(Analysing the qsmooth CY h'surfaces.) These are notes from Berkeley, Apr 2006. I messed around with several dozen of the famous 7555 hypersurfaces, trying to write the curve contribution in the form PP*Qorb(1/r(a,r-a),r)/(1-t^r) + PPP/[1,1,1,r]. It's not clear whether this is the right form, or whether we should simply do the product PP*Qorb and write it as Poly/[1,1,r,r]. At the end I write the suite of functions that partly automates the analysis. More simply, P_C = Num/[1,1,r,r], where Num is symmetric polynomial of deg 2r+2 with support [3..2r-1]. The expectation is that an open range of polynomials will occur. That is, there are r-1 free coefficients. different curves of 1/3 give: 0 -t^5 - 2*t^4 - t^3 -t^5 + t^4 - t^3 -t^5 - t^3 -t^4 +t^4 2*t^5 + t^4 + 2*t^3 3*t^5 + 3*t^3 3*t^5 + 2*t^4 + 3*t^3 3*t^5 + 5*t^4 + 3*t^3 4*t^5 + t^4 + 4*t^3 4*t^5 + 2*t^4 + 4*t^3 5*t^5 + 5*t^3 5*t^5 + 4*t^4 + 5*t^3 6*t^5 + 5*t^4 + 6*t^3 16*t^5 + 31*t^4 + 16*t^3 different curves of 1/4 give: -t^6 + t^5 - t^4 -t^6 - t^5 - t^4 -t^7 - t^6 - t^4 - t^3 -t^7 - 2*t^6 - 3*t^5 - 2*t^4 - t^3 -4*t^7 - 7*t^6 - 9*t^5 - 7*t^4 - 4*t^3 t^7 + 2*t^6 + 2*t^4 + t^3 t^7 + 3*t^6 + 2*t^5 + 3*t^4 + t^3 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 2*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 2*t^3 2*t^7 + 4*t^6 + 4*t^4 + 2*t^3 2*t^7 + 4*t^6 + 2*t^5 + 4*t^4 + 2*t^3 2*t^7 + 3*t^6 + t^5 + 3*t^4 + 2*t^3 2*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 2*t^3 2*t^7 + 4*t^6 + 3*t^5 + 4*t^4 + 2*t^3 2*t^7 + 5*t^6 + 2*t^5 + 5*t^4 + 2*t^3 3*t^7 + 3*t^6 + 3*t^5 + 3*t^4 + 3*t^3 3*t^7 + 6*t^6 + 5*t^5 + 6*t^4 + 3*t^3 5*t^7 + 9*t^6 + 10*t^5 + 9*t^4 + 5*t^3 8*t^7 + 15*t^6 + 17*t^5 + 15*t^4 + 8*t^3 different curves of 1/5(1,4) give: 2*t^8 + 2*t^6 + 2*t^4 3*t^8 + 3*t^6 + 3*t^4 -t^9 - t^8 - 3*t^7 - 2*t^6 - 3*t^5 - t^4 - t^3 -t^9 - 2*t^8 - 3*t^7 - 4*t^6 - 3*t^5 - 2*t^4 - t^3 t^9 + t^8 + 3*t^7 + t^6 + 3*t^5 + t^4 + t^3 t^9 + 3*t^8 + 3*t^7 + 2*t^6 + 3*t^5 + 3*t^4 + t^3 t^9 + 3*t^8 + 3*t^7 + 4*t^6 + 3*t^5 + 3*t^4 + t^3 2*t^9 + 4*t^8 + 6*t^7 + 2*t^6 + 6*t^5 + 4*t^4 + 2*t^3 curves of 1/5(2,3) give: 2*t^9 + 4*t^8 + 6*t^7 + 5*t^6 + 6*t^5 + 4*t^4 + 2*t^3 -5*t^9 - 2*t^8 - 6*t^7 - 8*t^6 - 6*t^5 - 2*t^4 - 5*t^3 curve of 1/6(1,5) 10*t^11 + 18*t^10 + 30*t^9 + 39*t^8 + 49*t^7 + 39*t^6 + 30*t^5 + 18*t^4 + 10*t^3 curves of 1/7(1,6) give -4*t^13 + t^12 - 5*t^11 - 4*t^9 - 4*t^8 - 4*t^7 - 5*t^5 + t^4 - 4*t^3 1/17(1,16) gives (-2*t^33 - 4*t^32 - 5*t^31 - 3*t^30 - 5*t^29 - 9*t^28 - 9*t^27 - 6*t^26 - 10*t^25 - 12*t^24 - 13*t^23 - 11*t^22 - 13*t^21 - 15*t^20 - 19*t^19 - 14*t^18 - 19*t^17 - 15*t^16 - 13*t^15 - 11*t^14 - 13*t^13 - 12*t^12 - 10*t^11 - 6*t^10 - 9*t^9 - 9*t^8 - 5*t^7 - 3*t^6 - 5*t^5 - 4*t^4 - 2*t^3) (-2*t^33 - 5*t^32 - 5*t^31 - 3*t^30 - 6*t^29 - 9*t^28 - 9*t^27 - 7*t^26 - 10*t^25 - 12*t^24 - 14*t^23 - 11*t^22 - 13*t^21 - 16*t^20 - 19*t^19 - 14*t^18 - 19*t^17 - 16*t^16 - 13*t^15 - 11*t^14 - 14*t^13 - 12*t^12 - 10*t^11 - 7*t^10 - 9*t^9 - 9*t^8 - 6*t^7 - 3*t^6 - 5*t^5 - 5*t^4 - 2*t^3) (-6*t^33 - 12*t^32 - 13*t^31 - 11*t^30 - 17*t^29 - 24*t^28 - 26*t^27 - 22*t^26 - 29*t^25 - 35*t^24 - 39*t^23 - 34*t^22 - 40*t^21 - 46*t^20 - 53*t^19 - 45*t^18 - 53*t^17 - 46*t^16 - 40*t^15 - 34*t^14 - 39*t^13 - 35*t^12 - 29*t^11 - 22*t^10 - 26*t^9 - 24*t^8-17*t^7-11*t^6 - 13*t^5 - 12*t^4 - 6*t^3) K := FieldOfFractions(R); A := [15,1,2,2,3,7]; curve term is 1*Qorb(2,[1,1],2)/(1-t^2) A := [15,1,1,2,4,7]; curve term is 0 A := [16,2,2,3,4,5]; doesn't work A := [16,1,3,3,4,5]; curve term is 1*Qorb(3,[1,2],3)/(1-t^3) +3*t^3/Denom([1,1,1,3]) A := [16,1,2,4,4,5]; curve term is 0 A := [16,1,2,3,5,5]; curve term is 1*Qorb(5,[2,3],5)/(1-t^5) +(t^3+t^5)/Denom([1,1,1,5]); A := [16,1,1,4,5,5]; curve term is Qorb(5,[1,4],5)/(1-t^5)+ (2*t^3+2*t^4+2*t^5)/Denom([1,1,1,5]) A := [16,1,2,3,4,6]; curve terms are 1*Qorb(2,[1,1],2)/(1-t^2) and t^3/Denom([1,1,1,3]); A := [16,1,1,4,4,6]; curve term is (2*t^3+2*t^4)/Denom([1,1,1,4]); P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,2,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(2,[1,1],2)/(1-t^2) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 0*Qorb(2,[1,1],2)/(1-t^2) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,2,3,3],[4,2,3,3],[4,2,3,3],[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 4*Qorb(2,[1,1],2)/(1-t^2) - 1*Qorb(3,[1,2],3)/(1-t^3) - 2*t^3/Denom([1,1,1,3]) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,3,3,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) - 3*t^3/Denom([1,1,1,3]) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,2,4,4],[4,1,1,2],[4,1,1,2],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0 ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[3,2,2,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(5,[2,3],5)/(1-t^5) - (t^3+t^5)/Denom([1,1,1,5]) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := []; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(5,[1,4],5)/(1-t^5) - (2*t^3+2*t^4+2*t^5)/Denom([1,1,1,5]) ; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(2,[1,1],2)/(1-t^2) - t^3/Denom([1,1,1,3]); P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,1,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - (2*t^3+2*t^4)/Denom([1,1,1,4]); A := [16,1,2,2,4,7]; curve term is 4*Qorb(2,[1,1],2)/(1-t^2); A := [16,1,2,2,3,8]; curve term is 2*Qorb(2,[1,1],2)/(1-t^2); A := [16,1,1,3,3,8]; curve term is 1*Qorb(3,[1,2],3)/(1-t^3)+4*t^3/Denom([1,1,1,3]); A := [16,1,1,2,4,8]; curve term is 0! A := [17,2,3,3,4,5]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) -2*t^3/Denom([1,1,1,3]) +1*Qorb(2,[1,1],2)/(1-t^2) A := [17,2,2,3,5,5]; curve terms are 1*Qorb(5,[2,3],5)/(1-t^5) -(5*t^3-3*t^4+5*t^5)/Denom([1,1,1,5]) +1*Qorb(2,[1,1],2)/(1-t^2) A := [17,1,2,4,5,5]; curve term is 1*Qorb(5,[1,4],5)/(1-t^5)-(t^3-2*t^4+t^5)/Denom([1,1,1,5]) A := [17,1,2,3,5,6]; curve term is -t^3/Denom([1,1,1,3]) only! A := [17,2,2,3,3,7]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) - 3*t^3/Denom([1,1,1,3]) and 1*Qorb(2,[1,1],2)/(1-t^2); A := [16,1,2,2,4,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -4*Qorb(2,[1,1],2)/(1-t^2); A := [16,1,2,2,3,8]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[3,2,2,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -2*Qorb(2,[1,1],2)/(1-t^2); A := [16,1,1,3,3,8]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := []; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(3,[1,2],3)/(1-t^3) -4*t^3/Denom([1,1,1,3]); A := [16,1,1,2,4,8]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B]; A := [17,2,3,3,4,5]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,3,3,4],[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) + 2*t^3/Denom([1,1,1,3]) - 1*Qorb(2,[1,1],2)/(1-t^2) ; A := [17,2,2,3,5,5]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[3,2,2,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(5,[2,3],5)/(1-t^5) + (5*t^3-3*t^4+5*t^5)/Denom([1,1,1,5]) - 1*Qorb(2,[1,1],2)/(1-t^2) ; A := [17,1,2,3,5,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,2,3],[5,1,1,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] + t^3/Denom([1,1,1,3]) ; A := [17,2,2,3,3,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,2,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) + 3*t^3/Denom([1,1,1,3]) - 1*Qorb(2,[1,1],2)/(1-t^2) ; A := [17,1,3,4,4,5]; not qsmooth at 5 -- a triumph for my algorithm A := [17,2,2,3,5,5]; curve of 1/2 gives Q2 curve of 1/5(2,3) gives Q523+(-5*t^5+3*t^4-5*t^3)/Denom([1,1,1,5]); A := [17,1,2,4,5,5]; curve terms is 1*Qorb(5,[1,4],5)/(1-t^5) -(t^5 - 2*t^4 + t^3)/Denom([1,1,1,5]); A := [17,1,2,3,5,6]; curve term is -1*t^3/Denom([1,1,1,3]); A := [17,2,2,3,3,7]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) -3*t^3/Denom([1,1,1,3]) +1*Qorb(2,[1,1],2)/(1-t^2); A := [17,1,2,3,4,7]; B := [[7,1,2,4],[4,2,3,3],[3,1,1,1]]; curve terms is 1*Qorb(2,[1,1],2)/(1-t^2); A := [17,1,2,3,3,8]; B := [[8,2,3,3]]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) -t^3/Denom([1,1,1,3]) -2*Qorb(2,[1,1],2)/(1-t^2); A := [17,1,1,2,5,8]; B := [[5,1,1,3],[8,1,2,5]]; curve term is 1*Qorb(2,[1,1],2)/(1-t^2) A := [18,2,3,3,5,5]; B := [[3,2,2,2],[3,2,2,2],[3,2,2,2],[3,2,2,2],[3,2,2,2],[3,2,2,2]]; curve term is 1*Qorb(5,[2,3],5)/(1-t^5) +(4*t^5 - 3*t^4 + 4*t^3)/Denom([1,1,1,5]); A := [18,2,3,3,4,6]; B := [[4,2,3,3]]; curve terms are 3*Qorb(3,[1,2],3)/(1-t^3) and 2*Qorb(2,[1,1],2)/(1-t^2); A := [18,2,2,3,5,6]; curve terms are 3*Qorb(2,[1,1],2)/(1-t^2) and -3*t^3/Denom([1,1,1,3]); A := [18,1,3,3,5,6]; curve term is 3*Qorb(3,[1,2],3)/(1-t^3) +3*t^3/Denom([1,1,1,3]); A := [18,1,2,3,6,6]; curve terms all 0! A := [17,1,2,4,5,5]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(5,[1,4],5)/(1-t^5) + (t^5 - 2*t^4 + t^3)/Denom([1,1,1,5]); A := [17,1,2,3,5,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,2,3],[5,1,1,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] + 1*t^3/Denom([1,1,1,3]); A := [17,2,2,3,3,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,2,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) + 3*t^3/Denom([1,1,1,3]) - 1*Qorb(2,[1,1],2)/(1-t^2); A := [18,2,2,3,5,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,1,2,2]]; // this is false P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 3*Qorb(2,[1,1],2)/(1-t^2) + 3*t^3/Denom([1,1,1,3]); - 3*Qorb(3,[1,2],3)/(1-t^3) + 3*t^3/Denom([1,1,1,3]); - 3*Qorb(2,[1,1],2)/(1-t^2) ; A := [18,1,2,3,6,6]; P := (1-t^A[1])/Denom(A[2..6]); A := [18,1,3,3,5,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,1,1,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 3*Qorb(3,[1,2],3)/(1-t^3) - 3*t^3/Denom([1,1,1,3]); - 0*Qorb(2,[1,1],2)/(1-t^2) ; A := [18,1,2,3,6,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,2,3],[6,1,2,3],[6,1,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 0*Qorb(3,[1,2],3)/(1-t^3) - 0*Qorb(2,[1,1],2)/(1-t^2) ; A := [18,1,1,2,6,8]; curve term is 0! A := [18,2,2,2,3,9]; curve terms are 9*Qorb(2,[1,1],2)/(1-t^2) and -2*t^3/Denom([1,1,1,3]); A := [18,1,2,3,3,9]; curve term is 2*Qorb(3,[1,2],3)/(1-t^3) +t^3/Denom([1,1,1,3]); A := [18,1,2,2,4,9]; curve term 4*Qorb(2,[1,1],2)/(1-t^2) A := [19,2,3,4,5,5]; curve term is +1*Qorb(5,[2,3],5)/(1-t^5) -(2*t^3+2*t^5)/Denom([1,1,1,5]); A := [19,1,3,4,5,6]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) +2*t^3/Denom([1,1,1,3]); A := [19,1,2,4,5,7]; curve term 0! A := [18,1,1,2,6,8]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[8,1,1,6]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B]; A := [18,2,2,2,3,9]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := []; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 9*Qorb(2,[1,1],2)/(1-t^2) + 2*t^3/Denom([1,1,1,3]); A := [18,1,2,3,3,9]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := []; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 2*Qorb(3,[1,2],3)/(1-t^3) - t^3/Denom([1,1,1,3]); A := [18,1,2,2,4,9]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 4*Qorb(2,[1,1],2)/(1-t^2) A := [19,2,3,4,5,5]; A := [19,2,3,4,5,5]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[3,2,2,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(5,[2,3],5)/(1-t^5) + (2*t^3+2*t^5)/Denom([1,1,1,5]); A := [19,1,3,4,5,6]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,3,4,5],[5,1,1,3],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) - 2*t^3/Denom([1,1,1,3]); A := [19,1,2,4,5,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[5,1,2,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 0*Qorb(3,[1,2],3)/(1-t^3) - 0*Qorb(2,[1,1],2)/(1-t^2) ; A := [24,1,2,4,5,12]; curve terms 0! A := [24,1,2,3,6,12]; curve terms 0! A := [24,1,1,4,6,12]; curve term is -2*Qorb(2,[1,1],2)/(1-t^2) (note the minus!) A := [24,1,1,2,8,12]; curve term is 0! A := [25,3,4,5,6,7]; curve terms are 1*Qorb(3,[1,2],3)/(1-t^3) +2*t^3/Denom([1,1,1,3]) and 1*Qorb(2,[1,1],2)/(1-t^2); A := [25,2,4,5,7,7]; curve terms are 1*Qorb(7,[2,5],7)/(1-t^7) +(-3*t^7 + 4*t^6 - 6*t^5 + 4*t^4 - 3*t^3)/Denom([1,1,1,7]) and 1*Qorb(2,[1,1],2)/(1-t^2); A := [25,1,4,6,7,7]; curve term is 1*Qorb(7,[1,6],7)/(1-t^7) +(2*t^7 + 2*t^6 - t^5 + 2*t^4 + 2*t^3)/Denom([1,1,1,7]); A := [25,1,5,5,6,8]; curve term 3*Qorb(2,[1,1],2)/(1-t^2) A := [24,1,2,4,5,12]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[5,1,2,2],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B]; K := FieldOfFractions(R); A := [24,1,2,3,6,12]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B:=[[6,1,2,3],[6,1,2,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B]; A := [24,1,1,4,6,12]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,1,4],[6,1,1,4],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] + 2*Qorb(2,[1,1],2)/(1-t^2) A := [24,1,1,2,8,12]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B]; A := [25,3,4,5,6,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,3,5,6],[6,3,4,5],[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(3,[1,2],3)/(1-t^3) - 2*t^3/Denom([1,1,1,3]) - 1*Qorb(2,[1,1],2)/(1-t^2); A := [25,2,4,5,7,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(7,[2,5],7)/(1-t^7) - (-3*t^7 + 4*t^6 - 6*t^5 + 4*t^4 - 3*t^3)/Denom([1,1,1,7]) - 1*Qorb(2,[1,1],2)/(1-t^2); A := [25,1,4,6,7,7]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,4,7,7],[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 1*Qorb(7,[1,6],7)/(1-t^7) - (2*t^7 + 2*t^6 - t^5 + 2*t^4 + 2*t^3)/Denom([1,1,1,7]); A := [25,1,5,5,6,8]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[8,5,5,6],[6,2,5,5],[5,1,1,3],[5,1,1,3],[5,1,1,3],[5,1,1,3],[5,1,1,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 3*Qorb(2,[1,1],2)/(1-t^2) - 0*Qorb(3,[1,2],3)/(1-t^3) - 0*Qorb(2,[1,1],2)/(1-t^2) ; A := [39,1,4,5,10,19]; B := [[19,4,5,10],[10,1,4,5],[4,1,1,2]]; curve of 1/5 gives term (1/t+t)*Qorb(5,[1,4],5)/(1-t^5) -(t^3+t^5)/Denom([1,1,1,5]) curve of 1/2 gives 0 A := [39,1,3,6,10,19]; B := [[19,3,6,10],[10,1,3,6],[6,1,1,4]]; curve of 1/3 gives term 6*t^3/Denom([1,1,1,3]) A := [39,1,2,4,13,19]; curve of 1/2 gives term 0 A := [40,4,8,9,9,10]; B := [5 times [4,1,1,2]]; curve of 1/2 gives term -2*Qorb(2,[1,1],2)/(1-t^2) curve of 1/9 gives term 1*Qorb(9,[1,8],9)/(1-t^9) (-2*t^9 - 2*t^8 - 2*t^7 + 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3)/Denom([1,1,1,9]) A := [40,5,7,8,10,10]; B := [[10,5,7,8],[10,5,7,8],[10,5,7,8],[10,5,7,8],[7,1,3,3]]; curve of 1/5(2,3) gives term 4*(1/t+1+t)*Qorb(5,[2,3],5)/(1-t^5) -2*(t^3+t^5)/Denom([1,1,1,5]) curve of 1/2 gives -3*Qorb(2,[1,1],2)/(1-t^2) A := [40,3,8,9,10,10]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; := [[10,3,8,9],[10,3,8,9],[10,3,8,9],[10,3,8,9],[9,1,1,7]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 4*(1/t+1+t)*Qorb(5,[2,3],5)/(1-t^5) - -2*(t^3+t^5)/Denom([1,1,1,5]) A := [40,5,7,8,10,10]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[10,5,7,8],[10,5,7,8],[10,5,7,8],[10,5,7,8],[7,1,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 4*(1/t+1+t)*Qorb(5,[2,3],5)/(1-t^5) - -2*(t^3+t^5)/Denom([1,1,1,5]) - -3*Qorb(2,[1,1],2)/(1-t^2) A := [40,4,8,9,9,10]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[4,1,1,2],[4,1,1,2],[4,1,1,2],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - -2*Qorb(2,[1,1],2)/(1-t^2) - 1*Qorb(9,[1,8],9)/(1-t^9) - (-2*t^9 - 2*t^8 - 2*t^7 + 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3)/Denom([1,1,1,9]) ; A := [39,1,2,4,13,19]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[19,2,4,13],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] A := [39,1,3,3,13,19]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[19,3,3,13],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1], [3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1],[3,1,1,1]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] A := [39,1,3,6,10,19]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[19,3,6,10],[10,1,3,6],[6,1,1,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - 0*Qorb(3,[1,2],3)/(1-t^3) - 6*t^3/Denom([1,1,1,3]) ; A := [39,1,4,5,10,19]; P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[19,4,5,10],[10,1,4,5],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] - -1*Qorb(2,[1,1],2)/(1-t^2) - (1/t+t)*Qorb(5,[1,4],5)/(1-t^5) + (t^3+t^5)/Denom([1,1,1,5]) ; A := [1,2,4,6,7,20]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,11,24]; curve of 1/2 gives 2*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,13,26]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,7,7,21]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,7,10,24]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,7,14,28]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,8,13,28]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,9,12,28]; curve of 1/3 gives -1*Qorb(3,[1,2],3)/(1-t^3) -t^3/Denom([1,1,1,3]); curve of 1/2 gives 0 A := [1,2,4,9,15,31]; curve of 1/3 gives -2*Qorb(3,[1,2],3)/(1-t^3) -t^3/Denom([1,1,1,3]); curve of 1/2 gives 0 A := [1,2,4,10,13,30]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,10,17,34]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,11,17,35]; curve of 1/2 gives 0 A := [1,2,4,12,17,36]; curve of 1/2 gives 0 A := [1,2,4,13,19,39]; curve of 1/2 gives 0 A := [1,2,4,13,20,40]; curve of 1/2 gives 0 A := [1,2,4,14,21,42]; curve of 1/2 gives Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,14,21,42]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2) +(t^4-t^5+t^6)/Denom([1,1,1,7]); A := [1,2,4,13,20,40]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[13,2,4,7],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,13,19,39]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[19,2,4,13],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,12,17,36]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[17,1,4,12],[4,1,1,2],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,11,17,35]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[17,2,4,11],[11,1,4,6],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,10,17,34]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[10,1,2,7],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,10,13,30]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[13,1,2,10],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,9,15,31]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[15,2,4,9],[9,1,2,6],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2) +2*Qorb(3,[1,2],3)/(1-t^3) +t^3/Denom([1,1,1,3]); A := [1,2,4,9,12,28]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[12,1,2,9],[9,2,3,4],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -0*Qorb(2,[1,1],2)/(1-t^2) +1*Qorb(3,[1,2],3)/(1-t^3) +t^3/Denom([1,1,1,3]); A := [1,2,4,6,7,20]; A := [1,2,4,8,13,28]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[13,1,4,8],[8,1,2,5],[4,1,1,2],[4,1,1,2],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; A := [1,2,4,7,14,28]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[7,1,2,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; A := [1,2,4,7,10,24]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[10,1,2,7],[7,1,2,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; A := [1,2,4,7,7,21]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[7,1,2,4],[7,1,2,4],[4,2,3,3]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; A := [1,2,4,6,13,26]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[6,1,1,4],[4,1,1,2]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -1*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; A := [1,2,4,6,11,24]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[11,1,4,6]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -2*Qorb(2,[1,1],2)/(1-t^2); A := [1,2,4,6,7,20]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[7,1,2,4],[6,1,1,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -Qorb(2,[1,1],2)/(1-t^2); A := [1,16,50,133,200,400]; B := [[133,16,50,67],[50,1,16,33],[50,1,16,33],[8,1,2,5]]; curve of 1/2 gives term Qorb(2,[1,1],2)/(1-t^2); A := [1,16,51,60,128,256]; B := [[60,1,8,51],[16,1,3,12],[16,1,3,12],[51,9,16,26]]; curve of 1/4 gives -Qorb(4,[1,3],4)/(1-t^4); curve of 1/3 gives -Qorb(3,[1,2],3)/(1-t^3)+2*t^3/Denom([1,1,1,3]) A := [1,16,51,68,120,256]; This one is pretty amazing. B := [[120,1,51,68],[51,16,17,18],[68,1,16,51],[8,1,3,4]]; curve of 1/3 gives -t^3/Denom([1,1,1,3]) curve of 1/4 give -(5+9*t+5*t^2)*(1+t^2)/t^2*Qorb(4,[1,3],4)/(1-t^4) (still slightly anomalous) curve of 1/17(1,16) gives regular term +(-3*t^15-2*t^14-t^13-2*t^11-2*t^10-3*t^9 +2*t^8-3*t^7-2*t^6-2*t^5-t^3-2*t^2-3*t)/t^8*Qorb(17,[1,16],17)/(1-t^17) -(-2*t^17-3*t^16+2*t^14-3*t^13-3*t^12 +2*t^10-3*t^8-3*t^7+2*t^6-3*t^4-2*t^3)/Denom([1,1,1,17]); A := [1,16,51,68,136,272]; B := [[51,1,16,34],[8,1,3,4],[68,1,16,51],[68,1,16,51]]; curve of 1/4 gives term -(-t^4+t^5-t^6)/t^5*Qorb(4,[1,3],4)/(1-t^4)+8*(t^3+t^4)/Denom([1,1,1,4]); curve of 1/17(1,16) gives -(-5*t^14-4*t^13-2*t^12+t^11-4*t^10-4*t^9-5*t^8+3*t^7-5*t^6 -4*t^5-4*t^4+t^3-2*t^2-4*t-5)/t^7*Qorb(17,[1,16],17)/(1-t^17) +t^3*(-6*t^14-6*t^13-t^12+2*t^11-6*t^10-7*t^9-2*t^8+4*t^7 -2*t^6-7*t^5-6*t^4+2*t^3-t^2-6*t-6)/Denom([1,1,1,17]) A := [1,16,51,136,204,408]; B := [[16,1,3,12],[8,1,3,4],[51,1,16,34],[51,1,16,34],[68,1,16,51]]; curve of 1/4 gives term -(t^4-t^5+t^6)/t^5*Qorb(4,[1,3],4)/(1-t^4)-4*(t^3+t^4)/Denom([1,1,1,4]); ? or minus that curve of 1/17 gives +(-4*t^14-2*t^13-t^12-t^11-2*t^10-2*t^9-4*t^8+t^7-4*t^6 -2*t^5-2*t^4-t^3-t^2-2*t-4)/t^7*Qorb(17,[1,16],17)/(1-t^17) -(-2*t^14-2*t^13-t^12+2*t^11-2*t^10-4*t^9+3*t^7-4*t^5 -2*t^4+2*t^3-t^2-2*t-2)*t^3/Denom([1,1,1,17]) A := [1,16,52,61,130,260]; curve of 1/2 gives -Q2 A := [1,16,52,69,86,224]; curve of 1/2 gives -Q2 A := [1,16,52,69,122,260]; curve of 1/2 gives -Q2 A := [1,16,52,69,138,276]; curve of 1/2 gives 0 A := [1,16,67,84,168,336]; curve of 1/4 gives Q4 + (1/t+t)*Q4 A := [1,16,68,85,102,272]; curve of 1/2 gives -2*Q2 curve of 1/17(1,16) gives -Z1/t^7*Q17 +Z2/Denom([1,1,1,17]) where Z1 is -2*t^14+t^13-3*t^12+3*t^11-5*t^10+5*t^9-8*t^8+6*t^7 -8*t^6+5*t^5-5*t^4+3*t^3-3*t^2+t-2 and Z2 is 2*t^16-2*t^15+4*t^14-4*t^13+5*t^12-5*t^11+7*t^10 -5*t^9+5*t^8-4*t^7+4*t^6-2*t^5+2*t^4 A := [1,16,68,85,170,340]; curve of 1/2 gives -1*Q2 curve of 1/17(1,16) gives -Z1/t^7*Q17 +Z2/Denom([1,1,1,17]) where Z1 is -t^14-t^13-2*t^12+2*t^11-3*t^10+3*t^9-6*t^8+3*t^7 -6*t^6+3*t^5-3*t^4+2*t^3-2*t^2-t-1 and Z2 is t^17+2*t^16+3*t^14-3*t^13+4*t^12-2*t^11+5*t^10 -2*t^9+4*t^8-3*t^7 + 3*t^6 + 2*t^4 + t^3 A := [1,16,70,88,105,280]; curve of 1/2 gives 0 A := [1,16,84,117,134,352]; curve of 1/2 gives -Q2 curve of 1/3 gives -Q3+t^3/Denom([1,1,1,3]) A := [1,16,86,120,137,360]; curve of 1/2 gives -Q2 A := [1,16,100,133,150,400]; curve of 1/2 gives 0 A := [1,16,102,136,153,408]; curve of 1/2 gives -Q2 curve of 1/17(1,16) gives -Z1/t^7*Q17 +Z2/Denom([1,1,1,17]) where Z1 is -3*t^14+t^13-3*t^12+t^11-4*t^10+3*t^9-6*t^8+3*t^7 -6*t^6+3*t^5-4*t^4+t^3-3*t^2+t-3 and Z2 is t^17+t^16-t^15+2*t^14-t^13+2*t^12-2*t^11+5*t^10 -2*t^9+2*t^8-t^7+2*t^6-t^5+t^4+t^3 A := [1,17,19,57,77,171]; no curve A := [1,17,22,31,70,141]; curve of 1/2 gives -3*Q2 A := [1,16,52,61,130,260]; B:=[[61,1,8,52],[26,1,9,16],[16,1,2,13],[4,1,1,2]]; line of half give term -Qorb(2,[1,1],2)/(1-t^2) A := [1,16,51,136,204,408]; B := [[16,1,3,12],[8,1,3,4],[51,1,16,34],[51,1,16,34],[68,1,16,51]]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +(-4*t^14-2*t^13-t^12-t^11-2*t^10-2*t^9-4*t^8+t^7-4*t^6 -2*t^5-2*t^4-t^3-t^2-2*t-4)/t^7*Qorb(17,[1,16],17)/(1-t^17) -(-2*t^14-2*t^13-t^12+2*t^11-2*t^10-4*t^9+3*t^7-4*t^5 -2*t^4+2*t^3-t^2-2*t-2)*t^3/Denom([1,1,1,17]) -(t^4-t^5+t^6)/t^5*Qorb(4,[1,3],4)/(1-t^4)-4*(t^3+t^4)/Denom([1,1,1,4]); A := [1,16,51,68,136,272]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); B := [[51,1,16,34],[8,1,3,4],[68,1,16,51],[68,1,16,51]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +(-5*t^14-4*t^13-2*t^12+t^11-4*t^10-4*t^9-5*t^8+3*t^7-5*t^6 -4*t^5-4*t^4+t^3-2*t^2-4*t-5)/t^7*Qorb(17,[1,16],17)/(1-t^17) -t^3*(-6*t^14-6*t^13-t^12+2*t^11-6*t^10-7*t^9-2*t^8+4*t^7 -2*t^6-7*t^5-6*t^4+2*t^3-t^2-6*t-6)/Denom([1,1,1,17]) +(-t^4+t^5-t^6)/t^5*Qorb(4,[1,3],4)/(1-t^4) -8*(t^3+t^4)/Denom([1,1,1,4]); A := [1,16,51,68,120,256]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[120,1,51,68],[51,16,17,18],[68,1,16,51],[8,1,3,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +t^3/Denom([1,1,1,3]) +(5+9*t+5*t^2)*(1+t^2)/t^2*Qorb(4,[1,3],4)/(1-t^4) +(-3*t^15-2*t^14-t^13-2*t^11-2*t^10-3*t^9 +2*t^8-3*t^7-2*t^6-2*t^5-t^3-2*t^2-3*t)/t^8*Qorb(17,[1,16],17)/(1-t^17) -(-2*t^17-3*t^16+2*t^14-3*t^13-3*t^12 +2*t^10-3*t^8-3*t^7+2*t^6-3*t^4-2*t^3)/Denom([1,1,1,17]); A := [1,16,51,60,128,256]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[60,1,8,51],[16,1,3,12],[16,1,3,12],[51,9,16,26]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +Qorb(3,[1,2],3)/(1-t^3)-2*t^3/Denom([1,1,1,3]) +Qorb(4,[1,3],4)/(1-t^4); A := [1,16,50,133,200,400]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[133,16,50,67],[50,1,16,33],[50,1,16,33],[8,1,2,5]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -Qorb(2,[1,1],2)/(1-t^2); A := [1,16,43,120,180,360]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[60,1,16,43],[43,1,8,34],[16,1,4,11],[8,1,3,4]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +(2+3*t+2*t^2)*(1+t^2)/t^2*Qorb(4,[1,3],4)/(1-t^4); A := [1,16,43,52,60,172]; P := (1-t^A[6])/Denom(A[1..5]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; B := [[60,1,16,43],[52,1,8,43],[16,1,4,11]]; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +(2+3*t+4*t^2+3*t^3+2*t^4)/t^2*Qorb(4,[1,3],4)/(1-t^4); // or P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] +(2+3*t+2*t^2)*(1+t^2)/t^2*Qorb(4,[1,3],4)/(1-t^4); A := [39,1,3,4,12,19]; B := [[19,3,4,12],[12,1,4,7],[3,1,1,1]]; curve of 1/4 gives term -(1/t+t)*Qorb(4,[1,3],4)/(1-t^4) -(t^3+t^4)/Denom([1,1,1,4]); curve of 1/3 gives 2*t^3/Denom([1,1,1,3]) A := [39,1,3,6,10,19]; A := [360,1,16,43,120,180]; B := [[60,1,16,43],[43,1,8,34],[16,1,4,11],[8,1,3,4]]; the curve of 1/4 give term (1/t+t)*Qorb(4,[1,3],4)/(1-t^4) +2*(t^3+t^4)/Denom([1,1,1,4]); A := [224,1,16,43,52,112]; B := [[52,1,8,43],[43,1,16,26],[16,1,4,11],[16,1,4,11]]; the curve of 1/4 give term (1/t+t)*Qorb(4,[1,3],4)/(1-t^4) +2*(t^3+t^4)/Denom([1,1,1,4]); A := [172,1,16,43,52,60]; B := [[60,1,16,43],[52,1,8,43],[16,1,4,11]]; the curve of 1/4 give term (1/t+t)*Qorb(4,[1,3],4)/(1-t^4) +2*(t^3+t^4)/Denom([1,1,1,4]); A := [25,4,4,5,5,7]; B := [[7,4,5,5],[5,2,4,4],[5,2,4,4],[5,2,4,4],[5,2,4,4],[5,2,4,4]]; curve term is 1*Qorb(4,[1,3],4)/(1-t^4) +(3*t^3+3*t^4)/Denom([1,1,1,4]); A := [19,3,3,4,4,5]; B := [[5,3,3,4]]; curve of 1/3 gives 1*Qorb(3,[1,2],3)/(1-t^3) +3*t^3/Denom([1,1,1,3]) and curve of 1/4 gives 1*Qorb(4,[1,3],4)/(1-t^4) -(2*t^3+2*t^4)/Denom([1,1,1,4]) A := [17,1,1,3,4,8]; B := [[3,1,1,1],[8,1,3,4]]; line of 1/4 gives (1/t+1+t)*Qorb(4,[1,3],4)/(1-t^4) +(2*t^3 + 2*t^4)/Denom([1,1,1,4]); A := [18,1,3,4,4,6]; B := [[3,1,1,1],[3,1,1,1],[3,1,1,1]]; curve term is (-1/t+1-t)*Qorb(4,[1,3],4)/(1-t^4); A := [18,2,3,4,4,5]; B := [[5,2,4,4]]; line of 1/4 and curve of 1/2 line gives 1*Qorb(4,[1,3],4)/(1-t^4) curve gives 2*Qorb(2,[1,1],2)/(1-t^2) A := [16,2,3,3,4,4]; B := [[4,2,3,3],[4,2,3,3],[4,2,3,3],[4,2,3,3]]; curve terms are 4*Qorb(2,[1,1],2)/(1-t^2) + 1*Qorb(3,[1,2],3)/(1-t^3) + 2*t^3/Denom([1,1,1,3]) A := [16,1,3,4,4,4]; B := [[3,1,1,1]]; curve term is 4*Qorb(4,[1,3],4)/(1-t^4) +(2*t^3+2*t^4)/Denom([1,1,1,4]) A := [17,1,1,3,4,8]; B := [[3,1,1,1],[8,1,3,4]]; curve of 1/4 gives (1/t+1+t)*Qorb(4,[1,3],4)/(1-t^4) + (2*t^3 + 2*t^4)/Denom([1,1,1,4]); P := (1-t^A[1])/Denom(A[2..6]); PPP := S!(P*(1-t)^4); a := Coefficient(PPP,1); b := Coefficient(PPP,2); PI := (1+a*t+b*t^2+a*t^3+t^4)/(1-t)^4; P-PI-&+[K | Qorb(b[1],b[2..4],0) : b in B] -4*Qorb(4,[1,3],4)/(1-t^4) -(2*t^3+2*t^4)/Denom([1,1,1,4]); [[a,b,c] : a in [-2..2], b in [-2..2], c in [-2..2] | X eq (a/t+b+a*t)*Qorb(4,[1,3],4)/(1-t^4)+(c*t^3+c*t^4)/Denom([1,1,1,4])]; A := [2,19,22,45,66,154]; curve of 1/3 gives -Q3-t^3/Denom([1,1,1,3]); A := [2,19,24,32,75,152]; curve of 1/2 gives 0 curve of 1/3 gives -2*Q3-4*t^3/Denom([1,1,1,3]); A := [2,19,24,64,107,216]; curve of 1/2 gives -4*Q2 A := [2,19,24,88,131,264]; curve of 1/2 gives -2*Q2 A := [2,19,25,30,74,150]; curve of 1/2 gives 3*Q2 A := [2,19,28,35,49,133]; curve of 1/2 gives 0 curve of 1/7(2,5) gives (1/t^2 - 2 + t^2)*Q725 +(-4*t^7 + 4*t^6 - 7*t^5 + 4*t^4 - 4*t^3)/Denom([1,1,1,7]) A := [2,19,28,35,84,168]; curve of 1/7(2,5) gives -*Q725 +(-2*t^7 + 2*t^6 - 3*t^5 + 2*t^4 - 2*t^3)/Denom([1,1,1,7]) A := [2,19,28,98,147,294]; curve of 1/7(2,5) gives (2/t^2+1/t-1+t+2*t^2)*Q725 +(-3*t^7 + 5*t^6 - 7*t^5 + 5*t^4 - 3*t^3)/Denom([1,1,1,7]) A := [2,19,44,109,155,329]; A := [2,19,65,86,153,325]; A := [2,19,65,86,172,344]; A := [2,19,65,151,218,455]; A := [2,19,67,90,159,337]; A := [2,19,82,204,307,614]; A := [2,19,84,105,210,420]; curve of 1/2 gives Q2 curve of 1/21(2,19) gives big challenge A1/t^9*Q21219 + B1/Denom([1,1,1,21]) where > A1; t^18 + t^17 + 2*t^16 + 2*t^15 + t^14 + t^13 + 2*t^12 + 2*t^11 - t^10 - 2*t^9 - t^8 + 2*t^7 + 2*t^6 + t^5 + t^4 + 2*t^3 + 2*t^2 + t + 1 > B1; -3*t^21 - 2*t^19 - 2*t^18 - 4*t^16 + 3*t^15 - 8*t^14 + 7*t^13 - 8*t^12 + 7*t^11 - 8*t^10 + 3*t^9 - 4*t^8 - 2*t^6 - 2*t^5 - 3*t^3 A := [2,19,103,246,370,740]; curve of 1/2 gives 8*Q2 A := [2,19,122,284,427,854]; curve of 1/2 gives 15*Q2 A := [2,19,124,166,311,622]; curve of 1/2 gives 2*Q2 A := [2,20,23,35,60,140]; curve of 1/2 gives Q2 curve of 1/5(2,3) gives -2*Q523 -(t^3-t^4+t^5)/Denom([1,1,1,5]) A := [2,20,23,45,70,160]; curve of 1/2 gives 2*Q2 curve of 1/5(2,3) gives (-1-t-t^2)*Q523 -(t^3-t^4+t^5)/Denom([1,1,1,5]) A := [2,20,23,70,95,210]; A := [2,20,23,70,115,230]; A := [2,20,27,32,79,160]; A := [2,20,27,69,91,209]; curve of 1/2 gives 3*Q2, curve of 1/3 gives -4*Q3-5*t^3/Denom([1,1,1,3]) A := [2,20,32,37,89,180]; A := [2,20,32,43,95,192]; A := [2,20,32,53,105,212]; A := [2,20,33,45,100,200]; A := [2,20,33,55,90,200]; A := [2,20,33,55,110,220]; A := [2,20,33,110,165,330]; A := [2,20,43,65,130,260]; A := [2,20,45,66,67,200]; A := [2,20,64,75,159,320]; A := [10,21,135,322,478,966]; A := [10,21,156,364,541,1092]; A := [10,21,165,392,588,1176]; A := [10,22,23,88,143,286]; A := [10,22,33,45,55,165]; A := [10,22,42,63,115,252]; A := [10,22,53,85,148,318]; A := [10,22,53,85,170,340]; A := [10,22,53,138,201,424]; A := [10,22,85,106,117,340]; A := [10,23,38,109,157,337]; A := [10,23,76,195,281,585]; A := [10,23,76,195,304,608]; A := [10,23,99,264,396,792]; A := [10,23,122,150,305,610]; A := [10,23,152,195,228,608]; A := [10,24,39,47,60,180]; A := [10,24,78,95,183,390]; A := [10,24,126,155,315,630]; A := [10,25,27,38,62,162]; A := [10,25,27,38,100,200]; B := [[25,2,10,13],[25,2,10,13],[10,5,7,8],[10,5,7,8], [38,24,25,27],[27,10,19,25]; General task: given A := [a1,..a5,d] (I) write routine to find B as a function of A; (II) write routine for P,PPP,PI,P-PI (done) A := [10,25,27,38,100,200]; B := [[25,2,10,13],[25,2,10,13],[10,5,7,8],[10,5,7,8], [38,24,25,27],[27,10,19,25]]; curve of 1/5(2,3) gives 2*(1/t+t)*Qorb(5,[2,3],5)/(1-t^5) +(-2*t^3+2*t^4-2*t^5)/Denom([1,1,1,5]); Q2 := Qorb(2,[1,1],2)/(1-t^2); Q3 := Qorb(3,[1,2],3)/(1-t^3); Q4 := Qorb(4,[1,3],4)/(1-t^4); A := [1,3,13,17,21,55]; B := [[13,1,4,8],[17,1,3,13],[21,1,3,17]]; curve of 1/3 gives 2*t^3/Denom([1,1,1,3]) A := [1,3,13,17,31,65]; B := [[3,1,1,1],[17,1,3,13],[31,1,13,17]]; no curve A := [1,3,13,17,34,68]; no curve A := [1,3,13,18,22,57]; curve of 1/2 but X(A) is 0 A := [1,3,13,30,44,91]; curve of 1/2 gives -1*Q2, curve of 1/3 gives 2*t^3/Denom([1,1,1,3]) A := [1,3,13,31,48,96]; no curve A := [1,3,14,21,38,77]; curve of 1/3 gives 4*t^3/Denom([1,1,1,3]) A := [1,3,14,33,48,99]; curve of 1/2 gives 0 curve of 1/3 gives 3*t^3/Denom([1,1,1,3]) A := [1,3,14,35,52,105]; curve of 1/2 gives 0 curve of 1/3 gives 4*t^3/Denom([1,1,1,3]) A := [1,3,15,19,23,61]; curve of 1/3 gives -Q3+4*t^3/Denom([1,1,1,3]); A := [1,3,15,19,37,75]; no curve A := [1,3,15,19,38,76]; curve of 1/3 gives -Q3+5*t^3/Denom([1,1,1,3]); A := [1,3,15,20,36,75]; curve of 1/3 gives 2*t^3/Denom([1,1,1,3]) curve of 1/4 gives (1/t+t)*Q4; Q4 := Qorb(4,[1,3],4)/(1-t^4); A := [1,3,15,34,52,105]; curve of 1/3 gives -4*t^3/Denom([1,1,1,3]); A := [1,3,15,35,51,105]; curve of 1/3 gives Q3+2*t^3/Denom([1,1,1,3]); A := [1,3,16,20,24,64]; curve of 1/2 gives -1*Q2, curve of 1/3 gives 2*t^3/Denom([1,1,1,3]) A := [1,3,16,20,40,80]; curve of 1/4 gives (3/t+1+3*t)*Q4 + 2*(t^3+t^4)/Denom([1,1,1,4]) A := [1,3,16,24,28,72]; curve of 1/4 gives (1/t-1+t)*Q4 A := [1,3,16,24,44,88]; curve of 1/3 gives 3*t^3/Denom([1,1,1,3]) curve of 1/4 gives (1/t-1+t)*Q4 A := [1,3,16,40,60,120]; curve of 1/4 gives .. Write routine to find B as a function of A; I explain how to do a systematic study of basket of points and curves Example A := [1,16,51,136,204,408]; **Relevant**: r = hcf >= 2 of a nonempty subset of ai. This is calculated by the routine Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; For r in Relevant, calculate [a mod r : a in A]; Amod := [a mod r : a in A]; let J = subset of ai == 0 mod r. J is nonempty by definition of relevant. Case division based on J: 1. J = [i]. "Coordinate point on X" This means that r = ai does not divide d or any aj. By qsmooth, r divides(d-aj) for some j. The point Pi in X is a 1/r(ak,al,am) point where ak,al,am are the 3 remaining a in A. Action: Put it in B. Test for this case by Boolean // if #[a : a in Amod[1..5] | a eq 0] eq 1 and Amod[6] ne 0 // then .. The following magma function constructs the orbifold point: Amod := [a mod r : a in A]; if #[a : a in Amod[1..5] | a eq 0] eq 1 and Amod[6] ne 0 then Insert(Exclude(Exclude(Amod[1..5],Amod[6]),0),1,r); end if; // Operator on Sequences. Given r = 16 and the sequence // Amod = [1,0,3,8,12,8], take Amod[1..5], exclude Amod[6] // exclude 0 and insert r in the 1st position to get [16,1,3,12]. 2. J = [i,d]. "Coordinate point not on X" This means that r = ai divides d and no aj. The pure power xi^(d/ai) in f, so Pi notin X. No action. Test for this case by Boolean // if #[a : a in Amod[1..5] | a eq 0] eq 1 and Amod[6] eq 0 // then .. (do nothing) 3. J = [i,j]. "Coordinate line is a line of transverse orbifold points" This means that r = hcf(ai,aj) does not divide d or any of the 3 remaining ak,al,am in A. By qsmooth, one of these, say ak == d mod r, and the line Lij is a line of transverse 1/r(al,am). Action: Put it in C Test for this case by Boolean // if #[a : a in Amod[1..5] | a eq 0] eq 2 and Amod[6] ne 0 // then .. (put line Lij in C) 4. J = [i,j,d]. "Coordinate line meets X in orbifold points" This means that r = hcf(ai,aj) divides d and no ak. There are a number of 1/r(ak,al,am) points on the open line Lij, where ak,al,am are the 3 remaining a in A. The set is S^0(d) in PP(ai,aj). Action: Add this number of 1/r(ak,al,am) points to B Test for this case by Boolean // if #[a : a in Amod[1..5] | a eq 0] eq 2 and Amod[6] eq 0 // then .. (calculate number of S^0(d) in PP(ai,aj) and add that // number of 1/r(ak.al,am) points to B) 5. J = [i,j,k,d]. "Coordinate plane meets X in curve of transverse orbifold point" Action: Add curve C(d) in PP(ai,aj,ak) of 1/r(al,am) to C. Test for this case by Boolean // if #[a : a in Amod[1..5] | a eq 0] eq 3 and Amod[6] eq 0 // then .. (put curve C(d) in PP(ai,aj,ak) of 1/r(al,am) in C) > A := [1,16,51,136,204,408]; > Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; // that is, I want r to divide a subset, and to be its GCD > R; [ 4, 8, 16, 17, 51, 68, 136, 204 ] [[a mod r : a in A] : r in Relevant]; [ [ 1, 0, 3, 0, 0, 0 ], // case 5, J is [2,4,5] and [6] [ 1, 0, 3, 0, 4, 0 ], // case 4, J is [2,4] and [6] [ 1, 0, 3, 8, 12, 8 ], // case 2, J is [2] [ 1, 16, 0, 0, 0, 0 ], // case 5, J is [3,4,5] and [6] [ 1, 16, 0, 34, 0, 0 ], // case 4, J is [3,5] and [6] [ 1, 16, 51, 0, 0, 0 ], // case 4, J is [4,5] and [6] [ 1, 16, 51, 0, 68, 0 ], // case 2, J is [4] and [6] [ 1, 16, 51, 136, 0, 0 ] // case 2, J is [5] and [6] ] function OldBask(A); B := []; Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; for r in Relevant do Amod := [a mod r : a in A ]; case #[a : a in Amod[1..5] | a eq 0]: when 0:; // no sing, do nothing when 4:; //error when 5:; //error when 1: if Amod[6] ne 0 then Append(~B, Insert(Exclude(Exclude(Amod[1..5],Amod[6]),0),1,r)); end if; // If ai divides d then Pi not on X when 2: if Amod[6] eq 0 then // calculate the number S^0(d) in PP(ai,aj) Num := Floor(A[6]/LCM([a : a in A[1..5] | a mod r eq 0])); for i in [1..Num] do Append(~B, Insert(Exclude(Exclude(Amod[1..5],0),0),1,r)); end for; end if; // If r does not divides d then Lij is line of 1/r when 3:; // necessarily r divides d and curve of 1/r end case; end for; return B; // also return C end function; AA := [[1,4,4,5,10,24], [1,4,4,6,9,24], [1,4,4,7,9,25], [1,4,4,7,12,28], [1,4,4,7,16,32], [1,4,4,9,14,32], [1,4,4,9,18,36], [1,4,4,13,18,40], [1,4,4,17,26,52], [1,4,5,5,5,20], [1,4,5,5,10,25], [1,4,5,5,14,29], [1,4,5,6,8,24], [1,4,5,7,8,25], [1,4,5,8,18,36], [1,4,5,10,10,30], [1,4,5,10,16,36], [1,4,5,10,20,40], [1,4,5,15,20,45], [1,4,5,15,24,49], [1,4,5,20,30,60]]; AA := [[1,3,4,4,4,16],[1,3,4,4,8,20],[1,3,4,4,9,21],[1,3,4,4,12,24],[1,3,4,5,12,25],[1,3,4,6,7,21],[1,3,4,6,10,24],[1,3,4,6,14,28],[1,3,4,8,8,24],[1,3,4,8,12,28],[1,3,4,8,13,29],[1,3,4,8,15,31],[1,3,4,8,16,32],[1,3,4,12,16,36]]; AA := [[1,3,17,22,26,69],[1,3,17,39,60,120],[1,3,18,23,27,72],[1,3,18,25,46,93],[1,3,18,41,63,126],[1,3,18,43,64,129],[1,3,19,45,68,136],[1,3,21,28,52,105],[1,3,21,29,33,87],[1,3,21,29,54,108],[1,3,21,49,73,147],[1,3,21,50,75,150],[1,3,22,51,77,154],[1,3,23,31,35,93],[1,3,23,54,81,162],[1,3,24,32,36,96],[1,3,24,32,60,120],[1,4,4,5,10,24],[1,4,4,6,9,24],[1,4,4,7,9,25],[1,4,4,7,12,28],[1,4,4,7,16,32],[1,4,4,9,14,32],[1,4,4,9,18,36],[1,4,4,13,18,40],[1,4,4,17,26,52],[1,4,5,5,5,20],[1,4,5,5,10,25],[1,4,5,5,14,29],[1,4,5,6,8,24]]; AA := [[7,34,36,84,127,288],[7,36,143,336,486,1008],[7,36,150,350,507,1050],[7,36,179,408,630,1260],[7,36,186,422,651,1302],[7,36,251,588,882,1764],[7,38,54,144,243,486],[7,38,60,210,315,630],[7,41,165,385,557,1155],[7,41,206,467,721,1442],[7,43,51,53,154,308],[7,50,58,60,175,350],[7,59,60,84,210,420],[8,8,9,10,13,48],[8,8,9,11,28,64],[8,9,10,18,35,80],[8,9,10,18,45,90],[8,9,10,23,50,100],[8,9,10,27,27,81],[8,9,10,27,46,100],[8,9,10,27,54,108],[8,9,10,45,63,135],[8,9,11,16,28,72],[8,9,11,16,36,80],[8,9,11,16,44,88],[8,9,12,23,52,104],[8,9,12,25,54,108],[8,9,13,15,15,60]]; // Given a qsmooth CY hypersurface Y(d) in PP(a1,.. a5) // in the form A := [a1,..a5,d], parse it into the form // PI (initial term) // plus sum Porb(1/r(a,b,c)) with 1/r(a,b,c) in PointBasket // plus sum Ar/[1,1,r,r] where Ar is a symmetric polynomial // of symmetric degree 2r+2 with support in [3..2r-1]. function P(A) return (1-t^A[6])/Denom(A[1..5]); end function; function PI(A) // Initial term P_I, only for CY 3folds n1 := #[i : i in A | i eq 1]; n2 := #[i : i in A | i eq 2]; return (1 + (n1-4)*t + (n2+Binomial(n1-3,2))*t^2 + (n1-4)*t^3 + t^4)/(1-t)^4; end function; function Bask(A); B := []; C := []; Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; for r in Relevant do Amod := [a mod r : a in A ]; case [#[a : a in Amod[1..5] | a eq 0],#[a : a in Amod[6..6] | a eq 0]]: // when 0:; // no sing, do nothing when 4:; //error when 5:; //error when [1,0]: Append(~B, Insert(Exclude(Exclude(Amod[1..5],Amod[6]),0),1,r)); // end this case: If ai divides d then Pi not on X when [2,1]: // calculate the number S^0(d) in PP(ai,aj) Num := Floor(A[6]/LCM([a : a in A[1..5] | a mod r eq 0])); for i in [1..Num] do Append(~B, Insert(Exclude(Exclude(Amod[1..5],0),0),1,r)); end for; // end if; If r does not divides d then Lij is line of 1/r when [2,0]: Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),Amod[6]),1,r)); when [3,1]:; // necessarily r divides d and curve of 1/r Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),0),1,r)); end case; end for; return B, C; end function; function PointTerms(B) return &+[K | Qorb(b[1],b[2..4],0) : b in B]; end function; function X(A) return P(A)-PI(A)-PointTerms(Bask(A)); end function; function PC(A) // The curve terms P_C B,C := Bask(A); YY := PartialFractionDecomposition(X(A)/t^3*(1-t)^4); return [t^3/(1-t)^4*&+[K|y[3]/y[1]^y[2] : y in YY | IsDivisibleBy(1-t^r,y[1])] where r is c[1] : c in C]; end function; for A in AA[1..100] do B := Bask(A); sing := [b : b in B | #b ne 4]; if sing ne [] then A; sing[1]; end if; end for; > BB:=[A : A in AAA | (([8,3,5] in C) or ([8,5,3] in C)) where B,C is Bask(A)]; [X(A) eq &+[ K | y : y in PC(A)] : A in BB]; The same but with the basket sorted for easier searching function P(A) return (1-t^A[6])/Denom(A[1..5]); end function; function PI(A) // Initial term P_I, only for CY 3folds n1 := #[i : i in A | i eq 1]; n2 := #[i : i in A | i eq 2]; return (1 + (n1-4)*t + (n2+Binomial(n1-3,2))*t^2 + (n1-4)*t^3 + t^4)/(1-t)^4; end function; function Bask(A); B := []; C := []; Relevant := [r : r in [2..A[5]] | r eq GCD([Integers() | A[i] : i in [1..5] | A[i] mod r eq 0])]; for r in Relevant do Amod := [a mod r : a in A ]; case [#[a : a in Amod[1..5] | a eq 0],#[a : a in Amod[6..6] | a eq 0]]: // when 0:; // no sing, do nothing when 4:; //error when 5:; //error when [1,0]: Append(~B, Insert(Sort(Exclude(Exclude(Amod[1..5],Amod[6]),0)),1,r)); // end this case: If ai divides d then Pi not on X when [2,1]: // calculate the number S^0(d) in PP(ai,aj) Num := Floor(A[6]/LCM([a : a in A[1..5] | a mod r eq 0])); for i in [1..Num] do Append(~B, Insert(Sort(Exclude(Exclude(Amod[1..5],0),0)),1,r)); end for; // end if; If r does not divides d then Lij is line of 1/r when [2,0]: Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),Amod[6]),1,r)); when [3,1]:; // necessarily r divides d and curve of 1/r Append(~C, Insert(Exclude(Exclude(Exclude(Amod[1..5],0),0),0),1,r)); end case; end for; return B, C; end function; function PointTerms(B) return &+[K | Qorb(b[1],b[2..4],0) : b in B]; end function; function X(A) return P(A)-PI(A)-PointTerms(Bask(A)); end function; function PC(A) // The curve terms P_C B,C := Bask(A); YY := PartialFractionDecomposition(X(A)/t^3*(1-t)^4); return [t^3/(1-t)^4*&+[K|y[3]/y[1]^y[2] : y in YY | IsDivisibleBy(1-t^r,y[1])] where r is c[1] : c in C]; end function;