K4 := CyclotomicField(4); // provides i with i^2 = -1 GL2 := GL(2,K4); // the general linear group I := elt< GL2 | i,0,0,-i >; J := elt< GL2 | 0,1,-1,0 >; K := I*J; H8 := sub< GL2 | I,J >; Order(H8); [I^2 eq -Id(GL2), J^2 eq -Id(GL2), K^2 eq -Id(GL2), I*J*K eq -Id(GL2)]; A := elt< GL2 | (1+i)/2,(1+i)/2,(-1+i)/2,(1-i)/2 >; B := elt< GL2 | (1+i)/2,(-1+i)/2,(1+i)/2,(1-i)/2 >; A*I eq J*A; A*J eq K*A; A*K eq I*A; BT24 := sub; Order(BT24); // Checks that BT24 is correct B in BT24; A*B*A eq B^2; A*B*A eq B^2; T12 := quo< BT24 | -Id(GL2) >; T12 eq Alt(4); // Although BT24 is a matrix group, Magma makes the quotient // BT24/(centre) as a permutation group, that is identical to A4.