (ch(OX(m)) · Td(TX)) [n] +
X

Q

cQ(m),

where

(6.2) cQ(m) =
1
r

X

16=ε∈µr

ε−m − 1
(1− εb1) · · · (1− εbn)

.

Here we replace ε by ε−1 for clarity. Recall that

(6.3) χ(X,OX(m)) = h0(X,OX(m)) + (−1)nhn(X,OX(m)),
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since X is projectively Gorenstein. Serre duality gives hn(X,OX(m)) =
h0(X,OX(kX −m)), which = 0 for m > kX . Therefore

P (t) =
X

m≥0

h0(X,OX(m))tm

=
kXX

m=0

°
deg (ch(OX(m)) · Td(TX)) [n] + (−1)n+1h0(X,OX(kX −m))

¢
tm

+
X

m>kX

deg (ch(OX(m)) · Td(TX)) [n]tm +
X

Q

X

m≥0

cQ(m)tm.

Claim 6.2. For an orbifold point Q of type 1
r (b1, · · · , bn) we have

(6.4)
X

m≥0

cQ(m)tm =
InvMod

≥Qn
i=1(1− tai), 1−tr

1−t , 0
¥

1− tr
.

Proof. Since the sum is periodic in r, we have

(6.5) (1− tr)




X

m≥0

cQ(m)tm


 =
1
r

r−1X

i=0




X

16=ε∈µr

ε−i − 1
(1− εa1) · · · (1− εan)



 ti.

In Dedekind sum notation, this splits into

(6.6)
r−1X

i=0

σr−it
i − 1

r




X

16=ε∈µr

1
(1− εa1) · · · (1− εan)



 1− tr

1− t
.

Theorem 2.6 completes the proof. §

Claim 6.3. F (t) := P (t) −
P

Q

P
m≥0 cQ(m)tm is of the form f(t)

(1−t)n+1 ,
where f(t) is a polynomial of degree kX + n + 1.

Proof. Indeed, for m > kX , the coefficients of F (t) are equal to

deg (ch(OX(m)) · Td(TX)) [n],

which are polynomials of degree n in variable m. Lemma 6.1 (a) proves the
claim. §

Before we move on, we introduce a global property of the Hilbert series,
which comes from the projectively Gorenstein property of the variety. We
call P (t) Gorenstein symmetric if it satisfies the following proposition.

Proposition 6.4. P (t) = (−1)n+1tkX P
°

1
t

¢
.
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Proof. Recall that χ(X,OX(m)) = h0(X,OX(m)) + (−1)nh0(X,OX(kX −
m)) and h0(X,OX(i)) = 0 for i < 0. Summing the coefficients of P (t) and
(−1)ntkX P

°
1
t

¢
corresponding to the same power of t yields

(6.7)
X

m∈Z
χ(X,OX(m))tm = P (t) + (−1)ntkX P

µ
1
t

∂
.

On the other hand, by the Riemann–Roch formula (6.1),

(6.8)
X

m∈Z
χ(X,OX(m))tm =

X

m∈Z
deg (ch(OX(m)) · Td(TX)) [n]tm +

X

m∈Z

X

Q

cQ(m)tm.

Multiply this by (1− t)n+1(1− tr) and use Lemma 6.1 (b) and (c) to prove
that it equals to 0. §

Next we are going to describe P orb. In Claim 6.2 we have already got an
expression corresponding to each singular point Q, namely gQ(t)

1−tr . Now we
shift the support of (1− t)ngQ(t) into

£•
c
2

¶
+ 1,

•
c
2

¶
+ r − 1

§
. This way we

obtain the numerator B(t) in Theorem 1.1.

Claim 6.5. For each singular point Q of type 1
r (a1, · · · , an) there exists a

unique BQ(t) supported in [
•

c
2

¶
+ 1,

•
c
2

¶
+ r − 1], such that BQ(t)

(1−t)n(1−tr) =
gQ(t)
(1−tr) + CQ(t)

(1−t)n+1 for some polynomial C(t). Moreover, P orb(t) = BQ(t)
(1−t)n(1−tr)

is also Gorenstein symmetric:

(6.9) P orb(t) = (−1)n+1tkX P orb

µ
1
t

∂
.

Proof. Since B(t) and (1− t)ng(t) are both inverses of
Qn

i=1
1−tai

1−t modulo
1−tr

1−t , there exists a polynomial C(t) satisfying

(6.10) BQ(t) = gQ(t)(1− t)n + CQ(t)(1 + t + t2 + · · ·+ tr−1).

So gQ(t)(1−t)n can be rewritten in a unique way supported in [
•

c
2

¶
+1,

•
c
2

¶
+

r− 1]. Indeed, Q[t]/(1 + t + · · ·+ tr−1) is r− 1 dimensional over Q and t is
invertible, therefore also Q[t, t−1]/(1 + t + · · ·+ tr−1) is r − 1 dimensional.

By Corollary 2.8 the orbifold contribution equals

(6.11) P orb(t) =
tb

c
2c+1 Pr−2

j=0 Θjtj

(1− t)n(1− tr)
.

The Gorenstein symmetry follows immediately from Exercise 2.10. §

Claim 6.5 shows that P orb consists of the contribution from the singular
point and some correction, which makes it Gorenstein symmetric. Now
denote the remaining P (t) −

P
Q P orb(t) by PI(t) and call it the initial

term. The following proposition tells us how to determine the initial term
explicitly.
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Proposition 6.6. Let P (t) =
P

m≥0 Pmtm be the Hilbert series of X. The
initial term PI(t) is uniquely determined by the first

•
c
2

¶
coefficients of P(t)

and is of the form A(t)
(1−t)n+1 . Its numerator is A(t) =

Pc
i=0 Aiti, with

(6.12) Ai = Ac−i =
iX

j=0

(−1)i−j
°n+1

i−j

¢
Pj for i ∈ [0,

•
c
2

¶
].

Proof. From the previous constructions, one sees that PI(t) is of the form
A(t)

(1−t)n+1 . Note that PI(t) is also Gorenstein symmetric, of weight kX , since
both P (t) and P orb(t) are.

If c ≥ 0, all the series P orb(t) start from degree
•

c
2

¶
+ 1, so that PI(t)

and P (t) are equal up to and including degree
•

c
2

¶
. Write P (t)(1− t)n+1 =P

i≥0 biti and compare coefficients. Considering the symmetry, we have
Ai = bi = Ac−i for i ∈ [0,

•
c
2

¶
]. Of course we take

°n+1
k

¢
= 0 for k > n + 1.

If c < 0, the same analysis shows that PI(t) = 0. §

7. Computer pseudocode

We include the computer algorithm in Wolfram Mathematica that show
how to compute ice cream functions.

Fix a1, . . . , an, r ∈ N and γ ∈ Z. We will calculate:

(I) the inverse of
Qn

i=1(1 − tai) modulo 1−tr

1−t = 1 + t + · · · + tr−1 as a
polynomial in the range
"

γ, γ + 1, . . . , γ + r − 2− deg hcf

√
nY

i=1

(1− tai),
1− tr

1− t

!#

.

(II) the inverse of
Qn

i=1
1−tai

1−t modulo 1−tr

1−t = 1 + t + · · · + tr−1 as a
polynomial in the range
"

γ, γ + 1, . . . , γ + r − 2− deg hcf

√
nY

i=1

(1− tai),
1− tr

1− t

!#

.

In the case of Calabi–Yau 3-folds we also need “NC-Num” and “DC-Num”,
where

(III) NC-Num× (1−ta)(1−tr−a)2

(1−t)3 ≡ 1 + tr−a modulo 1−tr

1−t and NC-Num is a
polynomial with support in the range [3, . . . , r].

(IV) DC-Num is a polynomial with support in the range [3, . . . , r], eval-
uated in Lemma 4.3 .
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The command PolynomialGCD[] runs the Euclidean algorithm on poly-
nomials. We first calculate the highest common factor hcf :

(7.1) hcf [a1, . . . ,an, r] := PolynomialGCD

[PolynomialQuotient[(1− ta1) · · · (1− tan), (1− t)n, t],
PolynomialQuotient[1− tr,1− t, t]].

The inverse (I) with the required support is tγ(I)inv, where

(I)inv[a1, . . . ,an, r, γ] := PolynomialExtendedGCD[

Polynomial[tγ(1− ta1) · · · (1− tan), t],
PolynomialQuotient[1− tr,hcf , t]].

The inverse (II) with the required support is tγ(II)inv, where

(II)inv[a1, . . . ,an, r, γ] :=
PolynomialExtendedGCD

PolynomialQuotient[tγ(1− ta1) · · · (1− tan), (1− t)n, t],
PolynomialQuotient[1− tr,hcf , t].

The NC−Num in (III) equals:

t3 ((II)inv[a, r− a, r− a, r,3] + (II)inv[a, r− a, r− a, r,3− r + a]) .

The DC−Num in (IV) equals:
Consider the part of t

≥
A−A[[0]]1−tr

1−t −A[[1]]t1−tr

1−t

¥
with support in

[3, . . . ,
ß

r
2

®
+1] and extend it to the unique symmetric polynomial supported

in [3, . . . , r]. Here A[[0]],A[[1]] are the coefficients at 1, t in A, where

(7.2) A := (1− t)3Derivative[t(I)inv[a, r− a, r,1]].
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Editing scrap

Proof. [YPG], (8.5), (3–5) treats the σi as follows (with a spare factor of
r): Y is a n-fold with an action of µr having N isolated fixed points, each
of the same type 1

r (b1, . . . , bn). Write π : Y → X for the quotient morphism,
and Li for the ith eigensheaf on X (as in (1.10)). Then by the Lefschetz
fixed point formula, the r quantities

(7.3) σi =
1
N

χ(Li)−
1

Nr
χ(OY )

are determined by the nondegenerate system of r linear equations

(7.4)
r−1X

i=0

σiε
i =

1Q
j(1− ε−bj )

for all ε ∈ µr \ 1, and
X

σi = 0.

The second equation just says
P

σi = 1
N

°P
χ(Li)− χ(OY )

¢
= 0.

We can apply this equation equally well to ε−1; reordering the sum and
taking account of εr = 1 gives

(7.5)
1Q

j(1− εbj )
=

r−1X

i=0

σiε
r−i =

rX

i=1

σr−iε
i for all ε ∈ µr \ 1,

Now consider the polynomial B(t) = A(t)
Pr

i=1 σr−iti. If we substitute t = ε
for ε ∈ µr \ 1 in B and use (7.5) with the same value of ε, we get

(7.6) B(ε) = A(ε)
rX

i=1

σr−iε
i =

A(ε)Q
j(1− εbj )

= 1.

This holds for every root ε of F , so B(t)− 1 is divisible by F , that is,

(7.7) A(t)
rX

i=1

σr−it
i ≡ 1 mod F. §

To do. In 1.2, what does “precise shape” mean?


