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1 Introduction and the cyclic group Z/r
1.1 General cultural introduction

Group theory is the mathematical description of symmetry:

“Groups are to symmetry what numbers are to counting”

(slogan due to Trevor Hawkes).
Given some structure Σ in mathematics or physics (etc.), a symmetry group

of Σ is a set G of transformations of Σ; the axioms of a symmetry group are
simply that

(1) G contains the identity transformation IdΣ.

(2) for every g ∈ G, the inverse g−1 is also in G.

(3) for every g1, g2 ∈ G, the composite g1 ◦ g2 is also in G.

(These are all closure operations: closure under composition, under inverse, and
under doing nothing.)

For example, G might be the Euclidean group (all rotations and reflections
of E3), or the symmetries of a regular polygon or regular polyhedron, or all the
permutations Sn of a finite set of n elements. Or it might be all the isomorphisms
of a field extension in Galois theory, all the isometries of a metric space, all
the Lorentz transformations of Lorentz space R1,3 in special relativity, or the
internal symmetries of particles in quantum theory.

When studying symmetry, sooner or later you inevitably face questions about
G as an abstract group. As you know, an abstract group is the data of

(a) an abstract set G,

(b) a preferred element e = eG (the “identity” or “neutral element”),

(c) a map i : G→ G (the “inverse map”),

(d) a binary operation m : G×G→ G (the “group multiplication” or “group
law”; I write m(g1, g2) = g1 · g2 for the present discussion),

satisfying the axioms (that you already have in memory):

(1) identity: e · g = g · e = g for all g ∈ G;

(2) inverse: i(g) · g = g · i(g) = e for all g ∈ G;

(3) associative: (g1 · g2) · g3 = g1 · (g2 · g3) for all gi ∈ G.

Conversely, playing with an abstract group G leads inevitably to questions
about whether G arises as a symmetry group, and in how many different ways.
For example, we can view the dihedral group D2m as an abstract group: its
elements are

e, a, a2, . . . , am−1, b, ab, a2b, . . . , am−1b, (1.1)
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and its multiplication law is determined by the rules

am = e, b2 = e and ba = am−1b. (1.2)

However, D2m also arises as the group of rotations and reflections of a regular
m-gon, making its salient features immediately clear. Or we can make the same
abstract group D2m act as a permutation group of a set of m elements, with

a = m-cycle (0, 1, 2, . . . ,m− 1) and b = inversion i↔ m− i− 1 (1.3)

[See Ex. 1.5.] This is summarised in the slogan

“a symmetry group is an abstract group, and an abstract group is a
symmetry group.”

Symmetries often appear naturally as linear operations; mathematically, this
means we can write them as linear transformations of a vector space, or as
matrices acting on vectors. A matrix group is a set G of matrices that forms a
symmetry group in the sense of the above definition, so that (say) the product
g1g2 of any two matrices g1, g2 ∈ G is still in G. Representation theory studies
all possible ways of mapping a given abstract group to a matrix group.

A foretaste of the main results of the course: given a finite group G, a finite
dimensional linear representation of G over C breaks up uniquely as a direct
sums of irreducible representations, of which there are only finitely many (up
to isomorphism throughout that sentence). Whereas a linear representation is
defined as a set of m×m matrices corresponding to the elements of G (so a large
and cumbersome collection of data), it is determined up to isomorphism by its
character, which is just a complex valued function on the conjugacy classes of
G. The characters of irreducible representations are written as an r × r array
of algebraic numbers that (for a tractable group) forms a kind of entertaining
and usually not very difficult crossword puzzle. By the end of the course you
will all be experts at solving these.

I hope to persuade you over the course of the term that group representations
are just as easy to work with as vector spaces, and a lot easier than much of
2nd year Linear Algebra. I will proceed gently, pausing to make a few major
ideological pronouncements. The course is mostly about representations, and I
only need basic properties of finite groups.

1.2 The cyclic group Z/r
I start with the cyclic groups Z/r for several reasons:

(i) They are by a long way the most useful in applications.

(ii) The representation theory of Z/r appears as an essential component of
the character theory of general finite groups.

(iii) We can treat it with almost no prerequisites.
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(iv) It motivates and gives direction to the general theory.

(v) At the same time I take the opportunity to remind you of a couple of basic
algebraic tricks that you may need.

A representation of Z/r on a vector space V is a linear map ϕ : V → V such
that ϕr = IdV (that is, ϕ composed with itself r times is the identity). I work
over C, and assume V is finite dimensional, with basis {e1, . . . , em}. Then ϕ is
given by a matrix M satisfying Mr = Id. It follows from the theory of Jordan
Normal Form that M can be diagonalised, with diagonal entries rth roots of 1.
However, the result I want is easier, and it is best to go through a proof from
first principles.

By all means accept the statement and ignore the proof for the moment if
you prefer. The example given after the theorem will be more entertaining and
enlightening than the boring algebraic proof.

Theorem Let V be a finite dimensional vector space over C and ϕ : V → V a
C-linear map such that ϕn = IdV . Write M for the matrix representing ϕ in a
basis {e1, . . . , em}, so that Mr = Id.

Then M is diagonalisable. In other words, there is a new basis {f1, . . . , fm}
of V made up of eigenvectors of M , so that ϕ(fi) = λifi, with each λi satisfying
λri = 1.

Step 1 An eigenvalue of M is an rth root of unity.

SinceMv = λv, we getM2v = λ2v and so on up to v = Mrv = λrv. Q.E.D.

Step 2 If λ is an eigenvalue of M , its generalised eigenspace Vλ is given by

Vλ =
{
v ∈ V

∣∣ (M − λ)av = 0 for some a > 0
}
, (1.4)

where M − λ means the matrix M − λ Id. I assert that then ϕ(Vλ) ⊂ Vλ.

If (M − λ)av = 0 then (M − λ)aMv = M(M − λ)av = 0; here the matrix
(M−λ)a is a linear combination of powers M i, and of course M commutes with
all of these. Therefore MVλ ⊂ Vλ. Q.E.D.

Step 3 Moreover, the restricted map ϕ : Vλ → Vλ equals λ times the identity.
This is the key simplifying feature arising from Mr = Id.

Write M ′ : Vλ → Vλ for the restricted map. By construction M ′ − λ is a
nilpotent map on Vλ. A standard argument shows that Vλ has a basis for which
M ′−λ is strictly upper triangular. (Induction on the dimension: M ′−λ cannot
be injective; by induction, its image (M ′ − λ)(Vλ) ⊂ Vλ has such a basis. Now
choose a complementary basis of Vλ.)

In this new basis, M ′ is upper triangular with diagonal entries λ. The only
way that such a matrix can satisfy M ′r = 1 is if λr = 0 and the strictly upper
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triangular part is zero. Indeed, write M ′ = λ Id +X with X strictly upper
triangular. Then

(λ Id +X)r = λr Id +rλr−1X +
(
r
2

)
λr−2X2 + · · · . (1.5)

First, by looking at the diagonal entries, we see that λr = 1. Next, since X
is strictly upper triangular, if it is nonzero there is a smallest j with some
Xi,i+j 6= 0. The terms X2, X3 etc. in (1.5) cannot contribute to Xi,i+j so
that rλr−1Xi,i+j = 0, which contradicts the choice of j. Therefore X = 0 and
M ′ = λ Id.

Step 4 Suppose that {λk} are all the eigenvalues of M . Then V is the direct
sum V =

⊕
Vλk

. This implies the theorem.

For any i, the subspaces Vλi
and

∑
k 6=i Vλk

have zero intersection (because a
λi-eigenvector is not a sum of λk-eigenvectors for λk 6= λi). Therefore the sum∑
Vλk

is a direct sum
⊕
Vλk

.
Now for each i, consider the matrix product

Ei =
∏
k 6=i

M − λk
λi − λk

. (1.6)

Viewed as a map Ei : V → V , it is zero on each Vλk
, because one of the factors

is. However, it is the identity on Vλi
: in each factor the numerator M −λk acts

on Vλi
by λi − λk.

It follows that the matrix
∑
k Ek is the identity on

⊕
Vλk
⊂ V , with Ek the

projection to the components of the direct sum.
Finally the product matrix Z =

∏
(M−λk) maps all the Vλk

to zero. Its im-
age is invariant under M . If this is nonzero, then M must have a new eigenvalue
on it, which contradicts the choice of {λk}. Therefore V =

⊕
Vλk

. Q.E.D.
The discussion of Maschke’s theorem in Chapters 2 and 3 include 3 more

proofs of Theorem .

1.3 Example: Z/5 and Z/r for general r

Z/r is the cyclic group of order r with a chosen generator 1. Its elements are
{e, 1, 2, . . . , r − 1} where e = 0 is the neutral element, and the group law takes
a, b 7→ a+ b mod r.

A representation of Z/r over a field K is given by a finite dimensional vector
space V and a K-linear map ϕ : V → V such that ϕr = IdV . In any basis ϕ is
given by a matrix M ∈ GL(m,K) with Mr = Id. The preceding section proved
that M can be diagonalised as long as we work over C; that is, there is a basis
in which M = diag(λ1, λ2, . . . , λm). Necessarily each λi satisfies λri = 1.

Write e0, e1, e2, e3, e4 for the standard basis of K5 (viewed as column vec-
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tors). Consider the matrix

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , so that Me0 = e1, . . . ,Me4 = e0. (1.7)

This M is a permutation matrix: it has a single 1 in each row and column,
and zeros elsewhere. Applying M to the standard basis performs the 5-cycle
(0, 1, 2, 3, 4). Taking the generator 1 ∈ Z/5 to M defines a representation of Z/5
on K5.

Consider the eigenvalue problem Mv = λv for v = t(x0, x1, . . . , x4) (where
t is transpose, the column vector). One calculates

x0 = λx1, x1 = λx2, x2 = λx3, x3 = λx4, x4 = λx0. (1.8)

Thus v is a multiple of (1, λ4, λ3, λ2, λ) and λ5 = 1.
To proceed, we need the 5th roots of 1, so work over C. Write ε = exp 2πi

5 =
cos 2π

5 + i sin 2π
5 . The 5 roots of λ5 = 1 are the powers 1, ε, ε2, ε3, ε4.

Set fj =
∑
i ε
−ijei for j = 0, . . . , 4. The calculation of (1.8) gives Mfj =

εjfj , so that fj is an eigenvector of M with eigenvalue εj . The 5 fj are the
required eigenbasis.

Conversely, starting from an eigenbasis fj of C5 with Mfj = εjfj , if we set
ek = 1

5

∑
j ε
jkfk for k = 0, . . . , 4 then M acts as the 5-cycle (0, 1, 2, 3, 4) on the

ek.

Formulas for ε The equation for the 5th roots of unity splits as

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1). (1.9)

The first factor corresponds to the trivial root x = 1, and the second factor to
the 4 primitive 5th roots of 1, that is, εi for i = 1, 2, 3, 4. It is interesting and
useful for what I want to do later to derive explicit radical expressions for these.
For this, write y = x+ 1

x and

x4 + x3 + x2 + x+ 1

x2
= x2 + x+ 1 +

1

x
+

1

x2
= y2 + y − 1. (1.10)

Then the quadratic formula gives y = −1+
√

5
2 or its conjugate −1−

√
5

2 ; note that
z = y + 1 satisfies z2 = 1 + z and is the “Golden Ratio”. Then x is a root of

x2 − yx+ 1, so that x =
y+
√
y2−4

2 . A little calculation gives

cos
2π

5
=
y

2
=
−1 +

√
5

4
≈ 0.30902 and sin

2π

5
=

√
5 +
√

5

8
≈ 0.95105.

(1.11)
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Figure 1: The 5th roots of 1 as the regular pentagon

1.4 The representation theory of Z/r, general conclusions

The basic thing to understand is the rth roots of 1. There are r of these, forming
the subgroup µr ⊂ C× of the multiplicative group C× = C \ {0} defined by
xr = 1. We can draw them as the vertices of the regular r-gon in S1 ⊂ C×, as
exemplified in Figure 1.

It is often convenient to give µr the generator ε = εr = exp 2πi
r . There are

other choices, of course: any of the ϕ(r) primitive roots of 1, given by εi for
1 ≤ i ≤ r − 1 with i coprime to r. Any such choice provides an isomorphism
Z/r ∼= µr.

A 1-dimensional representation of Z/r over C is a homomorphism ϕ : Z/r →
GL(1,C) = C×; it is determined by the image g of the generator 1. Since gr = 1,
the image ϕ(g) must be in µr, so that there are exactly r possibilities: ϕ(g) = εi

for i ∈ [0, 1, . . . , r − 1].
The above Theorem implies that every representation of Z/r is isomorphic

to a direct sum of 1-dimensional representations, corresponding to a diagonal
matrix with diagonal entries in µr.

The rest of the course treats the same questions for a general finite group G.
We can state the conclusions so far on Z/r in terms suggesting the shape of the
general case. Every representation (finite dimensional, over C) is isomorphic to
a direct sum of irreducibles. There are only finitely many irreducible represen-
tations of G up to isomorphism. An irreducible representation of G is uniquely
determined by its character (a map G → C; for a cyclic group the two notions
are exactly the same thing). Finally, evaluating the characters of irreducible
representations on (conjugacy classes of) elements of G provides an r× r array
of numbers that satisfy the following orthogonality relations:

Proposition Write ρi : Z/r → C× for the representation taking 1 to εi. Then
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for i, j ∈ [0, . . . , r − 1]

∑
g∈Z/r

ρi(g)ρj(g) =

{
r if i = j,

0 else.
(1.12)

Appendix: Representation theory is easy

Some introductory remarks emphasising the easy aspects of the course.

1.5 The group Z/2
A vector space V is Rn or Cn, and a linear map V1 → V2 is a matrix. Once
we choose a basis, an element v ∈ V is a vector. A group means symmetry. A
representation of G is a vector space with G symmetry.

Consider first a vector space V with Z/2 symmetry. This means a linear
map τ : V → V with τ2 = IdV . What can we say about it?

First, for any v ∈ V , the vector u = v + τ(v) is invariant under τ . Next,
in the same way, the vector w = v − τ(v) is anti-invariant under τ , because
τ(w) = τ(v) − τ2(v) = τ(v) − v = −w. In this context, v ∈ V is τ invariant if
and only if v is an eigenvector of τ with eigenvalue +1, and anti-invariant if v
is an eigenvector of τ with eigenvalue −1,

Finally, we can easily recover v and τ(v) from u and w: just do

u+ w = 2v so that v = 1
2 (u+ w), (1.13)

and
u− w = v + τ(v)− v + τ(v) = 2τ(v), (1.14)

so that τ(v) = 1
2 (u− w).

Proposition Write V + for the +1 eigenspace of τ and V − for the −1 eigen-
space. Then

(i) V + = {v + τ(v)
∣∣ v ∈ V } and V − = {v − τ(v)

∣∣ v ∈ V }.
(ii) V = V + ⊕ V −.

(iii) The maps E+ = 1
2 (1 + τ) and E− = 1

2 (1− τ) are the two projectors of the
direct sum. Then E+ + E− = IdV and

(E+)2 = E+, (E−)2 = E−, E+ ◦ E− = 0 (1.15)

(iv) If we choose a basis e1, . . . , ek of V + and fk+1, . . . , fn of V − then τ

written in this basis has the block diagonal form
(

Idk 0
0 − Idn−k

)
.
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This result is the entirety of the representation theory of Z/2. (Notice that
the quantity 1

2 ∈ R or C occurs in taking the average 1
2 (v + τ(v)). All of this

would go wrong if I tried to do the same in characteristic 2.)
You have already seen this argument many times when V = Mat(n× n,R)

is the vector space of n× n matrices and τ is the transpose. Any matrix M is
uniquely expressed M = A + B with A symmetric and B skew: as above, just
take

A = 1
2 (M + τ(M)) and B = 1

2 (M − τ(M)). (1.16)

1.6 Representations of Z/3
A representation of Z/3 is a vector space V and a linear map τ : V → V such
that τ3 = IdV . Exactly as above, for any v ∈ V , we check that v+ τ(v) + τ2(v)
is invariant under τ .

So what? Can we find complementary elements playing the role of v−τ(v) ∈
V − in the above? When discussing Z/2 we used ±1, which are the complex
square roots of 1. For Z/3 we need some basic stuff about the complex cube
roots of 1. (More generally, for Z/n we need the nth roots of 1.) I am sure that
you know all this, but roots of 1 are central to the course, and a little reminder
doesn’t do any harm:

The polynomial x3 − 1 splits as (x − 1)(x2 + x + 1). The quadratic factor

has two roots −1±
√
−3

2 . Writing i for one of the complex square roots of −1
expresses these as

ω =
−1 +

√
−3

2
= exp

2πi

3
= cos

2π

3
+ i sin

2π

3
and ω2 = ω, (1.17)

so that x3 − 1 splits as (x − 1)(x2 + x + 1) = (x − 1)(x − ω)(x − ω2). I write
µ3 = {1, ω, ω2} (LaTeX {\boldsymbol\mu}). These 3 elements form a subgroup
of the multiplicative group C× isomorphic to Z/3. Notice that the coefficients
of x3−1 are the elementary symmetric functions in the 3 elements, for example
1+ω+ω2 = 0. In the Argand plane 1, ω, ω2 are the vertices of a regular triangle
centred at zero.

After these preparations, the representation theory of Z/3 is a mechanical
extension of the above treatment for Z/2. Namely, for any v ∈ V , define

u1 = 1
3 (v + τ(v) + τ2(v)), and

uω = 1
3 (v + ω2τ(v) + ωτ2(v)),

uω2 = 1
3 (v + ωτ(v) + ω2τ2(v)).

(1.18)

Then v = u1 + uω + uω2 , and one calculates easily that

τ(u1) = u1 and τ(uω) = ωuω and τ(uω2) = ω2uω2 . (1.19)

Proposition Let V be a vector space over C and τ : V → V a linear map such
that τ3 = IdV . Then the eigenvalues of τ are elements of µ3. Write V1, Vω, Vω2

for the eigenspaces. Then
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(i) V1 = {v + τ(v) + τ2(v)
∣∣ v ∈ V }, and

Vω = {v + ω2τ(v) + ωτ2(v)
∣∣ v ∈ V },

Vω2 = {v + ωτ(v) + ω2τ2(v)
∣∣ v ∈ V }. (1.20)

(ii) V = V1 ⊕ Vω ⊕ Vω2 .

(iii) The linear maps E1 = 1
3 (1+τ+τ2), Eω = 1

3 (1+ω2τ+ωτ2) and Eω2 = sim.
are the projectors of the direct sum. They satisfy E1 + Eω + Eω2 = IdV ,

(E1)2 = E1, (Eω)2 = Eω, (Eω2)2 = Eω2 ,

E1 ◦ Eω = E1 ◦ Eω2 = Eω ◦ Eω2 = 0.
(1.21)

(iv) Written in a basis of V obtained by concatenating bases of V1, Vω and Vω2 ,

the map τ takes the block diagonal form

(
Idn1

0 0

0 ω Idnω 0

0 0 ω2 Idn
ω2

)
.

1.7 Homework to Chapter 1

1.1. Rotations of R2 For an angle θ ∈ [0, 2π), the matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(1.22)

gives the anticlockwise rotation of R2 through θ.
Find the eigenvalues and eigenvectors of R(θ). For what values of θ can

these be real?

1.2. Past exam question (Jun 2016, Q1(i–iv)

(1) Describe the set of complex cube roots of 1. Give the equation satisfied
by the primitive cube roots, and show how to solve it using the methods
of algebra and the methods of analysis. Prove that this set is a subgroup
of C×. [3]

(2) Determine the irreducible representations of Z/3. [3]

(3) Consider the action of Z/3 on R3 given by the cyclic 3-fold rotation x 7→
y 7→ z 7→ x. Find all R-vector subspaces invariant under this action. [3]

(4) Consider the action of Z/3 on C3 given by the same formula x 7→ y 7→
z 7→ x. Determine its decomposition into irreducible representations. [3]

No solutions will be given.

1.3. Describe the subgroup µ6 ⊂ C× in similar terms. Write out the coordi-
nates of the 6 elements in trig functions and in terms of surds. Determine which
of these are primitive 6th roots of 1, and write out the equation they satisfy.
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1.4. Let ε = exp 2π
5 . Write r5 = 1 + 2ε+ 2ε4 = 1 + 4 cos 2π

5 . Calculate r2
5.

1.5. With ε as in Ex. 1.4, consider the matrices

M =


1 1 1 1 1
1 ε ε2 ε3 ε4

1 ε2 ε4 ε ε3

1 ε3 ε ε4 ε2

1 ε4 ε3 ε2 ε

 (1.23)

and N = tM (transpose complex conjugate – note that ε = ε−1 = ε4). Show
that MN = 5 Id5. Show that 1√

5
M is a unitary matrix, i.e., M · tM = Id5.

1.6. Let ε ∈ C be a primitive rth root of 1. Prove that

r−1∑
i=0

εij =

{
r if j ≡ 0 mod r,

0 else.
(1.24)

1.7. Dihedral group D2m Here are three different descriptions of the dihe-
dral group D2m:

1. Generators and relations:〈
a, b

∣∣ am = e, b2 = e and aba = b
〉
. (1.25)

2. Rotations and reflections of a regular m-gon in the Euclidean plane.

3. Subgroup of the symmetric group Sm generated by the cyclic permutation
(1 2 . . . m) and the reflection fixing 1, namely i↔ m+ 2− i, that is{

(1)(2 m)(3 m− 1) · · · (m+1
2

m+3
2 ) if m is odd, or

(1)(2 m)(3 m− 1) · · · (m2
m
2 + 2)(m2 + 1) if m is even.

(1.26)

Verify that these describe the same group.

1.8 The distinction in (1.26) between m even or odd appears in several con-
texts.

Prove in particular that D4m
∼= D2m × Z/2 if and only if m is odd.

1.9 In Figure 1, the vertices of the regular pentagon are 1 and the primitive
5th roots of 1, with P1 = ε given in (1.11) as a radical expression via two uses
of the quadratic formula. Calculate P2, . . . , P4 in similar terms. The ± in the
quadratic formula means that these 4 points are “conjugate” over Q.

Exercises to Appendix
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1.10 Let V = Mat(n × n,C) and τ : V → V the transpose. Determine the τ
invariant and τ anti-invariant subspaces V +, V − and calculate their dimensions.

1.11 Check the statements (E+)2 = E+ and so on in Proposition, iii.

1.12 More generally, define a projector or an idempotent of V to be a linear
map e : V → V such that e2 = e. If e is an idempotent, show that there
is another idempotent f such that e + f = IdV , and that ef = 0. Prove that
V = e(V )⊕f(V ), with e, f acting as the projections to the two direct summands.

1.13 Let V1, V2 be representations of Z/2, and Vi = V +
i ⊕ V

−
i as in the text.

Calculate HomG(V1, V2).

1.14 If τ3 = IdV show that 1
3 (1 + τ + τ3) is idempotent. [Hint: Calculate

τ ◦ (1 + τ + τ3) and τ2 ◦ (1 + τ + τ3).]

1.15 Cyclic permutation (x, y, z) 7→ (y, z, x) defines a representation of Z/3
on R3 or C3. Find its decomposition into eigenspaces.

1.16 Restricting the permutation (x, y, z) 7→ (y, z, x) to the invariant plane
x+ y+ z = 0 gives a representation of Z/3 on R2 or C2 that we might describe
as x 7→ y and y 7→ −x− y, or the matrix

(
0 1
−1 −1

)
.

1.17 Check that
(

0 1
−1 −1

)3
= Id3. Calculate its eigenvalues and the corre-

sponding eigenvectors. Show that they base the invariant plane C2 defined by
x + y + z = 0. The form of the matrix breaks the (x, y, z) cyclic symmetry.
Notice that for many purposes, including the calculation of eigenvectors you
just did, it is simpler to keep the 3 variables.
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2 Groups and basic theory of KG-modules

2.1 Definitions from group theory

To be complete, I repeat some of what you already know from group theory. I
repeated the definition of (abstract) group G in Chapter 1. A subgroup H ⊂ G
is a subset of G that is itself a group (with the same unit element eG as G,
the same inverse map iG and the same multiplication mG). We know that for
a subset H to be a subgroup, it is enough to check that eG ∈ H and that
g1, g2 ∈ H implies g1g

−1
2 ∈ H.

A subgroup H ⊂ G partitions G into left cosets gH = {gh | h ∈ H};
multiplying gH on the right by elements of H takes gH to itself. The left cosets
of H are disjoint, and each is in bijection with H. The set of left cosets of H
is written G/H. We have G =

⊔
g∈G/H gH (LaTeX \bigsqcup). The definition

of right cosets Hg is similar; the set of right cosets is written H\G (LaTeX
\backslash).

If ϕ : G1 → G2 is a group homomorphism, the image of a subgroup H ⊂ G1

is a subgroup ϕ(H) ⊂ G2. The kernel of ϕ is the set of g ∈ G that map to
the neutral element of G2, that is, kerϕ = {g ∈ G1 | ϕ(g) = eG2

}. A subgroup
H ⊂ G is normal if gHg−1 = H for all g ∈ G; it is equivalent to say that
gH = Hg for all g ∈ G, that is, each left coset of H is equal to a right coset.
We write H CG for H a normal subgroup of G (LaTeX \lhd).

Lemma The kernel of ϕ is a normal subgroup.
Conversely, if H C G then setting (g1H) · (g2H) = g1g2H defines a group

structure on the set G = G/H of left cosets such that the projection map π : G→
G is a surjective group homomorphism with kernel equal to H.

The only little point in the proof is that in the product g1Hg2H, the condi-
tion that H is normal gives Hg2 = g2H, so that g1Hg2H = g1g2H. Q.E.D.

Remark Suppose we ask for a group Γ and a homomorphism q : G→ Γ such
that H ⊂ ker q. Then π : G → G/H = G is the universal solution to this
problem: it has the stated property, and for any other solution q : G → Γ, the

map q factors in a unique way as G
π−→ G

q−→ Γ. That is, π does what is necessary
to kill H, but no more. “Sets of cosets” is a device in set theory that is useful
to construct G = G/H. However, it is usually simpler to ignore the cosets and
think of G as a new group with elements g = g up to equivalence g ∼ gh.

2.2 Some nice examples of groups

The immediate aim is to give some easy examples of groups. I choose these
because their representations can be discussed in terms of explicit matrices.
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Binary dihedral group BD4m Let m be an integer and ε = exp 2πi
2m a primi-

tive 2mth root of 1. (Note the 2m, not m; the point is that εm = −1.) Consider
the two matrices

A =

(
ε 0
0 ε−1

)
and B =

(
0 1
−1 0

)
. (2.1)

Check that A2m = e, Am = B2 = −1 and ABA = B. Rearrange the second
of these to get BAB−1 = A−1. The group generated by A and B is called the
binary dihedral group. Its elements are listed as

Ai and AiB for i = 0, . . . , 2m− 1, (2.2)

and its multiplication law comes from the relations just stated.
The element Am = B2 = −1 commutes with A and B (either because

as a matrix it is scalar diagonal, or because it is a power both of A and of
B). The subgroup {±1} is the centre of BD4m (for m ≥ 2), and the quotient
BD4m /{±1} = D2m is the dihedral group discussed in Chapter 1.

The word binary refers to this central extension by {±1}. We view the
quotient map BD4m → D2m as a “double cover”. Lots of groups have interesting
central extensions or double covers.

Binary tetrahedral group BT24 I introduce the following groups V4, A4,
H8 and BT24.

H8 ⊂ BT24y y
V4 ⊂ A4

(2.3)

Here A4 is the alternating group on 4 elements, or the group of rotations of the
regular tetrahedron (not reflections). The quaternion group

H8 = {±1,±i,±j,±k} (2.4)

consists of the standard unit quaternions, with multiplication determined by

i2 = j2 = k2 = ijk = −1. (2.5)

Check that ij = k and ji = −k etc. As above, the subgroup {±1} is the
centre of H8, and the quotient H8/{±1} = V4

∼= Z/2⊕Z/2 is the Klein 4-group
(or Vierergruppe). The presentation V4 =

〈
a, b, c | a2 = b2 = c2 = abc = e

〉
is

symmetric in the 3 nonzero elements a = (1, 0), b = (0, 1), c = (1, 1), and at the
same time makes clear that V4 = H8/{±1}.

The alternating group A4 has a surjective homomorphism A4 → Z/3. To
see it, consider the action of A4 on the 3 unordered pairs of unordered pairs
{[12, 34], [13, 24], [14, 23]}: if you are number 1, you are paired with number
2 or 3 or 4; the 3-cycle (1)(2, 3, 4) ∈ A4 thus acts as a 3-cycle on the three
pairings. One checks that the kernel of this action is the normal subgroup
{e, (12)(34), (13)(24), (14)(23)} of index 3, isomorphic to V4.
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The quaternion group H8 has the same kind of 3-fold symmetry given by
the 3-cycle (i, j, k). I construct BT24 = 〈H8, a〉 as the abstract group obtained
by adjoining a new generator a to H8 such that

a3 = −1 and aia−1 = j, aja−1 = k, aka−1 = i (2.6)

(so conjugacy by a performs the 3-cycle (i, j, k)). A little calculation using these
relations show that H8 C BT24 is a normal subgroup of index 3, with the left
coset partition BT24 = H8 t aH8 t a2H8. The group multiplication in BT24 is
determined by that in H8 and the relations (2.6). One checks as an extended
exercise that there is a surjective group homomorphism BT24 → A4 with kernel
−1 defined by i 7→ (12)(34) and a 7→ (234), so that in (2.3), the double cover
H8 → V4 extends to a double cover BT24 → A4. (For example, a3 → e so that
−1 7→ e. Then aia−1 7→ (234)(12)(34)(243) = (13)(24), etc.)

2.3 H8 and BT24 as matrix groups

So far these are abstract groups or permutation groups. I can also make H8

into a matrix group H8 ⊂ GL(2,C), by taking i, j, k to the matrices

I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
and K = IJ =

(
0 i
i 0

)
(2.7)

that satisfy the same relations (2.5). (They are called “Pauli matrices” in quan-
tum mechanics.) As a matrix group, BT24 consists of H8 together with the 16
matrices (

a b

−b a

)
with a, b =

±1± i
2

. (2.8)

To see what is happening, consider

A =
1

2

(
1 + i 1 + i
−1 + i 1− i

)
. (2.9)

One checks that A2 = 1
2

(−1+i 1+i
−1+i −1−i

)
, A3 = −1, and

AI =
1

2

(
−1 + i 1− i
−1− i −1− i

)
= JA,

and similarly AJ = KA, AK = IA.

(2.10)

Therefore A, I, J,K satisfy the same relations as a, i, j, k in (2.6). The matrix
group in GL(2,C) generated by A, I, J,K contains H8 as a normal subgroup
(by the conjugacy (2.10)). Since the matrix A has order 6, its order must be
divisible by 3, so ≥ 24. However, it is contained in H8 ∪ AH8 ∪ A2H8, which
implies that it is of order ≤ 24. Therefore A, I, J,K generate a matrix group in
GL(2,C) of order 24, containing H8 and with AH8, A2H8 as its cosets.

More discussion of these groups and their matrix models to follow. . .
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2.4 KG-modules

Our object of study has many names, more or less synonymous: an action
G× V → V of G on a vector space V , a representation of G, a homomorphism
ρ : G → GL(V ), a matrix group G ⊂ GL(n,K), a KG-module V . We will
shortly have the result that a representation is determined up to isomorphism
by its character, adding one more item to this list. I will try to be precise
about which of these I mean, but I doubt if it possible for me to be consistent
or for you to remember which of my conventions applies where. The material
is very simple, and the ambiguities fairly harmless. Rather that worry about
hair splitting precision, let’s embrace diversity, and use whatever language is
convenient.

Definition A representation of a group G on a vector space V over a field K
is a homomorphism ρ : G→ GL(V ). For every g ∈ G, this specifies an invertible
K-linear transformation ρ(g) ∈ GL(V ), with the usual homomorphism axioms:
ρ(e) = IdV (the identity acts trivially) and ρ(g1g2) = ρ(g1)ρ(g2) (multiplication
in the abstract group G goes over to composition of maps in GL(V )). When
more than one representation is in play (say V,W, V1 etc.), I write ρV , ρW , ρ1

etc., to refer to their respective homomorphisms.
Almost always in this course, V is finite dimensional, and dimV is the

dimension of the representation, also written dim ρ. The choice of a basis makes
V = Kn and ρ is then a matrix representation ρ : G → GL(n,K), taking each
g ∈ G to an n× n invertible matrix ρ(g).

A KG-module is a K-vector space V together with a representation ρ : G→
GL(V ). I often omit mention of ρ, writing simply gv = ρ(g)(v) for the effect of
the linear map ρ(g) on vector v ∈ V .

Remark Faithful representations. I say that ρ or V is faithful if ker ρ = {e}
or G = ρ(G) ⊂ GL(V ). This seems fairly pointless at first sight, since ker ρ is a
normal subgroup H CG and ρ induces an inclusion G = G/H ⊂ GL(V ).

However, at some points we are interested in the set of all representations
of G (up to isomorphism), hoping to give it some structure. For example, the
cyclic group µr has 1-dimensional representations ρa : ε 7→ εa for a ∈ Z/r. The
faithful ones happen when a is coprime to r. But the set as a whole has the
structure of cyclic group Z/r.

Remark Group algebra KG. Let K be a field and G an abstract group. The
group algebra KG is the K-vector space based by G (an element is a finite sum
A =

∑
g∈G agg with ag ∈ K), made into an associative K-algebra by the K-

bilinear multiplication KG ×KG → KG determined by (g1, g2) 7→ g1g2. This
implies that the product of A =

∑
g∈G agg and B =

∑
g∈G bgg is

AB =
∑

g1,g2∈G
ag1bg2g1g2. (2.11)
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A module V over the algebra KG is a representation of G over K: the field K
acts on V by scalar multiplication of vectors, and G acts by the given ρ. The
term “KG-module” is an abbreviation used throughout the course, allowing me
to omit mention of ρ. I have just explained its etymology, but the rest of the
course avoids any further explicit reference to the algebra KG. Just remember
that a KG-module is a set V that is a vector space over K with a specified
action of G.

2.5 KG-submodules, homomorphisms, etc.

The immediate aim is to develop the theory of KG-modules, by analogy with
vector spaces. We deal almost exclusively in finite dimensional representations.
The dimension of a representation is the dimension of the vector space V (also
called rank or order). Choosing a basis {e1, . . . , en} of a finite dimensional
vector space V makes V = Kn, and expresses GL(V ) as the group GL(n,K)
of invertible n × n matrices (acting by left multiplication on column vectors
v = t(x1, . . . , xn)). If V is a KG-module, the map ρ : G→ GL(V ) thus becomes
a homomorphism ρ : G → GL(n,K). It is a little exercise to see that two
different bases of V lead to conjugate representations ρ (cf. Ex. 2.6).

Definition A KG-homomorphism α : V1 → V2 of two KG-modules V1, V2 is
a K-linear map of vector spaces that commutes with the G-action, in the sense
that

α(gv) = gα(v) for all g ∈ G and v ∈ V1. (2.12)

Write HomKG(V1, V2) for the set of KG-homomorphisms α : V1 → V2. I ex-
pand out the abbreviations: V1, V2 are KG-modules, so they have given homo-
morphisms ρ1 : G → GL(V1) and ρ2 : G → GL(V2) (implicit in the statement).
On the left-hand side of (2.12), gv is ρ1(g)(v), the action of g ∈ G on V1 by ρ1.
The condition says that when I apply α to ρ1(g)(v), I get the same thing as first
applying α to v, then making g act on the image α(v) by ρ2(g):

V1
α−→ V2

ρ1(g)
y c©

yρ2(g)

V1
α−→ V2

(2.13)

The condition (2.12) says that this diagram commutes (LaTeX \copyright). If
you’re seeing it for the first time, this means the composite α◦ρ1(g) going down
then right equals the composite ρ2(g) ◦ α going right then down.

It is often useful to rewrite the condition as α(v) = ρ2(g−1)αρ1(g)v, or even
abbreviated to α = g−1αg. In terms of the commutative diagram, this says
that, for every g ∈ G, simply going across the top by α is the same K-linear
map as going down by ρ1(g), across by α, and then back up by the inverse
ρ2(g−1) of ρ2(g).
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Definition A KG-submodule U ⊂ V is a vector subspace taken to itself by
every ρV (g). That is ρV (g)(u) ∈ U for every u ∈ U and g ∈ G. We also refer to
U as a G-invariant subspace.

Proposition Given a KG-submodule U ⊂ V , the quotient vector space V/U
has a unique structure of KG-module for which the quotient map q : V → V/U
is a KG-homomorphism.

Proof For x ∈ V/U , choose v ∈ V for which q(v) = x. Since I require q to
be a KG-homomorphism, ρV/U (x) = q(ρV (v)) is uniquely specified. It is well
defined because if v′ is a different choice then q(v′) = q(v), so v−v′ ∈ ker q = U
and then also ρV (v) − ρV (v′) ∈ U , because U is invariant under the action of
each ρV (g), by the assumption that U is a KG-submodule. Then ρV/U (g) is
K-linear for each g, and ρV/U is an action of G on V/U . Q.E.D.

Definition The direct sum of two KG-modules V1 and V2 is the vector space
V1 ⊕ V2 with the diagonal action of G. That is, g acts on V1 ⊕ V2 by

ρV1⊕V2
(g)(v1, v2) =

(
ρ1(g)v1, ρ2(g)v2

)
. (2.14)

As matrix representations, if V1 = Kn1 and V2 = Kn2 then V1 ⊕ V2 = Kn1+n2

with the G-action ρV1⊕V2
: G→ GL(n1 + n2,K) given in block matrix form by

ρV1⊕V2(g) =

(
ρ1(g) 0

0 ρ2(g)

)
. (2.15)

The direct sum has inclusion maps i1 : V1 ↪→ V1 ⊕ V2 and i2 : V2 ↪→ V1 ⊕ V2

and projection maps p1 : V1 ⊕ V2 � V1 and p2 : V1 ⊕ V2 � V2, exactly as for
vector spaces. These satisfy a string of identities of the type p1 ◦ i1 = IdV1 and
p1 ◦ i2 = 0.

Consider E1 = i1 ◦ p1. This project (v1, v2) to v1 ∈ V1 then includes v1 back
into V1 ↪→ V1 ⊕ V2 as (v1, 0). In other works E1 : V1 ⊕ V2 → V1 ⊕ V2 is the
projection of the sum to the first factor. This is a projector or an idempotent:
E2

1 = E1. If fact E2
1 = i1 ◦ p1 ◦ i1 ◦ p1 factors via p1 ◦ i1, which is the identity

of V1. So we might as well cancel out the middle two factors, giving E2
1 = E1.

Similarly for E2 = i2 ◦ p2; we have IdV = E1 + E2, where the two idempotent
terms E1, E2 are the projections to two factors.

The main point of this discussion is Maschke’s theorem 3.1. As a slogan:
under appropriate conditions, a submodule is a direct summand. The next
result provides the main step in the proof.

2.6 Average over G

Given KG-modules V1 and V2, the set of K-linear maps α : V1 → V2 is the vector
space HomK(V1, V2). I rephrase what the commutativity condition (2.13) means
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for an element α ∈ HomK(V1, V2): for each g ∈ G, the map ρ2(g)−1 ◦ α ◦ ρ1(g),
abbreviated as g−1αg, goes down the left, across the bottom, then up the right
of diagram (2.13). The condition is that g−1αg = α for all g ∈ G. There is no
particular reason why it should hold for any-old α ∈ HomK(V1, V2), but we can
enforce it by averaging over all g ∈ G. The following key proposition assumes
G is finite, and its order |G| invertible in K.

Proposition Let G be a finite group. For α ∈ HomK(V1, V2), consider the
average

β =
1

|G|
∑
g∈G

g−1αg ∈ HomK(V1, V2). (2.16)

Then β is a KG-homomorphism, that is, β ∈ HomKG(V1, V2). In other words,
β(xv) = xβ(v) holds for any x ∈ G and any v ∈ V1.

Proof This may look bewildering at first sight, but it is actually very simple
once you see that the g in the sum (2.16) is just a dummy variable. Write out
the value of β(xv) as the sum

β(xv) =
1

|G|
∑
g∈G

g−1αg(xv). (2.17)

Now g(xv) = (gx)(v), and I can rewrite g−1 in terms of gx as g−1 = x(gx)−1.
This expresses each individual term in the sum as x(gx)−1α(gx)v. The sum over
g ∈ G is just the same thing as the sum over gx ∈ G, because g is a dummy
variable, and gx runs through G as g runs through G. Therefore

β(xv) =
1

|G|
∑
g∈G

x(gx)−1α(gx)(v)

=
1

|G|
∑
g∈G

xg−1αg(v)

= x
( 1

|G|
∑
g∈G

g−1αg(v)
)

= xβ(v). Q.E.D.

(2.18)

Addendum Moreover, if α restricted to some KG-submodule U ⊂ V1 is al-
ready a KG-module homomorphism then β|U = α|U . In the same way, if U ⊂ V2

is a KG-submodule with quotient q : V2 → V2/U , and if q ◦ α : V1 → V2/U is
already a KG-module homomorphism then q ◦ β = q ◦ α.

Proof For the addendum, in either case the average is the sum of |G| equal
terms, divided by |G|. Q.E.D.

2.7 Homework to Chapter 2

2.1. Jordan normal form Let M =
(

0 1
−1 2

)
. If e1 = t(1, 1) and e2 = t(0, 1),

calculate Me1 and Me2. Find the eigenvalues of M and its Jordan Normal
Form.
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Let G = Z+ = 〈1〉 be the infinite cyclic group and ρ : G → GL(2,C) its
representation defined by 1 7→M . Show that Ce1 is a nontrivial submodule C2,
but there is no G-invariant complementary subspace, to that Ce1 is not a direct
summand. Thus Maschke’s theorem fails for infinite groups G.

2.2. Characteristic p Let K be a field of characteristic p, and V = K2.
Consider the map ϕ : V → V given by the matrix M = ( 1 1

0 1 ). Show that
M2 = ( 1 2

0 1 ) and M j =
(

1 j
0 1

)
for all j. In particular Mp = IdV (because p = 0

in K), so that V gives a representation of Z/p on V .
As in Question 2.1, ker(M − 1) is a 1-dimensional Z/p-invariant subspace

of V , but there is no Z/p-invariant complementary subspace. Thus Maschke’s
theorem fails without the assumption 1

|G| ∈ K.

2.3. Idempotent matrices Let E1 ∈ Mat(n × n,K) be a matrix that is
idempotent, so satisfies E2

1 = E1. Determine the possible eigenvalues of E1.
Show that E2 = 1 − E1 is also idempotent. Show that kerE1 = imE2 and
kerE2 = imE1, and that V = V1 ⊕ V2 where V1 = imE1 = kerE2 and V2 =
kerE1 = imE2. Write out the matrix representation of E1 and E2 in a basis
made up of e1, . . . , em ∈ V1 and em+1, . . . , en ∈ V2.

2.4. The binary dihedral groups BD4m were defined in 2.2 as matrix groups
in GL(2,C) generated by A,B of (2.1). For m = 1, show that BD4m

∼= Z/4.
Show that if m is even, a homomorphism BD4m → C× takes each of A,B

to {±1}. Deduce that there are 4 different such homomorphisms, so that BD4m

has a surjective homomorphism to the 4-group V4.
If m is odd, show that a homomorphism BD4m → C× either does A 7→

1 and B 7→ ±1 or A 7→ −1 and B 7→ ±i and that BD4m has a surjective
homomorphism to the cyclic group Z/4.

2.5. Same abstract group BD4m. For j = 0, . . . ,m, show that there is a
homomorphism ρj : BD4m → GL(2,C) doing

A 7→
(
εj 0
0 ε−j

)
and B 7→

(
0 (−1)j

1 0

)
. (2.19)

[Hint. Check that these two matrices satisfy the relations of BD4m.]
For even j, the centre {±} of BD4m is contained in ker ρj , so that ρj factors

via a representation of the dihedral group D2m = BD4m /{±}.

2.6. Choice of basis and conjugacy A representation of G on V is a homo-
morphism ρ : G→ GL(V ). Let e1, . . . , en and f1, . . . , fn be two bases of V , and
T the matrix expressing the fi in the basis e1, . . . , en. Suppose that, as in 2.5,
we use e1, . . . , en to express ρ as the matrix representation ρe : G→ GL(n,K),
and likewise ρf in the basis f1, . . . , fn. Show that ρf (g) = Tρe(g)T−1. [Hint:
The ei and fi are column vectors. ρe(g) is the matrix that writes g(ei) in the

19



basis ei, that is, g(ei) =
∑

(ρe(g)ij)ej , etc. Now calculate how Tρe(G)T−1 acts
on T (ei).]

In other words, a change of basis in V leads to conjugate matrix representa-
tions. The tricky part here is to translate the abstract algebra into a meaningful
calculation. Working with CG-modules means that we can usually sweep this
under the carpet.

2.7. Composition and inverse of KG-homorphisms If α : V1 → V2 and
β : V2 → V3 are KG-module homomorphisms, their composite β ◦ α is again a
KG-module homomorphism. [Hint: write out the commutative squares (2.13)
for α and for β, and compose them to form a longer commutative rectangle for
β ◦ α.]

If a KG-module homomorphism α : V1 → V2 is an isomorphism of vector
spaces then its inverse α−1 is again a KG-module homomorphism.

2.8. In Proposition 2.6, if α : V1 → V2 was already CG-linear, then β = α.

2.9. Symmetries of the octahedron etc. as matrix groups Geometric
considerations make it clear that the regular tetrahedron has S4 symmetry per-
muting its 4 vertices. (Or we could take this to be the meaning of “regular”.)
When writing this out in coordinates in 3-space there are a couple of little traps
to avoid, because the first coordinate systems you think of are not orthogonal.

The easy way is to start from the symmetries of the octahedron or the cube.
First observe that the unit points (±1, 0, 0), (0,±1, 0), (0, 0,±1) on the x, y, z
coordinate axes are the 6 vertices of a regular octahedron. Permuting x, y, z
gives an action of S3 and multiplying any of x, y, z by ±1 gives an action of
(Z/2)3. Putting these two together gives the group of order 48 containing the
matrices±1 0 0

0 ±1 0
0 0 ±1

 ,

 0 ±1 0
±1 0 0
0 0 ±1

 ,

 0 ±1 0
0 0 ±1
±1 0 0

 , (2.20)

and similarly for the other permutation matrices
(

1 0 0
0 0 1
0 1 0

)
,
(

0 0 1
0 1 0
1 0 0

)
and

(
0 0 1
1 0 0
0 1 0

)
.

Each of these has determinant ±1. Restricting to the matrices with determinant
+1 gives the subgroup O24 ⊂ SO(3) of order 24, that acts transitively on the 6
vertices and has 4 rotations fixing each vertex. This is the full group of rotational
symmetries of the octahedron.

The regular cube |x|, |y|, |z| ≤ 1 in R3 has the 6 unit points as the centres
of its faces. For example, it meets the plane x = 1 in the square with 4 vertices
1,±1,±1 centred at (1, 0, 0). The cube has the same symmetry group as the
octahedron, so rotational symmetry O24 ⊂ SO(3).

2.10. The tetrahedron has rotational symmetry group T12
∼= A4.

Colour the vertices {±1,±1,±1} of the cube alternately black and white, so
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that the black vertices (having evenly many minuses) are

P0 =

1
1
1

 , P1 =

 1
−1
−1

 , P2 =

−1
1
−1

 , P3 =

−1
−1
1

 . (2.21)

These span a regular tetrahedron ∆. Show that the subgroup of T12 ⊂ O24 that
preserves the colours is the rotational group of symmetries of ∆, and acts on its
vertices as the alternating group A4.

[Hint: The matrices

N1 =

1 0 0
0 −1 0
0 0 −1

 , N2 =

−1 0 0
0 1 0
0 0 −1

 , N3 =

−1 0 0
0 −1 0
0 0 1

 (2.22)

define an action of the Klein 4-group V4 on ∆. Show that T =
(

0 0 1
1 0 0
0 1 0

)
also acts

on ∆, fixing P0 and performing the 3-cycle (1, 2, 3) on P1, P2, P3. Also show
that conjugacy by T performs a 3-cycle on the matrices (N1, N2, N3).]
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3 Irreducible representations

3.1 Maschke’s theorem, first proofs

Let V be a KG-module. Recall from Chapter 2 that a KG-submodule U ⊂ V
is a K-vector subspace of V invariant under the action of G (that is, the action
of any g ∈ G takes U to itself).

Theorem (Maschke’s theorem) Let V be a KG-module (a representation
of G over K). Assume V is finite dimensional over a field K, and G is a finite
group whose order |G| is invertible in K.

Let U ⊂ V be a KG-submodule of V . Then there exists a complementary
KG-submodule W ⊂ V such that V = U ⊕W .

Ex 2.1–2.2 gave counterexamples to the statement if G is infinite, or if |G| =
0 ∈ K (that is, charK = p is a prime dividing |G).

The corresponding result without a group action is a basic fact of linear
algebra: given a subspace U ⊂ V of a finite dimensional vector space V , there
exists a complementary vector subspace W0 ⊂ V , with U ⊕W0 = V . The rules
for ⊕ are that V = U+W0 (that is, every vector v ∈ V can be written v = u+w
with u ∈ U and w ∈ W0) and U ∩W0 = 0, so that the u ∈ U and w ∈ W0

are unique. You remember the proof: first choose a basis e1, . . . , em for U , and
complete it to a basis of V by adding fm+1, . . . , fn. Then W0 = 〈fm+1, . . . , fn〉
is a complement.

First proof Start from a vector space complement W0, so that V = U ⊕W0

as vector space. I am not allowed to assume that the G action on V takes
W0 to itself, since that is exactly what I am trying to prove. The idea is to
bully W0 around a bit to make it G-invariant, by applying the averaging result
Proposition 2.6 to appropriate inclusions and projections of the vector space
direct sum V = U ⊕W0. Roughly, “average out” W0 to make it G-invariant
(although that slogan doesn’t actually mean anything yet).

The inclusion i1 : U ↪→ V is a KG-module homomorphism, because U ⊂ V
is a KG-submodule. I use the chosen direct sum decomposition V = U ⊕W0 to
construct the first projection p0

1 : V → U . It does (u,w) 7→ u, but it depends on
the choice of W0, and is not a priori a KG-module homomorphism. However,
its restriction to U is a left inverse to i1 (that is, it takes (u, 0) 7→ u). Now the
averaging procedure of 2.6 applied to p0

1 gives

p1 =
1

|G|
∑
g∈G

g−1p0
1g : V → U. (3.1)

This is G-invariant by Proposition 2.6, so is a KG-homorphism. Moreover,
each of the |G| summands restricted to U is the identity. Thus p1 is again a
left inverse of i1 by the Addendum to Proposition 2.6. Thus W = ker p1 is
still a vector space complement of U , and is a KG-submodule of V such that
V = U ⊕W . Q.E.D.
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Second proof This is a rather similar variant, working with the quotient
map q : V � V/U rather than the inclusion i1. Given the vector space direct
sum V = U ⊕ W0, the issue is to adjust W0 ⊂ V to be a KG-submodule.
Now U ⊂ V is a KG-submodule, so the quotient vector space V/U has a
unique structure of KG-module for which the quotient map q : V � V/U is a
KG-module homomorphism (see Proposition 2.4). Restricting q to W0 gives
an isomorphism of vector spaces p : W0 → V/U . Now consider the composite
j0 = i2 ◦ p−1 : V/U → V obtained as the inverse isomorphism p−1 followed by
the inclusion of W0 in the direct sum U ⊕W0 = V . This j0 is a K-linear map
between the two KG-modules V/U and V , and is a right inverse of the quotient
map q : V → V/U (meaning that q ◦ j0 = IdV/U ), “lifting” V/U to W0 ⊂ V .

The averaging procedure of 2.6 applied to j0 now gives

j =
1

|G|
∑
g∈G

g−1j0g : V/U → V. (3.2)

Proposition 2.6 ensures that j is G-invariant, so its image is a KG-submodule
W ⊂ V . Moreover, each of the |G| terms of the summand is a right inverse of
the quotient map q : V → V/U , so that j is again a right inverse of q by the
Addendum to Proposition 2.6, and V = U ⊕W . Q.E.D.

3.2 Irreducible representations

Definition A KG-module V (or the corresponding representation ρ : G →
GL(V )) is irreducible if V 6= 0 and V does not contain any nontrivial KG-
submodule. Or in other words, if U ⊂ V is a KG-submodule, then either U = 0
or U = V .

Corollary Every finite dimensional KG-module V can be written as a direct
sum of irreducible KG-modules, that is V =

⊕
Vi with Vi ⊂ V irreducible.

Proof Indeed, if V is irreducible, there is nothing to prove. Otherwise, it has
a nontrivial KG-submodule U ⊂ V , so that by Maschke’s theorem V = U ⊕W ,
with U and W of strictly smaller dimension. By induction, each of U and W
is a direct sum of irreducible KG-submodules, and so is V . The induction
starts with dimV = 1, since a 1-dimensional K-vector space does not have any
nontrivial vector subspace.

Think of the analogy with prime factorisation of integers. A prime p is
defined by the condition that it is not a unit, and its only divisors are 1 and p
itself. Then every integer is a product of primes. We will shortly also have the
uniqueness in the expression V =

⊕
Vi of the corollary.

Remark A 1-dimensional representation V is automatically irreducible. If V
is a 2-dimensional representation of G then the only way that can V fail to be
irreducible is that the operators ρV (g) for all g ∈ G have a common eigenvector
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in V . For a nontrivial KG-submodule U ⊂ V can only be 1-dimensional, and
then each ρV (g) is a linear map taking U to itself, so any v ∈ U is an eigenvector
of ρV (g). A similar argument works if V is 3-dimensional, because any splitting
V = V1 ⊕ V2 must have one of dimV1 or dimV2 = 1.

3.3 Schur’s lemma

I defined homomorphism of KG-module in 2.4. To say that a KG-module
homomorphism ϕ : V1 → V2 is injective, surjective or bijective just means that
the corresponding map of sets is. However, these are K-linear maps of finite
dimensional vector spaces, and we know from linear algebra that a K-linear map
ϕ : V1 → V2 is injective if and only if it has a K-linear left inverse p : V2 → V1

with p◦ϕ = IdV1 ; Maschke’s theorem guarantees the same with p a KG-module
homomorphism. In the same way, ϕ is surjective if and only if it has a K-linear
right inverse s : V2 → V1 such that ϕ ◦ s = IdV2

. (This restates the set theoretic
properties “injective” and “surjective” in terms of KG-module homomorphisms,
and thus as properties of ϕ in the category of KG-modules. I am using the word
category here in the purely informal sense of “all KG-modules and KG-module
homomorphisms”; this course does not need category theory.)

Finally ϕ : V1 → V2 is bijective if and only if it is an isomorphism of KG-
modules: that is, there exists a KG-module homomorphism ψ : V2 → V1 that is
a 2-sided inverse ψ = ϕ−1 with ψ ◦ ϕ = IdV1

and ϕ ◦ ψ = IdV2
.

The small points involved in proving these assertions were discussed in
Ex. 2.7.

Theorem (Schur’s lemma) (I) Any KG-homomorphism ϕ : V1 → V2 of
irreducible KG-modules V1 and V2 is either 0 or an isomorphism.

(II) Suppose that K is algebraically closed, and let V be a finite dimensional
irreducible KG-module. Then any KG-module homomorphism ϕ : V → V
is a scalar multiple of the identity.

Proof (I) Set U = kerϕ ⊂ V1. This is a KG-submodule, so by the irreducible
assumption, either U = V1 and ϕ = 0, or U = 0 and ϕ is injective. Arguing in
the same way on W = imϕ ⊂ V2 gives that either ϕ = 0 or W = V2 so that ϕ
is surjective. This proves (I).

(II) Now suppose V1 = V2 = V . Write M for the n× n matrix representing
ϕ in some basis of V . The characteristic polynomial PM (t) of M is defined by
PM (t) = det(M − t Idn); clearly (−1)nPM (t) ∈ K[t] is a monic polynomial of
degree n ≥ 1.

I assume that K is algebraically closed, so PM has at least one root λ ∈ K,
for which det(M − λ Idn) = 0. Now ϕ − λ IdV : V → V is a KG-module
homomorphism, but it cannot be an isomorphism because it is represented by
the singular matrix M − λ Idn. Thus (I) implies ϕ = λ IdV . Q.E.D.
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On the one hand, the result is a tautology. On the other hand, it is a subtle
and extremely powerful result that is a vital ingredient in the whole of the rest
of the course. This is the glory of abstract algebra.

Corollary (a) Assume that K is algebraically closed. Suppose that a KG-
module V has two different expressions

V ∼=
n⊕
i=1

Ui and V ∼=
m⊕
j=1

Wj (3.3)

as a direct sum of irreducible KG-modules. Then there is bijection between
the indices i 7→ i′ = j so that Ui ∼= Wi′ .

(b) Quite generally, let U1, . . . , Uk be irreducible KG-modules with no two
isomorphic, and suppose

V1 =
⊕

aiUi and V2 =
⊕

biUi (3.4)

are KG-modules that are obtained as direct sums of the Ui. (I write aU =
U⊕a =

⊕a
i=1 U for the direct sum of a copies of U .) Then a KG-module

homomorphism ϕ : V1 → V2 takes the summand aiUi ⊂ V1 to the summand
biUi ⊂ V2 for each i. Between each summand Ui ⊂ V1 and Ui ⊂ V2 it is
a scalar multiple of the identity, so between aiUi ⊂ V1 and bjUi ⊂ V2 it is
given by an ai× bi matrix. The whole of ϕ is given by a matrix with these
as diagonal blocks.

Proof (a) Write ϕ :
⊕
Ui ∼= V ∼=

⊕
Wj for the composite of the isomorphisms

in (3.3). If V = 0 there is nothing to prove. Otherwise there is at least one
irreducible factor U1 (say). Renumber the Ui so that U1, . . . , Ua are isomorphic,
and Ui 6∼= U1 for i > a. By Schur’s Lemma (I), these first a summands only
have nonzero maps to the irreducible summand Wj isomorphic to the same U1.
However, the restriction of the isomorphism ϕ to their sum

⊕a
i=1 Ui must be

injective, and so by dimension, the decomposition on the right has at least a
such summands. The same applies to all the summands Ui, which proves (a).

(b) Restrict ϕ to each summand aiUi ⊂ V1. By Schur’s lemma (I), ϕ can
only be nonzero when it takes each copy of Ui to the corresponding summand⊕
biUi ⊂ V2. It is a scalar multiple of the identity between each pair of sum-

mands Ui in V1 and V2, and we can represent this as an ai× bi matrix. Q.E.D.

3.4 Some matrix groups and irreducible representations

I describe some irreducible representations for S3, then some for all the nice
groups introduced in 2.2. At present I only have a few ad hoc methods to
work with, and I am not in a position to prove that the lists of irreducible
representations I give are complete. I write out some of the character tables
without explanation. The character table lists the conjugacy classes in G, and
the trace of each conjugacy class on the different irreducible representations. It
will be discussed in detail in what follows.

25



The symmetric group S3 I view S3 as the symmetry group of the regular
triangle in C with vertices µ3 = {1, ω, ω2}, generated by rotation through 2π

3
and reflection (x, y) 7→ (x,−y):

s1c
sω2

sω

a =

(
cos 2π

3 − sin 2π
3

sin 2π
3 cos 2π

3

)
, b =

(
1 0
0 −1

)

(cf. Ex. 1.2).
By this construction S3 = 〈a, b〉 is a matrix group in GL(2,R) ⊂ GL(2,C),

so it has a given representation on V = C2. I claim that this representation
is irreducible over C. In fact, a nontrivial CG-submodule U ⊂ V must be 1-
dimensional, so a simultaneous eigenspace of a and b. But the eigenspaces of b
are the x and y-axes, whereas by Ex. 1.1 those of a are C · (1, ω) and C · (1, ω2).

Next, S3 has two 1-dimensional representations S3 → C×, namely the trivial
1-dimensional representation S3 → 1 and the sign representation S3 → {±1}
(that does a 7→ 1, b 7→ −1). The character table of S3 is

S3 e a b

L1 1 1 1
L−1 1 1 −1
V 2 −1 0

For example, V = C2. Its identity map has trace 2; the matrix a has trace
2 cos 2π

3 = ω + ω2 = −1; and b has trace 0.

The binary dihedral group BD4m See 2.2 for BD4m = 〈A,B〉. In Ex. 2.4
you have already studied its four 1-dimensional representations: for even m,
these are given by (A,B) 7→ {±1}. Ex. 2.5 constructed 2-dimensional repre-
sentations ρj for j = 0, . . . ,m. For j = 0 or j = m, A acts by a diagonal
scalar matrix ±1, and it follows that ρ0 and ρm split into 1-dimensional repre-
sentations. On the other hand, for j = 1, . . . ,m − 1 the representations ρj are
irreducible: a 1-dimensional invariant subspace U ⊂ Vj would be an eigenspace
of both ρj(A) and ρj(B), which is impossible: ρj(A) has eigenvectors t(1, 0) and
t(0, 1), where ρj(B) has eigenvectors t(1,±1) or t(1,±i), according as j is even
or odd. The character table for BD12 is

BD12 1 −1 A A4 B B3

L1 1 1 1 1 1 1
L2 1 1 1 1 −1 −1
L3 1 −1 −1 1 i −i
L4 1 −1 −1 1 −i i
V1 2 −2 1 −1 0 0
V2 2 2 −1 −1 0 0
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The alternating group A4 We saw in 2.2 that A4 has a surjective homo-
morphism to the cyclic group Z/3 with kernel V4 CA4, arising from its permu-
tation action on the 3 pairings [12, 34] etc. This gives 3 different 1-dimensional
representations that take (say) (234) 7→ 1 or ω or ω2.

On the other hand, the description of A4 as the rotations of the regular
tetrahedron in Ex. 2.8 expresses A4 as a matrix group in GL(3,R) ⊂ GL(3,C).
Write V3 for this. The subgroup V4 acts by the matrices N1, N2, N3 of Ex. 2.8,
whereas the 3-cycles (234) and (243) act by the permutation matrices T and
T 2.

I claim that V3 is an irreducible representation of A4 on C3. For if it
had a nontrivial A4-invariant subspace, it would have split as a direct sum by
Maschke’s theorem. One of the summands would have dimension 1, and would
be a simultaneous eigenspace of every g ∈ A4. But the matrices Ni only have
eigenspaces contained in coordinate hyperplanes xj = 0, whereas the matrix T
has the 3 eigenvectors t(1, 1, 1), t(1, ω, ω2) and t(1, ω2, ω). Therefore V3 cannot
be split, so is irreducible.

The character table for A4 is

A4 e (12)(34) (234) (243)

L1 1 1 1 1
Lω 1 1 ω ω2

L2
ω 1 1 ω2 ω
V3 3 −1 0 0

The binary tetrahedral group BT24 As I said in 2.3, BT24 can be viewed
as the matrix group in GL(2,C) consisting of the 8 matrices of H8 together with

the 16 matrices of the form
(
a b
−b a

)
with a, b ∈ {±1±i

2 }. Notice that ±1+±i√
2

runs

through exp(θi) with θ ∈ [π4 ,
3π
4 ,

5π
4 ,

7π
4 ] so the product of any two entries of these

matrices is ± 1
2 or ± i

2 , and the set of 24 matrices is closed under multiplication.
I use a couple of short-cuts to describe the irreducible representations of

BT24. First, from 2.2 we know that BT24 /{±1} = A4 (the group of rotations
of the tetrahedron). Therefore BT24 inherits the representations of A4, giving
one 3-dimensional irreducible representation and three 1-dimensional represen-
tations.

The three one dimensional representations are ρ1, ρω, ρω2 : A4 → C×, and
take (234) and its conjugates to the scalars 1, ω, ω2. These are also the key to the
remaining representations of BT24. Namely, when we view BT24 as a matrix
group in GL(2,C), it has a given representation V = C2. We can multiply
V by the scalar representations ρ1, ρω, ρω2 to get V = V1, Vω = ρω · ρV and
Vω2 = ρω2 ·ρV We will see later that this gives all the irreducible representations
of BT24 up to isomorphism.

Since we know these irreducible representations of BT24 via explicit matrices,
it is easy enough to calculate their characters evaluated on the conjugacy classes.
This gives the character table of BT24 (of course, so far without proof, and
without the correct setup). Or see Ex. 3.10 for how to do it by computer
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algebra. I will treat this all later in more detail once all the definitions and
properties of characters and character tables are in place.

3.5 Homework to Chapter 3

3.1. Determinant Let ρ : G → GL(2,C) be a 2-dimensional representation
of a finite group G. Prove that g 7→ det(g) is a 1-dimensional representation.

3.2. Square Let ρ : G → GL(2,C) be a 2-dimensional representation of a
finite Abelian group G. Prove that g 7→ (ρ(g))2 (square of matrix ρ(g)) is again
a representation of G.

3.3. Symmetric square Let ρ : G→ GL(2,C) be a 2-dimensional represen-

tation of a finite group, and write ρ(g) =
(
ag bg
cg dg

)
. Prove that σ = Sym2 ρ : G→

GL(3,C) defined by

g 7→

a2 2ab b2

ac ad+ bc bd
c2 2cd d2


is a 3-dimensional representation of G. [Hint. You can do this by brute force.
Alternatively, consider G acting as (x, y) 7→ (ax + by, cx + dy), and figure out
how G then acts on Sym2(x, y) = (x2, xy, y2).]

3.4 Find a counterexample to the assertion of Ex. 3.2 for a representation of
a non-Abelian group.

3.5. KG-homorphism and G-invariant subspaces Show that the image
of an injective KG-homorphism is a G-invariant subspace U ⊂ V and vice versa.

3.6. Schur’s lemma (II) and algebraic closure Give an example of a
2-dimension irreducible representation V1 of Z/r over R. [Hint: Redo Ex. 1.1.]
Give an example of a group G and a homomorphism ϕ : V1 → V2 between irre-
ducible RG-modules that is not a scalar multiple of the identity. Thus Schur’s
lemma (II) fails without the assumption that K is algebraically closed.

3.7. 1-dimensional representations of Sn and An Show that a group
homomorphism Sn → C× has image contained in ±1. For n ≥ 2, describe the
two 1-dimension representations of Sn. For n ≥ 5, show that An only has the
trivial 1-dimensional representation.

3.8. Character table of A4 You either know, or can quickly ascertain, that
the alternating group A4 has 4 conjugacy classes represented by e, (12)(34)
(with 3 elements), (234) and (243) (with 4 elements each). In 3.4, I gave you
the three 1-dimensional representations coming from A4 → Z/3; each element
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of A4 acts there by multiplying by one of 1, ω, ω2. Check the top 3 lines of the
character table given in 3.4.

In the 3-dimensional irreducible representation oof A4 (rotations of the tetra-
hedron), (12)(34) and his buddies act by the matrices Ni, whereas (234) and
(243) act by the permutation matrices T and T 2 (see Ex. 2.8 for these matrices).
Calculate their traces and check the final line.

3.9. BD48 by computer Go to the Magma calculator website at
http://magma.maths.usyd.edu.au/calc

You can get a specification of each command by clicking Documentation +
Handbook and searching for it.

Type out (or copy and paste) a few of the following lines in the input window
and press Submit.

K<ep> := CyclotomicField(24);

GL := GeneralLinearGroup(2,K);

A := elt< GL | ep, 0, 0, ep^-1 >;

B := elt< GL | 0,1,-1,0 >;

// I check that A and B satisfy the relations of BD48.

Order(A); Order(B); A^12 eq B^2; A*B*A eq B;

BD := sub< GL | [A,B] >; // matrix group gen by A and B

Order(BD);

BD;

ConjugacyClasses(BD); // There are 14 conjugacy classes.

// two of them have 12 elements. Ask for all g in BD conjugate

// to specimen elt of ConjugacyClass(BD)[5].

[g : g in BD | IsConjugate(BD, g, $1[5,3])];

CharacterTable(BD);

3.10. More of the same Try running the Magma routines of
https://homepages.warwick.ac.uk/staff/Miles.Reid/MA3E1
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4 Preparing for characters

4.1 Inner products and 3rd proof of Maschke’s theorem

You learn in first year linear algebra that you can find a complement to a vector
subspace U ⊂ V by choosing a complementary basis. Meanwhile, in the applied
courses, given a plane in R3 you take the orthogonal line, and vice versa, so that
the complement is given to you for free, or more precisely, by the dot product
of vectors.

Here I work over C. Let V = Cn be a finite dimensional C-vector space with
a given basis. A Hermitian inner product on V is a map Φ: V × V → C with
the properties:

(i) Φ is C-linear in the second factor: for all v, wi ∈ V and λi ∈ C,

Φ(v, λ1w1 + λ2w2) = Φ(v, λ1w1) + Φ(v, λ2w2).

(ii) Φ is Hermitian symmetric: Φ(v, w) = Φ(w, v) (complex conjugate).

(iii) Φ is positive definite: Φ(v, v) > 0 for all v ∈ V .

The conjugate symmetry assumption (ii) implies that Φ(v, v) ∈ R, whereas
the associated quadratic form of a symmetric C-bilinear form is never real-
valued, so positive definite would not make sense. (ii) breaks up as the two
statements that the real part of Φ is symmetric and the imaginary part is skew.
(ii) implies of course that Φ is complex conjugate linear in the first factor:
Φ(λ1v1 + λ2v2, w) = Φ(λ1v1, w) + Φ(λ2v2, w). A basis e1, . . . , en of V over C
makes V = Cn; if I write z1, . . . , zn for the coordinates then

Φ((y1, . . . , yn), (z1, . . . , zn)) =
∑
i

yizi (4.1)

is a Hermitian inner product, positive because Φ(z, z) =
∑
i zizi =

∑
|zi|2.

Let V be a finite dimensional C-vector space with Hermitian inner product
Φ. The orthogonal complement U⊥ of a C-subspace U ⊂ V is defined by

U⊥ =
{
w ∈ V

∣∣ Φ(u,w) = 0 for all u ∈ U
}
. (4.2)

Lemma U⊥ is a C-vector space complementary to U , that is V = U ⊕ U⊥.

First, it is a C-vector subspace, because the conditions on w in (4.2) are
C-linear. Next, U ∩ U⊥ = 0 because any u in the intersection must have
Φ(u, u) = 0, and Φ is positive definite. Finally the traditional linear algebra
argument: for a basis e1, . . . , em ∈ U and for any v ∈ V set

ai =
Φ(ei, v)

Φ(ei, ei)
for i = 1, . . . ,m. (4.3)

Then setting u =
∑
aiei ∈ U and w = v− u gives Φ(ei, w) = 0 for all i, so that

w ∈ U⊥, and v = u+ w. Q.E.D.

Proposition A finite dimensional CG-module V has a G-invariant Hermitian
inner product Φ, with Φ(gv, gw) = Φ(v, w) for all g ∈W .
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Proof Start with any Hermitian inner product Φ0 as just described. Define
its average over G to be Φ(v, w) = 1

|G|
∑
g∈G Φ0(gv, gw). Then Φ is G-invariant,

because for any x ∈ G

Φ(xv, xw) =
1

|G|
∑
g∈G

Φ0(gxv, gxw)

=
1

|G|
∑
gx∈G

Φ0(gxv, gxw) =
1

|G|
∑
g∈G

Φ0(gv, gw)

(4.4)

(changing the dummy index in the sum from gx to g). Each term in the sum is
positive definite. Q.E.D.

Proposition (Third proof of Maschke’s theorem) Let V be a finite di-
mensional CG-module with a G-invariant Hermitian product Φ. If U ⊂ V is a
CG-submodule then its orthogonal complement U⊥ is also a CG-submodule.

The only point is that U is a G-invariant subset of V , so the conditions
defining U⊥ are G-invariant: Φ(u, v) = 0 for all u ∈ U gives also Φ(gu, gv) = 0,
so that gv ∈ U⊥. Q.E.D.

4.2 Finitely presented group

This section and the next discuss some basic results from group theory. Up
to now, we have mainly had a few examples of matrix groups. A finitely
presented group is something of the form F (m)/R where F (m) is the free
group on m generators, and R is the normal subgroup generated by a num-
ber of relations (see below for more details). For example, the dihedral group

D2m =
〈
a, b

∣∣∣ am = b2 = e, bab−1 = a−1
〉

. The good thing in this case, as we

have seen, is that the presentation by generators and relations gives us in short
order a list of the 2m elements of D2m and a recipe to multiply any two of them.
So the presentation is really useful.

The free group F (m) on m generators x1, . . . , xm is made as follows: consider
the alphabet of 2m letters {xi, x−1

i | i = 1, . . . ,m} and all possible words in
them. Here a word w of length n is a concatenation z1z2 · · · zn of the given
alphabet. We say that w is reduced if no two consecutive letters are inverse, that
is, w does not contain any occurrence of xix

−1
i or x−1

i xi. Given any word, we can
reduce it by cancellation, and this reduction is unique, as can be checked. In this
set up, the identity element is the empty word e, the inverse of w = z1z2 · · · zn is
z−1
n · · · z−1

2 z−1
1 , and the group multiplication is concatenation of words followed
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by reduction. We draw the elements of F (m) as the infinite graph:

re
rx1 x2x1

r rr
x2

Γ2m:
x−1

2 r . . .r
rx−1

1 (4.5)

(with 2m − 1 new edges out of every vertex, that is, 2m(2m − 1)n−1 reduced
words of length n for n ≥ 1).

Given a list {r1, . . . , rk} of words, we write R for the normal subgroup gen-
erated by r1, . . . , rk, that is, all words in the ri, and all their conjugates by
elements of F (m). This is a normal subgroup, and the quotient group by R is

F (m)/R =
〈
x1, . . . , xm

∣∣ r1, . . . , rk
〉
. (4.6)

This is called a finitely presented group.
Think of this as an artificial and in general a pretty wretched way of defining

a finite group. Even for an easy well known group, using the given generators
and relations to list its elements and determine the group law on them may be
enormously complicated and unwieldy. Every finite group and many infinite
ones can be given in this way, but one can make very bad choices of generators
and relations. By a kind of translation of Gödel’s incompleteness theorem, it
is known that in general “the word problem is insoluble”, that is, for general
R there does not exist an algorithm that can establish whether two words in
the generators are equal in F (m)/R, or whether F (m)/R is finite. We will see
by example that this can be a big headache. There are a limited number of
cases where the method is extremely useful, a small number of boundary cases
that are famous as difficult puzzles, but beyond that, the method just leads to
intractables computations. (Those interested should try the 4th year module
MA467 Presentations of Groups.)

4.3 Conjugacy and centraliser

Conjugacy classes Elements g1, g2 ∈ G are conjugate in G if g2 = xg1x
−1

for some x ∈ G. Conjugacy is an equivalence relation; the equivalence classes
are called conjugacy classes. These play a starring role in character theory: the
character table of G has columns labelled by its conjugacy classes.

Conjugacy classes are orbits of the action of G on itself by conjugacy: in
other words, let x ∈ G act on the set G by (x, g) 7→ xgx−1. The orbit of g under
this action is the conjugacy class C(g) = C(g,G) of g, the set of its conjugates;
the set of elements x ∈ G that fix g (the stabiliser of g) is the centraliser
Z(g) = Z(g,G) subgroup of g in G. That is, Z(g) = {x ∈ G | xg = gx}. By the
orbit-stabiliser theorem, the conjugacy class of g is the set of cosets Z(g)\G.
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When G is contained in a bigger group (say a finite group contained in
a matrix group G ⊂ GL(V )) we must distinguish conjugacy inside G from
conjugacy in the bigger group. For example, the 3-cycles (234) and (243) are
conjugate in S4, but not in A4.

Example: GL(n,C) and JNF Two elements in GL(n,K) are conjugate (es-
sentially by definition) if and if they are given by the same matrix in suitable
bases of Kn. In more detail, view GL(n,K) as the nonsingular linear transfor-
mations of Kn to itself. Here we map the space to itself, so we are not free to
change basis in the domain and in the target any-old-how: to get meaningful
expressions, we have to change basis in the domain and then change back in the
target.

Given A, T ∈ GL(n,K), we can view T as a change of basis in Kn (taking
the standard basis ei to Tei, the columns of T ). Then

TAT−1(Tv) = TA(v), that is, TAT−1 : Tv 7→ TAv,

which is just A written in the new basis Tei.
Over C, every matrix M viewed as an endomorphism Cn → Cn has a Jordan

Normal Form. This means that there is a change of basis so that M in the new
basis, that is, TMT−1 is the map given by that standard shaped matrix. There-
fore every matrix in GL(n,C) is conjugate in GL(n,C) to its JNF. Moreover
two elements are conjugate in GL(n,C) if and only if they have the same JNF
(that is, the same eigenvalues and same size Jordan blocks).

Example: Euclidean motions For those of you who did M243 Geometry:
the classification of Euclidean motions of the plane is mostly about conjugacy
classes in Eucl(2). For example, all rotations by ±θ (about any point P ) are
conjugate, and two translations by vectors v1 and v2 are conjugate if and only
if |v1| = |v2|.

Example: permutations Work in Sym(Σ), the permutations of a set Σ of
n elements. Choosing an ordering of Σ as {σ1, . . . , σn}, or simply as {1, . . . , n}
makes g ∈ Sym(Σ) into an element of Sn. If we choose a different ordering,
we get two different expressions for one and the same g as permutations of
{1, . . . , n}. These two expressions are not identical, but they are conjugate.

Any permutation is a product of disjoint cycles. This means something like
(σ1, . . . , σk)(σk+1, . . . , σl) . . . (etc.), where all the σi are distinct. Two disjoint
cycles are conjugate if and only if the cycles have the same number of elements.

For example, for any n ≥ 5, the symmetric group Sn has a single conjugacy
class (σ1, σ2)(σ3, σ4, σ5) having 2 disjoint cycles of length 2 and 3. There are(
n
2

)
×
(
n−2

3

)
× 2 permutations in this class. The ×2 is because (σ3, σ4, σ5) and

(σ3, σ5, σ4) are conjugate; each subset of 3 elements has 2 cyclic orderings.
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The conjugacy classes for S6 are{
e, (12), (123), (1234), (12345), (123456), (12)(34), (12)(345),

(12)(3456), (123)(456), (12)(34)(56)
}
. (4.7)

The number of elements in each conjugacy class are e = 1, (12) = 15,
(123) = 40 = 2 ×

(
6
3

)
, (1234) = 90 = 6 ×

(
6
4

)
, (12345) = 144 and so on, adding

to 720. See Ex. 4.10–12.

4.4 Commutators [g1, g2] and Abelianisation GAb

The commutator of two elements g1, g2 ∈ G is [g1, g2] = g1g2g
−1
1 g−1

2 . The set
of all commutators generate a normal subgroup [G,G] C G, the commutator
subgroup, sometimes called derived group or G′ in group theory textbooks.

If ϕ : G → A is a group homomorphism to an Abelian group A, it must
take every commutator to eA, so [G,G] ⊂ kerϕ. Conversely, the quotient
G/[G,G] = GAb by the commutator subgroup is an Abelian group, because
any two elements commute modulo [G,G]. This quotient GAb is the Abelian-
isation of G. Every homomorphism ϕ : G → A to an Abelian group A factors
via GAb in a unique way; that is, ϕ equals the composite of G→ GAb followed
by a group homomorphism ϕAb : GAb → A.

Examples In Sn, every 3-cycle is a commutator: (12)(13)(12)−1(13)−1 =
(123). One can see that all 3-cycles generate the alternating group An ⊂ Sn.
We know that An is a normal subgroup of index 2, the kernel of the sign map
Sn � {±1}, so that [Sn, Sn] = An and GAb ∼= Z/2.

We know that D2m contains the normal subgroup Z/m generated by a. From
bab−1 = a−1 we find that a2 = aba−1b−1, so that a2 is a commutator. Consider
the commutator subgroup [D2m, D2m]. It contains a2, and also am = e, so if m
is odd, it follows that [D2m, D2m] = 〈a〉 and DAb

2m = Z/2.
By contrast, when m is even [D2m, D2m] =

〈
a2
〉

is a normal subgroup of

index 4 and DAb
2m = Z/2 ⊕ Z/2. The quotient by

〈
a2
〉

is a surjective homo-

morphism D2m → Z/2⊕ Z/2 that takes a 7→ a = (1, 0), b 7→ b = (0, 1).
A geometer thinks of D2m as the rotations and reflections of a regular m-

gon. If m is even, these form a bipartite graph: you can colour them alternately
white and black, and every edge connects a white and black vertex. Then b
reverses the orientation, and a swaps black and white.

One dimensional representations and linear characters Consider a rep-
resentation ρ : G→ GL(n,C) in the case n = 1. It is quite special, because the
image ρ(g) ∈ GL(1,C) = C× is a 1 × 1 invertible matrix, so simply a nonzero
number, necessarily a root of 1 if G is finite; there is no distinction between the
matrix ρ(g) and its trace χρ(g). There is also no dependence on a choice of basis
in C. We call ρ a 1-dimensional representation or a linear character. Because
the image C× is Abelian, a linear character factors via the Abelianisation GAb.
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4.5 Finite Abelian groups

I recall a result treated in MA251 Algebra I.

Theorem Any finite Abelian group A is isomorphic to a sum of cyclic groups,
A ∼=

⊕d
i=1 Z/ni. Moreover, we can choose the orders so that

n1 | n2 | · · · | nd,

and then the sequence {n1, n2, . . . , nd} is unique. (However, the isomorphism

A ∼=
⊕d

i=1 Z/ni of course depends on the choice of generators.)

Characters of a finite Abelian group We know the representation theory
of the cyclic group Z/r from Chapter 1: there are r different 1-dimensional
representations ρk for k = 0, 1, . . . , r− 1, where ρk takes the generator 1 of Z/r
to εk, so takes j ∈ Z/r to εjk (here, as in 1.4, ε = εr = exp 2πi

r is my favourite
choice of primitive rth root of 1).

Lemma Let A1, A2, . . . , Am ∈ GL(n,C); suppose each of the Ai is of finite
order, and any two commute. Then there is a basis of Cn consisting of common
eigenvalues of all the Ai.

Proof First, suppose that λ1, λ2, . . . , λk are the distinct eigenvalues of A1, say
with multiplicity a1, a2, . . . , ak, and write Cn as a direct sum of the eigenspaces
of A1, that is, ⊕

Ui where Ui = ker(A1 − λi) = Cai . (4.8)

Now a matrix M commutes with A1 if and only if it preserves the decomposition
(4.8). In fact if some v ∈ U1 is mapped to a vector Mv with nonzero component
u ∈ U2 then MA1v equals λ1Mv so has component λ1u ∈ U2, whereas A1V has
the different component λ2u ∈ U2. (And similarly for 1, 2 replaced by any i, j.)

In coordinates, the same argument translates as: in a basis subordinate to
(4.8), A1 has the form of ai × ai diagonal blocks equal to λi times the identity.
Now M must also consist of ai × ai matrix blocks down the diagonal, and be
zero outside these blocks. In fact A1M multiplies the rows of M corresponding
to Ui by λi, whereas MA1 multiplies the corresponding colums of M , and any
nonzero entries of M outside these diagaonal blocks contradict the assumption
A1M = MA1.

Now by induction on m, I can assume that A2, . . . , Am restricted to Ui are
diagonalisable, and putting it all together in the direct sum (4.8) proves the
lemma. Q.E.D.

Corollary A finite dimensional representation of a finite Abelian group A is
a direct sum of 1-dimensional representation.
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The special point to notice is that the character of a 1-dimensional repre-
sentation is the trace of a 1× 1 matrix, so there is really no distinction between
the trace and the representation itself, so that the trace is itself a group homo-
morphism. (This is completely different for higher dimensional representations.)
Thus the set of 1-dimensional representations is HomGroups(Z/r,C×), and is it-
self a group isomorphic to Z/r.

This isomorphism is noncanonical, that is, not uniquely defined by Z/r as
abstract group – we chose the generator 1 ∈ Z/r, and the generator εr ∈ µr.

Theorem 1 Let A be a finite Abelian group. The set of characters is the group
Â = Hom(A,C×), and is isomorphic to A (noncanonically, of course).

The choices here are similar to the choice of bases in a f.d. vector space V ,
and choice of isomorphism V ∼= V ∨.

Theorem 2 For any finite group G, the 1-dimensional characters of G are
the same thing as 1-dimensional characters of the Abelianisation GAb. Thus if
GAb = A, the 1-dimensional characters of G form a group isomorphic to A.

4.6 Homework to Chapter 4

4.1 Presentations of groups that you already know. Determine what they are.

1.
〈
x, y

∣∣ xyx = yxy, xyxy = yxyx
〉
.

2.
〈
a, b

∣∣ a4, a2b2, b−1aba
〉
.

3.
〈
x, y

∣∣ x2, y2, (xy)3
〉
.

4.
〈
a, b, c

∣∣ a2 = b5, b2 = c3, c2 = a7
〉
.

[Hint: Don’t give up.]

4.2 (Part of past exam question.) Let H8 be the group〈
a, b

∣∣ a4 = e, b2 = a2, bab−1 = a−1
〉
. (4.9)

Prove that ba = a3b, and deduce that every element of H8 can be written in
the form ai or aib for 0 ≤ i ≤ 3. Assume as given that H8 has five conjugacy
classes; list them.

4.3 Let G =
〈
a, b

∣∣ a7, b3, ba = a2b
〉
. Show that G is a group of order 21,

with a normal subgroup H = 〈a〉 C G and quotient G/H = Z/3. Calculate
enough commutators of a and b to determine the commutator subgroup [G,G].
Calculate enough conjugate elements to determine the 5 conjugacy classes of G.

Construct three different 1-dimensional irreducible representation of G.
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4.4 The two permutations x = (2, 5, 3)(4, 6, 7) and y = (1, 4, 2)(3, 5, 6) are
the perfect riffle shuffles of a pack of 7 cards. (In other words, x interleaves
1234 and 567 to give the permutation ( 1 2 3 4 5 6 7

1 5 2 6 3 7 4 ) = (2, 5, 3)(4, 6, 7), and sim.
for y.) Show that z = y−1x is a 7-cycle and that yz = z2y. Deduce that
they generate a subgroup of S7 isomorphic to G of Ex. 4.3. [Here I write the
product of permutations as the composite function, so that p, q have product
pq : i 7→ p(q(i)).]

4.5. The elements of D2m are {ai, bai
∣∣ i ∈ [0, . . . ,m − 1]}. I calculated the

centraliser of D2m in 4.4, making a fuss about the parity of m. Calculate the 4
conjugacy classes of D10 and the 6 conjugacy classes of D12.

4.6 A famous presentation of the symmetric group Sn take the transpositions
si = (i, i+ 1) for i = 1, . . . , n− 1 as generators, and the relations

s2
i = e, (sisi+1)3 = e and sisj = sjsi for |i− j| ≥ 2 (4.10)

as defining relations. However, there are many more possible presentations,
some of them arbitrarily complicated.

Suppose given the transposition a = s1 = (12) and the n-cycle b = (12 . . . n).
Calculate the conjugates b−1ab, b−2ab2, and so on, and deduce that a, b also
generate Sn.

Let a = (1, 2) and b = (1, 2, 3, 4) ∈ S4, so that a2 and b4 are obvious relations.
Calculate ab, and deduce that (ab)3 is also a relation them. [Not required for
assessment: These are defining relations, so that S4 =

〈
a, b

∣∣ a2, b4, (ab)3
〉
.]

4.7 Show that every finite group can be given by a finite presentation. (Take
all the elements as generators and all the products as relations, and reread the
definitions.)

4.8. Conjugacy class C(g) and left coset of Z(g) In 4.3, I defined the
conjugacy action of G on itself by (x, g) 7→ xgx−1. It is an action because
x1(x2g) = (x1x2)g and similar for gx−1

2 x−1
1 . Spell out the statement that the

orbit of g ∈ G under the action equals the set of left cosets C(g) = Z(g)\G.
[Hint: This is an extended headache: what elements x1, x2 ∈ G take g ∈ G into
the same conjugate element x1gx

−1
1 = x2gx

−1
2 ∈ C(g)?]

4.9. In any group G, prove that

[xg1x
−1, xg2x

−1] = x[g1, g2]x−1. (4.11)

Deduce that the conjugate of a product of commutators is a product of com-
mutators, so the subgroup generated by commutators is normal.

4.10. Conjugacy classes in Sn Write out the conjugacy classes of S5 (that
is, cycle types) and the number of elements in each. Check they add to 120.
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4.11. Same for S6 Complete the calculation started in (4.7). How many
elements in each conjugacy class? Check they add to 6! = 720. For example,
why is the number of 5-cycles in S6 equal to 144?

4.12. Same for A6 List the conjugacy classes in A6 and the number of
elements in each. Check that they add to 360. You will need to determine
which cycle types are conjugate in A6, which is almost but not quite the same
as the question for S6.

4.13 Run the following Magma routine to prove that the two 4-cycles a =
(1234) and b = (4567) generate S7. Deduce from the output what the two
5-cycles c = (12345) and d = (34567) generate.

S7 := SymmetricGroup(7); A := S7!(1,2,3,4); B := S7!(4,5,6,7);

G := sub<S7 | A,B>; G eq S7; Order(G);

C := S7!(1,2,3,4,5); D := S7!(3,4,5,6,7);

H := sub<S7 | C,D>; Index(G,H);

S7 has order 5040, so it would take some time to figure out the defining relations
for a, b by hand.

4.14. Consider A = Z/p⊕Z/pq for distinct prime numbers p, q. Find formulas
for the number of elements of A of order 1, p, q, pq, and the number of subgroups
of A of order 1, p, q, pq. Show that A can be written as A = Z/p⊕Z/pq in many
different ways.

Imagine doing the same for A = Z/a⊕ Z/ab for other values of a, b. (To be
concrete, take (a, b) = (4, 5) or (10, 2), or whatever you like.)

4.15. Recall that linear characters or 1-dimensional representations are also
homomorphisms ρ : A → C×. For distinct primes p, q, set ε = εpq = exp 2πi

pq .

Show how to write out the p2q characters of the group A = Z/p⊕ Z/pq. Show

that they form a group Â isomorphic to A.

4.16. Finitely presented groups Section 4.2 described the elements of
F (m) as the graph Γ of (4.5). If w is a reduced word of length n ≥ 0 not
starting with x−1

i , prove that xiw is a reduced word of length n + 1. Deduce
the formula given under (4.5) for the number of reduced word of length n ≥ 1.

Deduce also that Γm has no loops, so is simply connected as a metric space.
Prove that the translations w 7→ xiw define a simply transitive action of F (m) on
Γm. (You might like to know that the graph Γm can be drawn in the hyperbolic
plane, with F (m) acting by isometries.)

Difficulty of using finite presentations The next questions illustrate the
difficulty of finite presentation as a method of defining a group. Even when we

38



know everything about the group, finite presentations can be pretty cumber-
some. Even in simple cases, deducing what the group is from a presentation
may be difficult or impossible (there is a theorem that it is algorithmically
undecidable in some cases).

4.17 Prove that
〈
x, y

∣∣ x3, y3, yx2y = xyx2
〉

is isomorphic to the group G of
Ex. 4.3. [Hint: I know how to do this by writing out all the short words in x
and y and left multiplying them successively by x and y modulo the relations
until the system closes up, but that may be too hard a question for assessed
homework.]

4.18 Consider
H :=

〈
x, y, z

∣∣ x2 = y2 = z2 = xyz
〉
. (4.12)

Prove that c = x2 is in the centre of H (that is, commutes with all the gener-
ators). Prove that x = yz, y = zx, z = xy. So far, so trivial. Consider the
quotient of H by

〈
c2
〉
, that is

H := H/
〈
c2
〉

=
〈
x, y, z

∣∣ x2 = y2 = z2 = xyz, x4 = e
〉
. (4.13)

Since x4 = e in H, we have x−1 = cx = xc and similar for y, z. Find formulas
for the products zy, xz, yx in H, and deduce who H is.

Now it is a fact that the relations for H imply that c2 = e, but it takes at
least 4 applications of the relations to prove it. You have to really care about
it to get it out. Please think about it; I’ll give another hint in the homework to
Chapter 5

4.19 The presentation G =
〈
a, b

∣∣ a2 = bab, b2 = aba
〉

is a famous puzzle.
Without any hints, I guess that most mathematicians would take days to get it
out, or give up.

First hint: (1) Prove that the element c = abab is central. (2) Study the
quotient by 〈c〉, that is, the group G =

〈
a, b

∣∣ a2 = bab, b2 = aba, abab
〉
. Prove

that it has order 12. I’ll give a second hint in the homework to Chapter 5.
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5 Characters and the Main Theorem

5.1 Introduction

In Chapters 2–3 we worked with groups like BD4m, writing out their represen-
tations in terms of 2 × 2 or 3 × 3 matrices. We specially chose those groups
to be “very close” to an Abelian group. For a bigger group, this procedure is
unworkable: it would involve many n× n matrices, and there would be no easy
way of manipulating them all together.

The point of character theory is that it replaces all of these matrices with
functions χ : G/(conjugacy) → C, together with rules for manipulating them,
that are much easier to handle. Here I state the Main Theorem, with the proofs
deferred to later. You can think of this as just a list of rules, or User’s Guide.
As an illustration, I work out the character table of the octahedral group O24,
and repeat what I said in 3.4 about the binary tetrahedral group BT24.

5.2 The trace of an n× n matrix

The trace of a square matrix A ∈ Mat(n × n,K) is the sum of its diagonal
entries: TrA =

∑n
i=1 aii. I recall some easy results from Linear Algebra.

Proposition (i) For any two matrices A,B ∈ Mat(n× n,K) we have

Tr(AB) = Tr(BA). (5.1)

(ii) For A ∈ Mat(n× n,K) and T ∈ GL(n,K) we have

Tr(TAT−1) = TrA. (5.2)

I give an easy mechanical proof first, then a more insightful treatment based
on the characteristic polynomial. Write A = (aij) and B = (bij) with i, j =
1, . . . , n. The product AB then has entries

∑
j aijbjk, with the j summed out.

To get its trace, set k = i and sum out the i, arriving at the double sum

Tr(AB) =
∑
i

∑
j

aijbji. (5.3)

In the same way, the trace of BA comes to
∑
i

∑
j bijaji, which is the same

thing: because aijbji = bjiaij in each term, and we can exchange the order of
summation in the double sum.

(ii) follows from (i) applied to (TA) and T−1:

Tr(TAT−1) = Tr((TA)T−1) = Tr(T−1(TA)) = TrA. QED (5.4)

5.3 The characteristic polynomial is conjugacy invariant

Write ∆A(t) = det(t Id−A) for the characteristic polynomial of a square matrix
A ∈ Mat(n × n,K). Here ∆A(t) ∈ K[t] where t is a new polynomial variable.
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The characteristic polynomial of a linear transformation ϕ : V → V is defined
in terms of a basis of V and the resulting identification V = Kn. The results
discussed below make it independent of the choice of basis and provide a second
proof of Proposition 5.2.

Proposition For two square matrices A,B ∈ Mat(n× n,K), the product AB
has determinant equal to the product of those of A and B:

det(AB) = detAdetB. (5.5)

I discuss this concisely for completeness. As you know, the determinant of
an n× n matrix M = mij is defined as the sum over the symmetric group Sn

detM =
∑
σ∈Sn

signσ

n∏
i=1

miσ(i). (5.6)

For each permutation σ of 1, . . . , n, the term m1σ(1)m2σ(2) · · ·mnσ(n) is the
product of one entry from each row and each column, with sign +1 if σ is even
and −1 if odd. The familiar invariance properties of detM under row operations
follow tautologically from the definition:

(a) swapping two rows i, j multiplies detM by −1;

(b) adding a multiple of row i to row j leaves M unchanged.

For the proposition, consider A and B and their product AB. If either detA
or detB is zero, the corresponding linear transformation is degenerate, so also
det(AB) = 0.

As you know, successive row operations reduce any nonsingular matrix to
make it diagonal. For a diagonal matrix, the sum in (5.6) is just the product∏
mii of the diagonal entries. We can use column operations to exactly the

same effect.
Now row operations applied to A reduce it to diagonal form A′, and column

operations reduce B to diagonal form B′. The same row and column operations
reduce the product AB to the diagonal form A′B′. Now (up to a common sign,
that I ignore)

detA = detA′, detB = detB′ and det(AB) = det(A′B′). (5.7)

For diagonal matrices A′B′ the equality det(A′B′) = detA′ detB′ is obvi-
ous. Q.E.D.

Proposition The characteristic polynomial ∆A(t) is invariant under conju-
gacy. That is,

∆TAT−1(t) = ∆A(t) for A ∈ Mat(n× n,K) and T ∈ GL(n,K). (5.8)

The characteristic polynomial has the form

∆A(t) = tn − (TrA)tn−1 + (intermediate terms) + (−1)n detA. (5.9)

Therefore Tr(TAT−1) = TrA.
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Proof For any A,B ∈ Mat(n×n,K), we have det(AB) = detA detB. There-
fore

det(T (t Idn−A)T−1) = detT det(t Idn−A)(detT )−1 = det(t Idn−A). (5.10)

the left-hand side of (5.10) is ∆TAT−1(t), and the right-hand side is ∆A(t).
The coefficient of tn−1 in det(t Idn−A) is a calculation: t only appears in the

diagonal entries of t Idn−A, so to get tn−1 in a summand of the determinant,
we must choose the t in n − 1 diagonal entries times the constant term in the
single complementary diagonal entry.

5.4 Definition of characters and immediate properties

Definition Let G be a finite group and ρ : G→ GL(V ) a representation of G
over C. The character of ρ (or of the CG module V ) is the function

χρ = χV : G→ C given by χV (g) = Tr(ρ(g). (5.11)

We sometimes say irreducible character for the character of an irreducible rep-
resentation, and call dimV the dimension of the character χV (etc.). (Compare
the linguistic disclaimer in 2.4)

Proposition (i) χV only depends on V up to isomorphism of CG-modules.

(ii) χV (g) only depends on g up to conjugacy.

(iii) χV (eG) = dimV .

(iv) Moreover, χV (g) = dimV if and only if g ∈ ker ρ.

(v) χV (g−1) = χV (g) (complex conjugate).

(vi) A direct sum of CG-modules has character the sum of the characters of
the summands. That is, if ρi : G → GL(Vi) are CG-modules and ρ =
⊕ρi : G→ GL(

⊕
Vi) their direct sum then χρ =

∑
χρi .

(i) and (ii) follow at once from Proposition 5.2 (conjugate matrices have equal
trace). (iii) says that the identity of V has trace dimV , because it is represented
by the identity n × n matrix. For (iv), note that ρ(g) is diagonalisable, with
eigenvalues λi, so has trace

∑
λi. The λi are roots of unity, with |λi| = 1. Thus

the real part of λi is ≤ 1, and equals 1 if and only if λi = 1. Therefore the only
way for

∑
λi to score dimV is if all λi = 1, so ρ(g) = IdV . (v) follows because

ρ(g−1) = ρ(g)−1 has eigenvalues λ−1
i = λi. Finally (vi) follows since ⊕ρi maps

G to diagonal block matrices, whose trace just adds up the sum of that of its
blocks.
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5.5 Space of class functions and its Hermitian pairing

Definition A class function on G is a map f : G→ C that is invariant under
conjugacy, in the sense that f(xgx−1) = f(g) for all x ∈ G. We can view a class
function as a function on conjugacy classes

G/(conj)→ C. (5.12)

The set of all class functions C = C(G) is a vector space with basis in 1-to-1
correspondence with the conjugacy classes ofG; it has a Hermitian inner product
〈ϕ,ψ〉 defined by

〈ϕ,ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g). (5.13)

The sum has duplicate summands for conjugate elements. That is, if C(g) is
the conjugacy class of g, its elements all repeat the same summand. It often sim-
plifies things to choose a representative of each conjugacy class, say g1, . . . , gr,
and rewrite the repeated summands in (5.13) as |C(gi)|×ϕ(gi)ψ(gi). Moreover,
each conjugacy class C(gi) can be identified with the cosets Z(gi)\G of G by
the centraliser Z(gi), so that (5.13) takes the form

〈ϕ,ψ〉 =
1

|G|

r∑
i=1

|C(gi)|ϕ(gi)ψ(gi)

=

r∑
i=1

1

|Z(gi)|
ϕ(gi)ψ(gi).

(5.14)

5.6 Main Theorem

I now state without proof the main result of the course. First, choose a set
{Ui}ki=1 of irreducible CG-modules that are pairwise nonisomorphic, and such
that every irreducible CG-module is isomorphic to some Ui. This is called a
complete set of nonisomorphic irreducible representations. Write di = dimUi
for their dimensions and χi = χUi

for their characters.

Theorem (I) The χi are orthonormal with respect to 〈 , 〉. That is

〈χi, χj〉 =

{
1 if i = j,

0 else.
(5.15)

(II) The number k of the Ui equals the number r of conjugacy classes. It follows
that the χi form an orthonormal basis of C.

(III)
∑k
i=1 d

2
i = |G|.

Corollary (i) Let V be a CG-module with character χV . Write V ∼=
⊕
aiUi

as a direct sum of irreducibles CG-modules. (This decomposition exists
and is unique by Maschke’s Theorem ss!Mas and Schur’s Lemma 3.3.)
Then ai = 〈χi, χV 〉.
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(ii) The character χV determines V up to isomorphism.

(iii) χV has norm-squared the positive integer 〈χV , χV 〉 =
∑
a2
i .

(iv) In particular, 〈χV , χV 〉 = 1 if and only if V is irreducible.

Proof (i) If V =
∑
aiUi then χV =

∑
aiχi by Proposition 5.4, and then we

can read off 〈χi, χV 〉 = ai from (I). (ii) χV determines the values of ai such that
V ∼=

⊕
aiUi, and so determines V up to isomorphism. (iii) is equally easy; (iv)

involves analysing the solutions in positive integers of
∑
a2
i = 1. Q.E.D.

5.7 Character table of O24

What we need to know about CG-modules is contained in the character table
of G. This is a square array formed by the values of the irreducible characters
χi evaluated on the conjugacy classes gj .

I work out the example of the group O24 of rotational symmetries of the cube
in R3 to illustrate the meaning of the orthonormality relations of (I). Figure 1
is the cube of side 2 with vertices (±1,±1,±1).

r(−1,−1,−1)

r(−1,−1, 0)

r

r

r
r
r

r
r(1, 1, 1)

r(1, 1, 0)
�
�

Figure 2: Symmetry group of the cube.

Please imagine drawn the following axes of rotational symmetry: (a,d) The
z-axis, an axis of 2-fold and 4-fold rotation. (b) The median line through
(−1,−1, 0) and (1, 1, 0), an axis of 2-fold rotation. (c) the main diagonal from
(−1,−1,−1) to (1, 1, 1) (an axis of 3-fold rotation).

The group has order 24. Indeed, there are 8 vertices, and exactly 3 rotational
symmetries fix a given vertex, acting as 3-cycle on the 3 edges out of it. The
elements that we can see at once are: the identity e (1 element); (d) the 4-fold
rotation by π/2 around a directed coordinate axis (6 elements); (a) the 2-fold
rotation around a coordinate axis (3 elements); (c) the 3-fold rotations around
any of the 4 main diagonals (8 elements); (b) the 2-fold rotation around the
median lines (6 elements), with each of the 3 coordinate planes containing 2
such lines. Since 1 + 6 + 3 + 8 + 6 = 24, this accounts for every element of
O24. Morever, all the elements in each of the enumerated types are conjugate.
(For example, rotations about the main diagonal through 2π/3 and 4π/3 are

conjugate by any rotation that takes (1, 1, 1) to (−1,−1,−1), such
(

0 −1 0
−1 0 0
0 0 −1

)
.)
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Matrices representing the non-identity conjugacy classes are (for example)

A =
(−1 0 0

0 −1 0
0 0 1

)
, B =

(
0 1 0
1 0 0
0 0 −1

)
, C =

(
0 1 0
0 0 1
1 0 0

)
, D =

(
0 −1 0
1 0 0
0 0 1

)
.

To describe all the irreducible representations of O24, the remaining fact we
need is that it has the 4-group V4 as normal subgroup with quotient group S3.

V4 CO24 � S3. (5.16)

Here S3 is the permutation group on the unordered coordinate axes, and V4 acts
by ±1 on evenly many of the coordinates (like the matrix A).

Now the character table of O24 is as follows:

e a b c d

#C(g) 1 3 6 8 6

order g 1 2 2 3 4

trivial rep χ1 1 1 1 1 1

sign of S3 χ2 1 1 −1 1 −1

2-dim rep of S3 χ3 2 2 0 −1 0

given rep χ4 3 −1 −1 0 1

χ2 · χ4 χ5 3 −1 1 0 −1

(5.17)

Here χ2 is the 1-dimensional representation of S3. a ∈ V4 is in the kernel of
O24 � S3, b and d map to transpositions such as (12), c maps to 3-cycles such
as (123). In its 2-dimensional representation S3 is the dihedral group D6, so
a ∈ V4 acts by the identity, b and d act with eigenvalues ±1, and c is a 3-fold
rotation, so has eigenvalue ω and ω2 adding to −1.

For χ4, just calculate the trace of the 4 matrices A,B,C,D. Finally χ5 is
the product of χ4 with the 1-dimensional character χ2.

Let’s use this to illustrate the Main Theorem. The dimensions of the 5
characters 1, 1, 2, 3, 3 give 12 + 12 + 22 + 33 + 32 = 24, which is (III). This
guarantees that we have all the irreducible representations. In each row, the
squares of the entries times #C(g) from the header add to 24. For example,
for the χ3 row, 22 + 22 × 3 + (−1)2 × 8 = 24. Then for each pairs of rows, the
product of the entry and #C(g) add to zero. There are 10 calculations to do
here, but they are all harmless fun.

5.8 Homework to Chapter 5

Further hint for Ex. 4.18 As I said, you need at least 4 applications of the
relations to prove that c2 = e. The hint is to use relations like x = yz etc. to
make longer and longer words. For example, y2 = xyz is given, and you have
already deduced that x = yz, y = zx and so on. So y2 = (yz)(zx)z and so on.
You eventually get to something that you recognise. There are lots of ways to
the truth, but all of them are long.
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Different approach to the group of Ex. 4.19 In the finitely presented
group of Ex. 4.19, set i = ab, j = ba = a−1ia, k = a−1ja. Prove that i2 = j2 =
k2 = c. Given in addition that c2 = e, get out the result of Ex. 4.19.

Further hint for Ex. 4.19 We are given a2 = bab and b2 = aba, and we
deduced easily that c = abab is central. You also determined that the quotient
G/ 〈c〉 is A4. In a similar vein to Ex. 4.18, it takes at least 6 applications of
the defining relations to prove that c2 = 1. You could for example start with
c = abab = baba so that c2 = abab2aba, then apply the rule b2 7→ aba to make
the word on the right longer, and continue likewise. I’ll give my solution in
Ex. 6.1, but finding your own would be so much more rewarding.

In these questions, assume the material of 5.4–5.6 around the Main Theorem.

5.1 If A is diagonalisable, conjugate to diag(λ1, . . . , λn), the coefficients of
its characteristic polynomial ∆A(t) are the elementary symmetric polynomials
in the λi, that is ±σk(λ1, . . . , λn). Therefore they are also invariant under
conjugacy, in the same way as the trace.

Prove that Tr(A2) =
∑
λ2
i and deduce a formula for the coefficient of tn−2

in ∆A(t) as a linear combination of (TrA)2 and Tr(A2).

Remark There are similar formulas (called Newton’s formulas) that express
all the elementary symmetric functions σk in terms of the sums of powers Σk.
The character of a representation includes χV (gk) for all k, so it actually knows
the characteristic polynomial of ∆ρ(g)(t), which determines ρ(g) up to conjugacy.
So it is possibly not so very surprising that the character of a representation
determines the representation up to isomorphism.

5.2 (v) of Main Theorem gave a necessary condition on ρ : G→ GL(V ) and an
element g ∈ G for χρ(g) = dimV . State and prove the condition for |χρ(g)| =
dimV

5.3 Verify the row orthogonality relations in the character table of O24 in 5.7.
Do the same for the character table of BT24 treated below.

5.4 As I said in 1.4, the case of a cyclic group (and roots of unity) are foun-
dational for the course, and you could reasonably expect an exam question on
them. Compare the orthogonality relations of Main Theorem (I) with what we
already know for cyclic groups from 1.4.

5.5 We know that the matrix group H8 of 2.3 has a 2-dimensional irreducible
representation. Deduce that H8 must have 5 conjugacy classes. Complete the
character table of H8.
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5.6 G is a finite group, and its character table includes the 3 rows:

e g2 g3 g4 g5

#C(g) 1 3 3 7 7

χ2 1 1 1 ω ω2

χ4 3 ω ω2 0 0

χ5 3 ω2 ω 0 0

(5.18)

Determine the order of G, and the number and dimensions of its remaining
irreducible representations. Finish the character table. Show how to write out
the group by generators and relations.

5.7 An element g ∈ G is in the commutator subgroup [G,G] if and only if it is
in the kernel of every 1-dimensional representation. If we have complete infor-
mation about a conjugacy class in G, state and prove a method of determining
from the character table of G which conjugacy classes are contained in [G,G].

5.8 Most easy groups that turn up in introductory courses have 1-dimensional
representations (compare 4.4). You can read directly from the character table
which characters are 1-dimensional. Prove that if χ1 is a 1-dimensional character
and χ2 some other irreducible character, then the product χ1 ·χ2 must again be
an irreducible character. This is useful if you need to treat the character table
as a crossword puzzle.

5.9 Appendix. Character table of BT24

The Main Theorem is also illustrated by the character table of BT24. This
repeats what I said in 3.4. It is all easy hand calculation, but Magma can
handle much bigger cases effortlessly. I ran the following code in the online
Magma calculator

http://magma.maths.usyd.edu.au/calc

K4<i> := CyclotomicField(4); // define i as primitive 4th root

GL2 := GeneralLinearGroup(2,K4); // allows 2x2 matrices

I := elt< GL2 | i,0,0,-i >;

J := elt< GL2 | 0,1,-1,0 >;

K := I*J; // 2x2 matrices corresponding to quaternions i,j,k

A := 1/2*Matrix(2, [1+i, 1+i, -1+i, 1-i]);

B := Transpose(A);

I*J*I^-1 eq -J; A*B eq I; A^2 eq B*A*B; B^2 eq A*B*A;

// play with these generators as sanity check

BT24 := sub< GL2 | [A,I] >;

Order(BT24);

// ConjugacyClasses(BT24);

CharacterTable(BT24);
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As discussed in Chapters 2–3, the binary tetrahedral group BT24 contains the
subgroup H8 = {±1,±I,±J,±K} made up by the standard unit quaternions
and the 16 matrices

(
a b
−b a

)
with a, b ∈ {±1±i

2 }. It is generated by I and A =
1
2

(
1+i 1+i
−1+i 1−i

)
and contains the central element c = −1 = I2 = A3 = ABAB.

This is its character table:

e c A2 B2 I A B

size 1 1 4 4 6 4 4

order 1 2 3 3 4 6 6

χ1 1 1 1 1 1 1 1

χ2 1 1 ω ω2 1 ω2 ω

χ3 1 1 ω2 ω 1 ω ω2

χ4 2 −2 −1 −1 0 1 1

χ5 2 −2 −ω2 −ω 0 ω ω2

χ6 2 −2 −ω −ω2 0 ω2 1

χ7 3 3 0 0 −1 0 0

(5.19)

The conjugacy classes are {e}, {c}, then {A2, IA2, JA2,KA2} of order 3 and
similarly for B2, then the six elements {±I,±J,±K} and finally the elements
{A, I3A, J3A,K3A} and similarly for B. You need to do some little checks (by
hand or by computer) to verify that the stated elements are conjugate, and that
they give all 24 elements of the group.

Next, the characters are the rows of the table: χ1 is the character of the triv-
ial 1-dimensional representation. Obviously each element of the group scores 1.

The next two lines are 1-dimensional characters (or linear characters). This
means they are characters of the Abelian quotient BTAb

24 = BT24 /H8 = Z/3.
In this quotient group, A acts by conjugacy I 7→ J 7→ K 7→ I; on the two
eigenspaces of this action, A acts by ω and ω2, and A2, B, B2 follow suit in the
only possible way.

The next 3 lines are 2-dimensional characters. The first χ4 corresponds to
the given representation: BT24 is given as a 2×2 matrix group, so acts naturally
on C2 (column vectors). Then χ4 just records the trace of the group elements
e, c, A2, B2, I, J,K, A,B. The next two lines are products of the given repre-
sentation by the two linear characters: quite generally if ρ is a 1-dimensional
representation then ρ(g) is just a scalar, so that for any representation σ it
makes sense to take the product ρσ, which takes any g ∈ G to ρ(g)σ(g) (with
ρ(g) a scalar multiplying matrix σ(g)). Taking trace of the product ρ(g)σ(g)
just gives

χ6 = χ2 × χ4 and χ5 = χ3 × χ4. (5.20)

The final line is a 3-dimensional character. The literal minded description
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of the corresponding 3-dimensional representation in terms of matrices is

A 7→

0 1 0
0 0 1
1 0 0

 , I 7→

1 0 0
0 −1 0
0 0 −1

 , J 7→

−1 0 0
0 1 0
0 0 −1

 , K 7→ sim.

(5.21)
This can be argued in several ways: for example, one sees in group theory that
the quotient of BT24 by its centre 〈c〉 is the alternating group A4, with A 7→
(123) and I 7→ (12)(34). Or the 3-dimensional representation is the symmetric
square Sym2 of the given representation as described in Ex. 3.3 (the group acting
on quadratic forms u2, uv, v2, giving χ7 = χ2

4 − χ1). Or the representation is
the 3-dimensional space generated by I, J,K

R3 = RI ⊕ RJ ⊕ RK ⊂ Mat(2× 2,C). (5.22)

on which BT24 acts by conjugacy.
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6 Proof of Main Theorem

6.1 Irreducible characters are mutually orthogonal

Proposition If U1 and U2 are nonisomorphic irreducible CG-modules, their
characters χ1, χ2 are orthogonal w.r.t. the Hermitian inner product of 5.5:

〈χ1, χ2〉 = 0. (6.1)

First χ1(g) = χ1(g−1) (by 5.4, Proposition, (iv)), so I need to prove that∑
g∈G χ1(g−1)χ2(g) = 0. This follows by a calculation based on the averaging

trick together with Schur’s lemma (I).
Recall that Proposition 2.6 averages out any C-linear map ϕ : V2 → V1

between CG-modules (with representations ρi) to give a CG-module homo-
morphism

ψ =
1

|G|
∑
g∈G

ρ1(g−1) ◦ ϕ ◦ ρ2(g) ∈ HomCG(V2, V1). (6.2)

If U2 and U1 are nonisomorphic irreducible CG-modules, Schur’s lemma (I) says
that the average value ψ in (6.2) is zero for any C-linear map ϕ : U2 → U1.

Fix bases to make U1 = Cn1 and U2 = Cn2 , and write ρ1(g) ∈ GL(U1) as
the n1 × n1 matrix (ρ1(g))ij for i, j = 1, . . . , n1, and similarly for ρ2. Before
going to traces, I prove the following stronger statement on matrix entries.

Lemma For all i, a = 1, . . . , n1 and b, j = 1, . . . , n2,

1

|G|
∑
g∈G

(ρ1(g−1))ia(ρ2(g))bj = 0. (6.3)

Here you should appreciate the full power of Schur’s lemma. (6.2) applies to
any C-linear map ϕ : U2 → U1 (given by any n1×n2 matrix), and for every such
ϕ, the statement (6.2) is an equality of n1×n2 matrices. Thus the bland-looking
statement in abstract algebra actually gives us (n1n2)2 identities.

Proof Write Mab for the elementary n1 × n2 matrix with only nonzero entry
mab = 1 for the given a, b. For any n1×n1 matrix R and n2×n2 matrix S, the
product RMabS is the rank 1 matrix obtained as the matrix product of the ath
column of R multiplied by the bth row of S.

RMabS =


R1a

R2a

...
Rn1a

(Sb1 Sb2 . . . Sbn2

)
= (RiaSbj)ij . (6.4)

The matrix Mab corresponds to a homomorphism ϕ : U2 → U1. Set R =
ρ1(g−1) and S = ρ2(g) for each g ∈ G, then average over g ∈ G. Then (6.2)
together with Schur’s lemma (I) gives that the average of these is 0, which proves
the Lemma.
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The statement (6.1) follows from (6.3) on substituting a = i and b = j, then
summing over i and j. Q.E.D.

6.2 An irreducible character has norm 1

The remaining orthonormality statement is that the character χ = χU of an
irreducible representation U satisfies

〈χ, χ〉 =
1

|G|
∑
g∈G

χ(g−1)χ(g) = 1. (6.5)

It follows by a similar argument, based on averaging and Schur’s lemma (II). As
above, by Proposition 2.6, the average over G of any C-linear map ϕ : U → U
is a CG-module homomorphism

ψ =
1

|G|
∑
g∈G

ρ(g−1) ◦ ϕ ◦ ρ(g) ∈ HomCG(U,U). (6.6)

Since U is irreducible, Schur’s lemma (II) says that ψ is a scalar times IdU . Do
we know what scalar multiple? The little advantage we have here is that ϕ is a
map from U to itself, as are all the ρ(g), so that each of the |G| summands in
(6.6) is conjugate to ϕ, so that they all have the same trace by 5.2. Therefore

ψ = λ IdU , where λ = 1
n Trϕ (6.7)

(where n = Tr(IdU ) = dimU , so that Trψ = λ).
From this point on, the argument works as before: write (ρ(g))ij for the

matrix of ρ(g) is any basis. Then argue on the elementary n×n matrix Mab as
in the above lemma. The conclusion is that

1

|G|
∑
g∈G

(ρ(g−1))ia(ρ(g))bj = 1
n TrMab for any i, j, a, b = 1, . . . , n. (6.8)

As before, set i = a and j = b and sum over i and j. On the right-hand side, the
sum of TrMab over a, b equals n, which cancels the denominator. On the left,
the sum over i and j gives 1

|G|
∑
g∈G χ(g−1)χ(g), and equating the two gives

〈χ, χ〉 = 1. Q.E.D.
This completes the proof of (I) of Main Theorem 5.6. I next introduce the

regular representation CG, and prove (III) in Corollary 6.4 as an application. I
leave (II) to the start of Chapter 7.

6.3 The regular representation CG
The regular representation CG is the vector space with basis x ∈ G. That is,
an element of CG is a formal sum

∑
x∈G λxx, with coefficients λx ∈ C; the

G-action is left multiplication(
g,
∑

λxx
)
7→
∑

λxgx. (6.9)
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In other words, CG is the permutation representation corresponding to G acting
on itself by left multiplication: g ∈ G acts by x 7→ gx. Write x ∈ CG for the
basis vector 1 · x (that is

∑
λxx with only one nonzero coefficient λx = 1).

As a baby example, number the elements of S3 as x1 = e, x2 = (12),
x3 = (13), x4 = (23), x5 = (123), x6 = (132). Then g = (12) acts on these by
gx1 = x2, gx2 = x1, gx3 = (12)(13) = (132) = x6, gx4 = x5, so that the action
of g = (12) on CS3 is given by the permutation (12)(36)(45), or the matrix

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 (6.10)

The regular representation is key to the theory because, as I now explain, it
contains every irreducible representation as a direct summand.

6.4 Homming from CG and the proof of (III)

The point of the following proposition is that CG has a preferred element 1CG =
1 · eG, that behaves like the unit element of a ring or C-algebra.

Proposition Let V be a CG-module with representation ρ : G → GL(V ).
Then for every v ∈ V there is a uniquely defined CG-module homomorphism
ϕv : CG→ V such that ϕ(1CG) = v. In other words, there is a natural identifi-
cation of C-vector spaces (without G-action)

HomCG(CG,V ) = HomC(C, V ) = V. (6.11)

Proof For any v ∈ V , define ϕv : CG→ V by∑
λgg 7→

∑
λgρV (g)v. (6.12)

This is a homomorphism of CG-modules, because it is C-linear, and for any
x ∈ G, it does

x
∑

λgg 7→
∑

λgρV (xg)v = ρV (x)
(∑

λgρV (g)v
)
. (6.13)

This ϕv is uniquely specified as a CG-module homomorphism by the condition
that it sends 1CG 7→ v: each basis element g = 1 · g ∈ CG goes to ρ(g)v, and
then ϕv extends to the whole of CG by C-linearity.

According to this definition, ϕv(1CG) maps to 1 · ρ(e)v = v. Moreover, any
homomorphism of CG-modules ϕ : CG→ U must take 1CG to some element v,
and then ϕ = ϕv. Q.E.D.

Corollary (a) If C is any CG-module then dim HomCG(CG,V ) = dimV .
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(b) Decompose the regular representation CG =
⊕k

i=1 diUi as a direct sum
of irreducibles (as in Corollary ss!Irr of Maschke’s theorem). Then di =
dimUi. In words, CG contains exactly di isomorphic copies of every irre-
ducible representation Ui, so that the summand diUi has dimension d2

i .

(c)
∑
d2
i = |G|.

(d) Every irreducible CG-module U is isomorphic to one of the Ui appearing
in the decomposition of (b). In particular, there are only finitely many
irreducible CG-modules up to isomorphism.

Proof The Proposition gives HomCG(CG,V ) = V , so the Hom space has
dimension dimV . Now suppose V = U is irreducible (the definition includes
U 6= 0). Then by Corollary 3.3, (b) of Schur’s lemma, a CG-homomorphism
ϕ :
⊕
ajUj → U is zero on all the factors Uj not isomorphic to U , so the only

way that Hom space can be nonzero, is that one of the summands Ui in CG is
isomorphic to U as CG-module. Identify U = Ui. Then ϕ is a scalar multiple
of the identity on each factor Ui, so that the same Hom space has dimension ai.
This implies ai = di.

This proves that up to isomorphism, every irreducible CG-module is one of
the Ui, so in particular there are only finitely many. And |G| = dimCG =

∑
d2
i ,

proving (III). Q.E.D.

Example The dihedral group D8 has elements

{e, a, a2, a3, b, ba, ba2, ba3}, (6.14)

with the multiplication rules a4 = b2 = e and baj = a4−jb. Write i =
√
−1 and

consider the elements

u1 = e+ i3a+ i2a2 + ia3

u2 = b+ iab+ i2a2b+ i3a3b
and

v1 = b+ i3ab+ i2a2b+ ia3b

v2 = e+ ia+ i2a2 + i3a3
(6.15)

in CD8. One sees by direct calculation that a and b ∈ D8 act on these by

a :
u1 7→ iu1

u2 7→ i3u1
, b : u1 ↔ u2 (6.16)

and the same for v1, v2. Therefore u1, u2 and v1, v2 base 2 copies of the given
representation of D8 inside CD8. We certainly don’t ever intend to carry out
similar explicit hand calculations for groups of order bigger than about 10.
Character theory is a miraculously neat substitute.

6.5 Proof of Main Theorem 5.6 (II)

For Main Theorem 5.6, I still need prove that the number k of irreducible repre-
sentations equals the number r of conjugacy classes. The vector space C(G) of
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class functions has dimension r. As in 6.4, Corollary (b) let CG =
⊕k

i=1 diUi be
the decomposition of the regular representation into nonisomorphic irreducibles
Ui, and write χi ∈ C(G) for the character of Ui. Then the χi are orthonormal,
so linearly independent, and k ≤ r.

Proposition If f ∈ C(G) is a nonzero class function, then 〈f, χi〉 6= 0 for one
of the χi.

The definition of Hermitian inner product gives 〈χi, f〉 = 〈f, χi〉. The propo-
sition then gives that one of the C-linear forms 〈χi, –〉 ∈ C∨ is nonzero on every
nonzero f ∈ C(G). Thus the χi all together define an injective map C(G) ↪→ Ck,
so r ≤ k, which proves Theorem 5.6 (II).

Step 1 Let V be a CG-module with representation ρ : G → GL(V ). For a
class function f on G, define the linear map

T = Tf,V : V → V by T =
∑
g∈G

f(g)ρ(g). (6.17)

Here g ∈ G is summed out, so a priori this is only C-linear. Nevertheless, the
assumption that f is a class function makes T into a CG-module homomorphism:
Indeed, for x ∈ G,

ρ(x−1)Tρ(x) = ρ(x−1)
∑
g∈G

f(g)ρ(g)ρ(x)

=
∑
g∈G

f(g)ρ(x−1)ρ(g)ρ(x) =
∑
g∈G

f(g)ρ(x−1gx).
(6.18)

Now f(g) = f(x−1gx) because f ∈ C(G), and summing over x−1gx instead of
over g ∈ G gives ρ(x−1)Tρ(x) = T , that is ρ(x)T = Tρ(x).

Step 2 The trace of Tf,V equals |G| 〈f, χV 〉: in fact χV (g) = Tr ρ(g) for any
g ∈ G, and summing gives

TrT =
∑
g∈G

f(g)χV (g) = |G| 〈f, χV 〉 . (6.19)

Step 3 Applying Step 1 to the regular representation V reg = CG gives a
CG-module homomorphism T = Tf,V reg . Now T sends the preferred element
1 · eG ∈ CG to

T (1 · eG) =
∑
g∈G

f(g)ρ(g)eG. (6.20)

However ρ(g)eG is just g. The right hand side is thus
∑
f(g)g, and, since the g

form a basis of CG, this is nonzero if f is. Therefore T = Tf,V reg 6= 0.
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Step 4 If CG = V reg =
⊕
aiUi is an irreducible decomposition, it follows

that Tf,V reg must be nonzero on some summand Ui. By Schur’s lemma Tf,V reg

can only map Ui to another summand isomorphic to Ui by a multiple of the
identity, and one of these multiples must be nonzero.

Now Tf,V reg restricted to the CG-submodule Ui is the same thing as Tf,χUi
.

Thus at least one of the Ui has Tf,χUi
6= 0, hence 〈f, χi〉 6= 0. Q.E.D.

Remark We can’t apply V reg directly. Indeed, although Tf,V reg is never zero,
χV reg is zero evaluated on every nonidentity g ∈ C(g).

Remark It follows a posteori that every class function f ∈ C(G) satisfies
f(g−1) = f(g), because this holds for a character χV (Proposition 5.4, (v)), and
characters span C(G) by what we have just proved. However, a priori it is not
at all obvious.

6.6 Column orthonormality

Main Theorem 5.6 (I) corresponds to row orthonormality in the character table
of G:

〈χi, χj〉 =
1

|G|
∑
g∈G

χi(g)χj(g) = δij . (6.21)

This should by now be familiar.
The character table has a similar-looking column orthonormality property.

Write {ga}a=1,...,r for representatives of the conjugacy classes of G. Then

k∑
i=1

χi(ga)χi(gb) = |ZG(ga)|δab for a, b ∈ 1, . . . , r, (6.22)

where ZG(ga) is the centraliser of ga. Try it out in a few cases (e.g., those of
3.4 or Ex. 3.9).

This has no new content. I leave it to you to prove as an exercise based
on row orthogonality, following the hints: The irreducible characters {χi}i=1,...k

are an orthonormal basis for the class functions C(G). A more obvious basis
consists of the functions fa ∈ C(G) for a = 1, . . . , r given by fa(gb) = δab; in
other words, score 1 on g ∈ G for g conjugate to ga, else 0.

Write the basis {fa} in terms of the χi: fa =
∑
λaiχi. The coefficients λai

are of course determined by the Hermitian inner product

λai = 〈χi, fa〉 =
1

|G|
∑
g∈G

χi(g)fa(g). (6.23)

By what I said above, the sum in (6.23) is simply χi(ga)×#CG(ga), where
CG(ga) is the conjugacy class of ga, that is #CG(ga) = |G|/|ZG(ga)|.

Now evaluate fa(gb) = δab as
∑
λaiχi(gb) with λai = χi(ga) ×#CG(ga) to

deduce (6.22).
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6.7 Character table of A5 and the icosahedron

It is known, and discussed in detail later, that A5
∼= I60

∼= PSL(2,F5), where
I60 is the symmetry group of the icosahedron, and PSL(2,F5) is the projective
special linear group. Here I work out its character table as an illustration of the
methods developed so far. The same result is worked out by a completely differ-
ent method in the homework, see Ex. 6.4–6.8. Amazingly, in either derivation,
the whole character table follows from seemingly more-or-less trivial input!

The conjugacy classes in A5 have representatives e (1 element), a = (12)(34)
(15 elements), b = (123) (20 elements), c = (12345) (12 elements), and c2 =
(13524) (also 12 elements). The two 5-cycles c and c2 are of course conjugate
in S5: consider the permutation(

12345
13524

)
= (2354). (6.24)

Then by the general principle, renumbering 1 7→ 1, 2 7→ 3 etc. transforms
(12345) into (13524). Or in other words, composing permutations gives

(2354)c(2354)−1 = c2. (6.25)

However, (2354) is odd, and c, c2 are not conjugate in A5.
Recall that the icosahedron ∆ has 20 triangular faces, 12 vertices and 30

edges. The conjugacy classes of I60 are the types of its symmetries. They are:
the identity e (1 element), rotation a through π about the median through the
midpoint of opposite edges (15 elements), rotation b through 2π

3 or 4π
3 about

an axis through a pair of opposite faces (20 elements), rotation c through 2π
5

or 8π
5 about an axis through two opposite vertices (12 elements), and rotation

c2 through 4π
5 or 6π

5 (also 12 elements). The latter two types are obviously
not conjugate in SO(3), because they have a completely different effect on the
topology of the faces.

We know two representations of I60: the 1-dimensional trivial representa-
tion, and the 3-dimensional representation on ∆ ⊂ R3. Working in R3, we see
that a has diagonal form diag(1,−1,−1) so Tr a = −1. The rotation b has
diagonal form diag(1, ω, ω2) where ω is the cube root of 1, so Tr b = 0. The
rotation c has diagonal form diag(1, ε, ε4) where ε = (cos +i sin)( 2π

5 ), and thus

has trace the Golden Number α = 1 + 2 cos 2π
5 = 1+

√
5

2 . (Please rework the
material of Chapter 1 if you have forgotten this, esp. 1.3.) c2 has diagonal form

diag(1, ε2, ε3), so its trace is 1− α = 1 + 2 cos 4π
5 = 1− 2 cos 2π

5 = 1−
√

5
2 .

This gives the first two lines of the character table (6.39). Reading the con-
clusions of Main Theorem of 5.6, we know that there must be 3 more irreducible
representations, of dimension n3, n4, n5 satisfying

12 + 32 + n2
3 + n2

4 + n2
5 = 60, so that n2

3 + n2
4 + n2

5 = 50. (6.26)

This equation only has one solution in positive integers, namely 3, 4, 5. For
example, the 3 squares have average value 16 2

3 , so the biggest of them has to
be > 4. Neither n5 = 7 nor n5 = 6 work, so n5 = 5, leaving n2

3 + n2
4 = 25.
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To find the other 3-dimensional irreducible representation, observe that the
abstract group A5 has a symmetry that interchanges c and c2. For consider as
before the 4-cycle s = (2354) of (6.25). Conjugacy by s defines an inner auto-
morphism i : S5 → S5, that restricts to an outer automorphism of A5 taking
c to c2. If ρ2 : A5 → I60 ⊂ SO(3) ⊂ GL(3,C) is the representation of A5

corresponding to the isomorphism with the icosahedral group, the map ρ3 = ρ2◦i
is a different representation that interchanges the roles of c and c2. This gives
χ3 in the third line of the character table (6.39).

We can derive either of χ4 and χ5 separately from the orthonormality rela-
tions together with an entertaining calculation.

χ4: suppose the entries are 4, x, y, z, t. Then orthogonality gives

〈χ1, χ4〉 = 0 =⇒ 4 + 15x+ 20y + 12z + 12t = 0 (6.27)

〈χ2, χ4〉 = 0 =⇒ 12− 15x+ 12αz + 12βt = 0 (6.28)

〈χ3, χ4〉 = 0 =⇒ 12− 15x+ 12βz + 12αt = 0 (6.29)

〈χ4, χ4〉 = 60 =⇒ 16 + 15x2 + 20y2 + 12z2 + 12t2 = 60 (6.30)

subtracting (6.28) − (6.29) gives z = t. Now note that α + β = 1, and treat
(6.28) and (6.27) + (6.28) as equations for x and y:

5x = 4 + 4z and 5y = −4− 9z (6.31)

Substituting for x, y, t in 5× (6.30) gives a quadratic equation

80+3(4+4z)2+4(−4−9z)2+120z2 = 300 =⇒ (1+z)(108−492z) = 0, (6.32)

that is, z = −1, giving χ4. (The solution z = 9/41 is eliminated because the
value of a character is a sum of roots of 1, so an algebraic integer.)

χ5: suppose the entries are 5, x, y, z, t. Then orthogonality gives

〈χ1, χ5〉 = 0 =⇒ 5 + 15x+ 20y + 12z + 12t = 0 (6.33)

〈χ2, χ5〉 = 0 =⇒ 15− 15x+ 12αz + 12βt = 0 (6.34)

〈χ3, χ5〉 = 0 =⇒ 15− 15x+ 12βz + 12αt = 0 (6.35)

〈χ5, χ5〉 = 60 =⇒ 25 + 15x2 + 20y2 + 12z2 + 12t2 = 60 (6.36)

subtracting (6.34) − (6.35) gives z = t. As before treating (6.34) and (6.33) +
(6.34) as equations for x and y gives

5x = 5 + 4z and 5y = −5− 9z (6.37)

Substituting for x, y, t in 5× (6.30) gives a quadratic equation

125 + 3(5 + 4z)2 + 4(−5− 9z)2 + 120z2 = 300 =⇒ (492z + 480)z = 0 (6.38)

that is, z = 0, giving χ5. (Since z = −40/41 is impossible.)
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name e a b c c2

size 1 15 20 12 12

χ1 1 1 1 1 1

χ2 3 −1 0 α β

χ3 3 −1 0 β α

χ4 4 0 1 −1 −1

χ5 5 1 −1 0 0

(6.39)

Figure 3: Character table of A5. Here α = 1+
√

5
2 , β = 1−

√
5

2 .

6.8 Homework to Chapter 6

6.1. More hints for Ex. 4.19 I proposed the challenge problem of the
presentation G =

〈
a, b

∣∣ a2 = bab, b2 = aba
〉
. As we saw, if the central element

c = abab = a3 = b3 has order 2 then the group has order 24 and is a cen-
tral extension of A4 isomorphic to BT24. I’m sure that you’ve all got out the
challenge.

My deceptively elegant solution hides 20 pages of preliminary scribbles: start
from ab2a and successively replace the underlined bits to make longer words:

ab2a = a2ba2 = bab2a2 = (ba2b)a3

and symmetrically ba2b = b2ab2 = aba2b2 = (ab2a)b3. (6.40)

(These involved six applications of the relations.) Putting these together gives

ab2a = (ba2b)a3 = (ab2a)b3a3 =⇒ b3a3 = e so that c2 = e. (6.41)

6.2. Product with a linear character Three names for the same thing:

(1) A homomorphism α : G→ C× = GL(1,C).

(2) A linear character of G.

(3) A 1-dimensional representation of G.

If V is a CG-module with representation ρ : G→ GL(V ) and α a linear charac-
ter, show the product αρ : G → GL(V ) defined by g 7→ α(g)ρ(g) is another
representation; here α(g)ρ(g) is multiplication of matrix ρ(g) by the scalar
α(g) ∈ C×. Determine the character χαρ in terms of α and χρ.

6.3. The conclusion from Ex. 6.2 is that multiplication by 1-dimensional char-
acters is a symmetry of the representation theory of G. Recall that the binary
tetrahedral group BT24 ⊂ GL(2,C) has

H8 / BT24 � Z/3, (6.42)
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and has 3 linear characters corresponding to the 3 possible homomorphisms
Z/3→ C×. Deduce that BT24 has three 2-dim representations. Calculate their
characters. Compare Ex. 5.8.

6.4. Permutation representation of G A homomorphism σ : G → Sn
takes each g ∈ G to a permutation σ(g) of {1, . . . , n}. The associated linear
representation is ρσ : G→ GL(n,K), where ρσ(g) permutes the basis of Kn by
ei 7→ eσ(i). Each ρσ(g) is then a permutation matrix. Show how to calculate its
trace.

6.5. 4-dimensional character of A5 Calculate the character χ of the natu-
ral permutation action of A5 on K5 (that is, calculate its value on a = (12)(34),
b = (123), c = (12345) and c2 = (13524)). By calculating 〈χ, χ〉 and using
the Main Theorem, show that this representation splits as a direct sum of two
irreducible representations. Deduce from this that A5 has a 4-dimensional irre-
ducible representation, and calculate its character. Use the conjugacy classes

e a = (12)(34) b = (123) c = (12345) c2(13524)

size 1 15 20 12 12
(6.43)

6.6. Permutation action of A5 → S6 The 5-cycles of A5 fall into 6 cyclic
subgroups Z/5. Conjugacy by A5 defines a permutation action of A5 on the
6 subgroups Z/5. Calculate the character of this action. [Hint. You need
to determine when conjugacy by (25)(34) takes a 5-cycle σ = (12abc) into an
element of the same subgroup 〈σ〉, and similarly for (123).]

6.7 For the permutation representation of Ex. 6.6, calculate 〈χ, χ〉 and deduce
that this representation also splits as a direct sum of two irreducible repre-
sentations. Show that A5 has a 5-dimensional irreducible representation and
calculate its character.

6.8 A5 has the trivial character and the two characters χ4 and χ5 calculated
in Ex. 6.5 and Ex. 6.7. Deduce from the Main Theorem that it must also
have two 3-dimensional characters. If 3, p, q, r, s is one of these, write out the
orthonormality relations provided by the Main Theorem, and determine the
values of p, q, and the values of r, s as the roots of a quadratic equation.

This gives an alternative derivation of the Character Table of A5, also based
on seemingly trivial input.

6.9. We know the conjugacy classes of S5:

e (12) (12)(34) (123) (1234) (12345) (12)(345)

size 1 10 15 20 30 24 20
(6.44)
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Use earlier results of the course to prove that S5 has exactly two 1-dimensional
representations.

Calculate the character of the natural permutation representation of S5 on
C5. Prove that it is the direct sum of two irreducible representations and deduce
that S5 has an irreducible representation on C4. Write out its character.

Write out the character of the sign representation of S5. Prove that S5

has a second nonisomorphic irreducible 4-dimensional representation. Use the
sum of squares formula plus the above to deduce that the remaining irreducible
representations of S5 have dimension 5, 5, 6.

6.10. Past exam question

(a) Let G be a group and U a CG-module. Define what it means for U to be
irreducible. [1]

If U1 and U2 are irreducible CG-modules and α : U1 → U2 is a CG-module
homomorphism, prove that α is either zero or an isomorphism. [2]

If U is an irreducible CG-module, describe HomCG(U,U). [2]

(b) The symmetric group S3 has generators s1 = (12) and s2 = (23) with
defining relations s2

1 = s2
2 = (s1s2)3 = e. Prove that S3 has an irreducible

2-dim representation U defined by s1 7→ ( 0 1
1 0 ) and s2 7→

(
1 −1
0 −1

)
. [2]

Assume the corollary of Maschke’s theorem that every CG-module is a
direct sum of irreducibles.

(c) Let U1, . . . , Uk be nonisomorphic irreducible CG-modules; suppose that

V =

k⊕
i=1

niUi and W =

k⊕
j=1

mjUj

(here niUi = U⊕ni
i denotes the direct sum of ni copies of Ui). Calculate

dim HomCG(V,W ). [2]

(d) Define the regular representation CG of G. [2]

Assume as known that for any CG-module V there is a canonically defined
isomorphism of C-vector spaces HomCG(CG,V ) ∼= HomC(C, V ) ∼= V .

(e) Prove that there are finitely many nonisomorphic irreducible CG-modules
Ui up to isomorphism, and that their dimensions di = dimUi satisfy∑
d2
i = |G|. [4]

(f) The regular representation of S3 contains 2 copies of the irreducible rep-
resentation U discussed in (b). Find them explicitly following these indi-
cations (or otherwise): Order the elements of S3 as

{x1, x2, x3, x4, x5, x6} = {e, (12), (13), (23), (123), (132)}.
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Left multiplication by the generators s1 and s2 correspond to certain per-
mutations. Search for vectors f1, f2 in the form xi + xj − xk − xl such
that (a) f1 is invariant under s2; (b) s1 acts by f1 ↔ f2; and (c) s2 acts
by f2 ↔ −f1 − f2. [10]

6.11. Puzzle corner A partial character table of G:

e u v w x y

size 1 1 2 2 3 ∗
χ1 1 1 1 1 1 ∗
χ2 1 1 1 1 −1 ∗
χ3 1 −1 1 −1 i ∗
χ4 1 −1 1 −1 −i ∗
χ5 2 −2 −1 −1 0 ∗
χ6 ∗ ∗ ∗ ∗ ∗ ∗

(6.45)

(i) Recover the missing information.

(ii) Prove that orderu = 2, orderx = 4, orderw = 6, order v = 3, and find
order y.

(iii) Show that the subgroup 〈v〉 is normal.

(iv) Determine G.
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7 Finite subgroups of SL(2,C) and SO(3,R), the
icosahedron

The dihedral group, the rotational symmetry group of the regular tetrahedron,
the cube (or octahedron) and icosahedron and their binary covers appear as
standard examples throughout elementary group theory (see 2.2–2.3, Ex. 2.7,
3.4, 5.7, 6.7, etc.). It is interesting to write out the finite subgroup of SO(3,R)
and their binary coverings in SL(2,C), insofar as possible as one integrated list.
The treatment should include abstract presentations, representations as linear
groups over finite fields, representations as permutation groups, and as matrix
groups over R and C.

7.1 Subgroups of SL(2,C) and SO(3)

The groups are

BD4my
D2m

and

H8 ⊂ BT24 ⊂ BO48y y y
V4 ⊂ A4 ⊂ S4

and

BT24 ⊂ BI120y y
A4 ⊂ A5

(7.1)

The groups in the top line have the central element c with c2 = e, and those in
the bottom line are the quotients by 〈c〉. When I treat them as matrix groups
in SL(2,C), the central element c will be −I2 ∈ SL(2,C). The dihedral cases
BD4m → D2m are already treated in 2.2. The binary icosahedral group BI120

and its quotient A5 is more complicated than the others, mainly because A5 is
simple.

The finite subgroups of SO(3,R) are the groups of rotations of regular solids:
the cyclic groups, the dihedral groups, and the groups of rotation of the regular
tetrahedron, the regular octahedron and the regular icosahedron. (The cube
and the regular octahedron have the same symmetry group, and likewise for the
dodecahedron and the icosahedron.) Each of these groups has a double cover
in SU(2) or SL(2,C). Here a double cover1 means a central extension by the
centre 〈c〉 or Z/2 = {±I2} ⊂ SL(2,C).

Starting with the bottom line, the groups are the following:

1We don’t especially need this, but for the curious, the binary covers come from a general

property of SO(3). A general A ∈ SU(2) has the form A =
(

a+ib c+id
−c+id a−ib

)
with a, b, c, d ∈ R

such that a2 + b2 + c2 + d2 = 1. There is a 2-to-1 cover SU(2)→ SO(3,R) defined by

A 7→

a2 + b2 − c2 − d2 −2ad + 2bc 2ac + 2bd
2ad + 2bc a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2

 (7.2)

This comes by making A act by Q 7→ AQA−1 on the vector space R3 made up of matrices

Q =
(

ix y+iz
−y+iz −ix

)
. (Or if you prefer, a unit quaternion A ∈ SU(2) acts on the imaginary

quaternions Q ∈ R3 by AQA−1.) It is clear that −1 ∈ SU(2,C) goes to the identity. One
checks that the image is in SO(3,R), and that this defines a homomorphism SU(2)→ SO(3,R)
with kernel −1 that is a 2-to-1 cover.
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• V4 = Klein 4-group = Z/2⊕ Z/2;

• A4 = V4 oZ/3 ∼= Alternating group(4) ∼= rotations of regular tetrahedron
∼=
〈
a, b

∣∣ a2, b3, (ab)3
〉 ∼= PSL(2,F3);

• S4 = V4 o S3 = Symmetric group(4) ∼= rotations of octahedron (or cube)
∼=
〈
a, b

∣∣ a2, b3, (ab)4
〉 ∼= PGL(2,F3);

• A5 = Alternating group(5) ∼= rotations of icosahedron (or dodecahedron)
∼=
〈
a, b

∣∣ a2, b3, (ab)5
〉 ∼= PSL(2,F5).

Each has many possible presentations as abstract group. For example, everyone
knows how to generate S4 by 3 transpositions s1, s2, s3 satisfying the “Coxeter
relations” s2

1 = s2
2 = s2

3 = e, (s1s2)3 = (s2s3)3 = e. However, for my purpose,
the effective method of argument is to build up from the smallest group.

The 4-group V4 has 3 nonzero elements x, y, z satisfying x2 = y2 = z2 =
xyz = e; it is a little exercise to check that these imply xy = yx, so that
V4 =

〈
x, y, z

∣∣ x2, y2, z2, xyz
〉
. Setting z = y−1x−1 would shorten the list of

generators, but spoil the symmetry of the presentation.
As abstract groups, A4 and S4 appear naturally from the symmetry of V4.

In brief, they are semidirect products A4 = V4 o Z/3 and S4 = V4 o S3 where
Z/3 is the 3-fold cyclic symmetry (x, y, z) and S3 the full symmetric group on
{x, y, z}.

In more detail, a semidirect product HoF occurs when F,H are groups and
α : F → AutH a homomorphism, so that F acts as symmetries of H. Then
HoF is the direct product of sets G = H×F , with binary operation G×G→ G

(h1, f1) · (h2, f2) = (α(f2)(h1)h2, f1f2). (7.3)

In other words, rather than just the direct product multiplication, we make
f2 act on h1 before calculating the first component. It follows that G has the
structure

H CG� F, (7.4)

with the quotient F acting by conjugacy on the normal subgroup H by the
stated action α. A number of little exercises identify the semidirect products
with the above groups A4 and S4.

As illustration, consider the 3-cycle (x, y, z) as a symmetry of V4. It allows
us to construct a bigger group G = 〈V4, a〉 with a new generator a satisfying
a3 = e, so that G has 3 cosets V4, aV4, a

2V4, and conjugacy by a act by the
3-cycle (x, y, z). Thus G = 〈V4, a〉 = V4 oZ/3. Spelling this out in full gives the
presentation

G =
〈
x, y, z, a

∣∣ x2, y2, z2, xyz, a3, axa−1 = y, aya−1 = z, aza−1 = x
〉

(7.5)

(long-winded, but symmetric).

Exercise 1 Prove that this group is isomorphic to A4. [Hint: Take x =
(12)(34) and a = (132). Invent suitable y, z so that x, y, z, a generate G and
satisfy the same relations.]
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Exercise 2 Show from first principles that the group G with presentation
(7.5) has exactly 4 subgroups H1, H2, H3, H4 of order 3. Show that they are not
normal, and that conjugacy by G permutes the {Hi} as the alternating group
A4.

Exercise 3 Do the same for S4 as the semidirect product S4 = V4 o S3.

There are lots of interesting puzzles about making this compatible with other
presentations of the groups, esp. the PSL(2,F3) and PGL(2,F3) models in the
projective group over the finite field F3 and the (2, 3, 3) and (2, 3, 4) triangle
groups of 7.2. The icosahedral group relates in the same way to the alternating
group A5, the matrix group PSL(2,F5) over F5 and the (2, 3, 5) triangle group
of 7.2.

7.2 The triangle groups G2,3,r

Consider the finitely presented groups

Gr = G2,3,r =
〈
x, y

∣∣ x2 = y3 = (xy)r = e
〉

for r ≥ 2. (7.6)

These are finite for r ≤ 5, and infinite for r ≥ 6. In fact

G2 is the dihedral group D6 = S3
∼= PSL(2,F2).

G3 is the tetrahedral group T12 = A4
∼= PSL(2,F3).

G4 is the octahedral group O24
∼= PGL(2,F3).

G5 is the icosahedral group I60 = A5
∼= PSL(2,F5).

G6 is the rotational symmetry group of the tesselation of R2 by regular tri-
angles, or the honeycomb lattice in R2. It contains Z2 as translational
subgroup, and has the structure of semidirect product G6 = Z2 o Z/6.

G7 is the rotational symmetry group of the tesselation of hyperbolic space H2

by hyperbolic triangles with angles π
2 , π3 , π7 , or by regular heptagons with

angle 2π
3 . It contains a normal subgroup Π of index 168 acting freely on

H2, with quotient group the simple group G168 that we discuss in detail
later. (In fact Π is the topological fundamental group of a Riemann surface
of genus 3.)

For r ≥ 7, the group Gr has a similar description in terms of the hyperbolic
triangle with angles π/2, π/3, π/r. I don’t have anything more to say
about them (but compare Ex. 7.12).

Working with these presentations is fairly labour-intensive. Compare for
example Ex. 7.12 for a pedestrian proof that G2,3,r has the right order when
r = 3 or 4 or 5. (This continues my obsession with the material surrounding
Ex. 4.19.)
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7.3 Case r = 6: the regular triangular lattice

I start with the case G2,3,6, in many ways the most instructive: Work with the

t εt

t εt
t 0 t 1

∆

∇
t

Figure 4: The regular triangular lattice Z⊕ Zε

regular triangular lattice in C = R2, based by 1 and ε = exp 2πi
6 . Note that

ε = 1+
√
−3

2 and ε = ε−1 = 1−
√
−3

2 = 1 − ε. Write ∆ for the first triangle with
vertices 0, 1, ε and ∇ for its reflection in the x-axis, the triangle with vertices
0, 1, ε. Then set

x = Rot(( 1
2 , 0), π) : z 7→ 1− z (7.7)

for the half turn about the midpoint of the interval [0, 1], and

r = Rot((0, 0),− 2π
6 ) : z 7→ ε−1z = (1− ε)z (7.8)

for the clockwise rotation by 60o of the plane around 0.
Clearly r rotates ∆ down to ∇ around the vertex 0, whereas x turns ∆ and

∇ upside down and interchanges them. The composite xr thus takes ∆ to itself.
In fact if we set y = xr, then y : z 7→ 1 − ε−1z rotates ∆ anticlockwise by 2π

3
about its centroid 1+ε

3 :

r x
0 7→ 0 7→ 1
1 7→ ε 7→ ε
ε 7→ 1 7→ 0

(7.9)

Thus x2 = IdR2 , y3 = IdR2 and r = xy satisfies r6 = IdR2 .
The group generated by x, y contains the translation lattice Z ⊕ Zε as a

subgroup: indeed, r3 : z 7→ −z is half-turn around 0, so that xr3 is translation
by 1, and its conjugate r−1xr4 is translation by ε (please check). One checks
that the translation lattice Z2 = Z⊕ Zε is a normal subgroup of index 6 with

Z2 CG6 � Z/6, (7.10)

and that G2,3,6 has the structure of semidirect product G6 = Z2 o Z/6. The
quotient Z/6 corresponds to the rotational symmetries around the origin, and
is generated by r.
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7.4 G5 is the icosahedral group

The same argument gives the relation between G5 and the icosahedral group I60.
Indeed, suppose that we put together 5 regular triangles of angle π/3 around
one vertex. That doesn’t fit in Euclidean plane geometry, but it is exactly what
happens at each vertex of the icosahedron.

s s
ss

s s

∆

∇

P0
P1

P2

P3

P4

P5 (7.11)

The picture is the projection to the plane of 5 regular triangles

∆ = P0P1P2, P0P2P3, . . . , ∇ = P0P5P1 (7.12)

in R3 around the vertex P0 of the icosahedron. The triangles are regular in R3,
but of course not in the plane, because in the plane figure, the angles at P0

are 2π
5 > 2π

6 . (Alternatively, we could draw this by radial projection outwards
onto the unit sphere S2, which would make the triangles into regular spherical
triangles with 3 angles equal to 2π

5 . By the angular defect formula, the area of
each triangle must be π

5 , which is 1
20 th the area of the sphere.)

The axis through the midpoint of P0P1 and its antipodal point is a median
line. Set x to be the rotation through π about this axis. As before, it inverts
the edge P0P1 and swivels ∆ into ∇ and vice versa.

Set r to be the clockwise rotation through 2π
5 about the axis through the

vertex P0. It rotates ∆ down to ∇ around the vertex 0. It follows exactly as
before that y = xr is a symmetry of the icosahedron that takes triangle ∆ to
itself, permuting the vertices by (P0, P1, P2), so it is the anticlockwise rotation
through 2π

3 around the axis through the midpoint of ∆
Thus x, y and r = xy satisfy the relations x2 = e, y3 = e, r5 = e of G5.

Why is I60
∼= A5? The key point for the isomorphism I60 = A5 is to see

that the 30 edges of the icosahedron make up 15 parallel pairs, that break up as
5 orthogonal frames of R3. The group I60 permutes these 5 frames, and this
permutation action defines an isomorphism of I60 and A5. I give a somewhat
extravagant treatment of this in coordinates, with the 5 frames given in (7.19).
If you take I60 = A5 on trust, this material is not needed for the rest of the
course. I don’t have time to express it more concisely.
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7.5 The generators of I60 as matrices

I write out I60 as a matrix group. Choose coordinates with P0 on the x-axis,
making r the standard rotation matrix in the plane R2

〈y,z〉. Choose the scale of

the icosahedron so that its vertices lie on the sphere S2 of radius
√

5, which puts
the North Pole at P0 = (

√
5, 0, 0). It turns out (see below) that the neighbouring

vertices P1, . . . , P5 are then on the plane x = 1, and I choose P1 = (1, 2, 0) on
the plane z = 0.

Proposition With the above conventions, the clockwise rotation matrix R and
the matrix rotating R3 through π about the midpoint of P0P1 are given by

R =

1 0 0
0 cos 2π

5 sin 2π
5

0 − sin 2π
5 cos 2π

5

 , X =
1√
5

1 2 0
2 −1 0

0 0 −
√

5

 (7.13)

Then X,R and Y = XR satisfy the relations X2 = e, Y 3 = e, R5 = e of G5.

Proof This is fairly easy. R is the standard rotation matrix that fixes the
north-south axis through P0 (see (7.11)), and rotates the 5 vertices P1...5 as a
5-cycle. One checks that X interchanges the two column vectors P0 = (

√
5, 0, 0)

and P1 = (1, 2, 0), and that X2 = Id3. Arguing as in 7.3 one sees that the
composite map defined by Y = XR is a 3-fold rotation doing N 7→ P1 7→ P2 7→
N , so that Y 3 = Id3. Q.E.D.

7.6 Triangle group presentations for the binary groups

The binary groups forming the top line of (7.1) are obtained as abstract groups
from the triangle group presentations by a uniform trick: in each case, we
replace the relations x2 = y3 = (xy)r = e for Gr by the relations x4 = e and
y3 = (xy)r = x2 for the binary group BG2r. Then x2 is a central element
(it commutes with x and y because it is a power of either) of order 2, and
BG2r /

〈
x2
〉

= Gr.
Compare the Magma code

F2<x,y> := FreeGroup(2);

for r in [2..5] do

G := quo< F2 | x^2, y^3, (x*y)^r >; Order(G);

BG := quo< F2 | x^4, y^3 = x^2, (x*y)^r = x^2 >; Order(BG);

end for;

7.7 The binary group BO48 as a matrix group in SU(2)

2.3 discussed the quaternion group H8 and the binary tetrahedral group BT24

as matrix groups. Recall that BT24 consists of the 8 quaternion elements

{±1,±I,±J,±K} together with the 24 matrices
(
a b
−b a

)
with a, b = ±1±i

2 .
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For BO48 we just need to add the diagonal matrix Z =
(
ζ8 0

0 ζ−1
8

)
, where

ζ8 = 1+i√
2

= exp 2π
8 is the standard primitive 8th root of 1 with ζ2

8 = i. The

statement is that BO48 has BT24 as a normal subgroup of index 2, and is the
union of two cosets BT24 tZ BT24. Conjugacy by Z is the automorphism that
interchanges the two generators A = 1

2

(
1+i 1+i
−1+i 1−i

)
and B = 1

2

(
1+i −1+i
1+i 1−i

)
.

7.8 The binary icosahedral group BI120 as a matrix group

As a matrix group, BI120 is generated by the two matrices

Z =

(
−ε3 0

0 −ε2

)
=

(
exp πi

5 0
0 exp−πi5

)
and (7.14)

X =
1√
5

(
−ε+ ε4 ε2 − ε3

ε2 − ε3 ε− ε4

)
=

2i√
5

(
− sin 2π

5 sin π
5

sin π
5 sin 2π

5 .

)
(7.15)

They satisfy X2 = Z5 = (X ∗ Z)3 = − Id

7.9 Appendix. Coordinates for the icosahedron

Everything we need for the icosahedron can be expressed in terms of the single

surd quantity s =

√
5−
√

5
8 = sin π

5 ≈ 0.5878, that has minimal polynomial

(8s2 − 5)2 − 5:

√
5 = 5− 8s2, cos π5 = 3

2 − 2s2 = 1+
√

5
4 , sin π

5 = s,

cos 2π
5 = 1− 2s2 = −1+

√
5

4 , sin 2π
5 = 3s− 4s3.

(7.16)

Quite a number of bizarre identities turn up in manipulating these. For example,
you might enjoy the exercise of checking that sin2 2π

5 + sin2 π
5 = 5

4 .
For the icosahedron in explicit coordinates, start from the antiprism formed

by the regular pentagon in the circle of radius 2 at height 1, and its negative
(see Figure 5). The antiprism is inscribed in the sphere of radius

√
5 and has

obvious 5-fold rotational symmetry.
To make the icosahedron, just add the North and South poles, giving the 12

vertices

P1 = (1, 2, 0), Q1 = (−1,−2, 0),

P2 = (1, 2 cos 2π
5 , 2 sin 2π

5 ), Q2 = −P2,

N = (
√

5, 0, 0), P3 = (1,−2 cos π5 , 2 sin π
5 ), Q3 = −P3, S = (−

√
5, 0, 0).

P4 = (1,−2 cos π5 ,−2 sin π
5 ), Q4 = −P4,

P5 = (1, 2 cos 2π
5 ,−2 sin 2π

5 ), Q5 = −P5,

I check that all the edges of the icosahedron have length 4s =
√

10− 2
√

5, so
its faces are regular triangles in R3: for P3P4 this is more-or-less the definition
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q q P1 = (1, 2, 0)Q1

q
P2Q5

qP3

qP4

q P5

b

b
b

bQ4 = (−1, 2 cos π5 , 2 sin π
5 )

b

-�
c

Figure 5: The regular pentagon in the unit circle

of s = sin π
5 , and it follows by symmetry for all the sides in the two planes

x = ±1. Then calculate (NP1)2 = (
√

5− 1)2 + 22 = 10− 2
√

5 = (4s)2 and

(P1Q4)2 = 4
(
1 + (1 − cos π5 )2 + sin2 π

5

)
= 4(3 − 2 cos π5 ) = (4s)2. (7.17)

This gives 3-fold rotational symmetry, for example the element y that rotates
the regular triangle ∆ = 4NP1P2 by N 7→ P1 7→ P2 7→ N as in 7.2. The three
faces adjacent to ∆ are NP1P5, P1P2Q4 and NP2P3; so the rotation y must
take P3 7→ P5 7→ Q4 7→ P3.

Clearly r permutes the 12 vertices by (12345), that is, it fixes N and S
and does (P1, P2, P3, P4, P5)(Q1, Q2, Q3, Q4, Q5). One checks using adjacency
of vertices that x does (N,P1)(P2, P5)(P3, Q3)(P4, Q4)(Q1, S)(Q2, Q5) and the
composite y = xr does (P1, N, P2)(P3, Q4, P5)(P4, Q5, Q3)(Q1, S,Q2). You will
notice from these formulas that G acts on the set of 6 axes PiQi, NS joining
antipodal vertices, and in this action x = (1, 6)(2, 5), r = (1, 2, 3, 4, 5) and
y = xr = (1, 6, 2)(3, 4, 5).

One can also make I60 act on the 10 pairs of opposite faces, but we still
don’t have a direct link with A5. Can we think up a set of 5 objects naturally
associated with the icosahedron on which I60 acts as the alternating group?

7.10 Key point: 5 orthogonal frames

The sides of the icosahedron provide 5 orthogonal frames. For this, consider
first the 3 pairs of antipodal parallel edges:

−−→
P1N =

−−→
SQ1 = (

√
5− 1, −2, 0),

−−−→
Q5P2 =

−−−→
Q2P5 = (2,

√
5− 1, 0),

−−−→
P4P3 =

−−−→
Q3Q4 = (0, 0, 4s)

(7.18)
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In Figure 1,
−−−→
P4P3 points in the vertical z direction, so is perpendicular to

the horizontal plane z = 0 that contains the first two vectors
−−→
P1N and

−−−→
Q5P2.

The formulas just given prove that
−−−→
Q5P2 ⊥

−−→
P1N . Alternatively we can argue on

the rotation by π around the dotted vertical axis in Figure 1, the z-axis (that
is (x, y, z) 7→ (−x,−y, z)), that interchanges Q5 ↔ P2 and N ↔ S. Thus the 3
vectors (7.18) are pairwise orthogonal, so form an orthogonal frame.

The 5 orthogonal frames are

Σk : PkN ||SQk, Qk−1Pk+1 ||Qk+1Pk−1, Pk−2Pk+2 ||Qk+2Qk−2 (7.19)

for k = 1, 2, 3, 4, 5. The group I60 of rotational symmetries of the icosahedron
acts on these 5 objects by alternating permutations, providing the isomorphism
I60
∼= A5.
In fact each of these 5 orthogonal frame e0, e1, e2 of R3 is taken to itself by

the group of order 12 generated (in that basis) by1 0 0
0 −1 0
0 0 −1

 and

0 1 0
0 0 1
1 0 0

 . (7.20)

Thus I60 as an abstract group contains 5 subgroups isomorphic to A4, and its
conjugacy action on these defines the same isomorphism I60

∼= A5.
The icosahedron has six axes of 5-fold rotation, namely PiQi for i = 0, . . . , 4

and the x-axis NS, and it is the permutation action of I60 on these that defines
the embedding A5 ⊂ A6 used in deriving the irreducible representation V5. In
fact 5-fold rotation around NS permutes these as (12345), whereas one sees
that the 3-fold rotation of the regular triangle 4P1P2PN does (015)(243), the
a and b used in (9.14) and (9.20).

7.11 Homework to Chapter 7

7.1. Revision of roots of 1 (cf. Ex. 1.3.)

1. Describe the set of complex 6th roots of 1. Write down an irreducible
polynomial whose roots are the primitive 6th roots of 1.

2. Find an expression in radicals for cos 2π
6 .

3. Determine the irreducible representations of Z/6 over C.

4. Let r : R3 → R3 be the rotation through an angle of 60o = 2π
6 about an

axis and write ρ : Z/6→ GL(3,R) for the representations sending 1 ∈ Z/6
to r. Find all R-vector subspaces invariant under this action.

5. Write σ : Z/6 → GL(3,R) ↪→ GL(3,C) for the same representation over
C. Determine its decomposition into irreducible representations.
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7.2. Tetrahedral group T12 (cf. Ex. 2.8.) Show that the 4 points

P1 = (1, 1, 1), P2 = (1,−1,−1), P3 = (−1, 1,−1), P4 = (−1,−1, 1)
(7.21)

are the vertices of a regular tetrahedron ∆. Write down in coordinates the
rotation matrix A that permutes the Pi as (1, 2)(3, 4) and B giving (2, 3, 4).
Prove that A2 = B3 = (AB)3. Deduce that T12

∼= A4.
The group PSL(2,F3) has order 12 and permutes the 4 points of the pro-

jective line P1
F3

. Choose some ordering of these points, and write down 2 × 2
matrices with determinant 1 that permute them as (1, 2)(3, 4) and (2, 3, 4).

7.3. Character Table of A4 (cf. Ex. 3.8.) Prove that the alternating
group A4 has 4 irreducible representations, writing them down as explicit homo-
morphisms ρ : T12 → GL(n,C). Write out the conjugacy classes of A4, its
irreducible representations and the character table. Illustrate the row orthonor-
mality relations by calculating 〈χi, χj〉.

7.4. Characters of an Abelian group (cf. Ex. 4.15.) Recall that linear
characters or 1-dimensional representations are also homomorphisms ρ : A →
C×. For distinct primes p, q, set ε = εpq = exp 2πi

pq . Show how to write out the

p2q characters of the group A = Z/p ⊕ Z/pq. Show that they form a group Â
isomorphic to A.

7.5. Reading information from character tables (cf. Ex. 5.2 and 5.7.)
(i) For V a representation of G, we know that χV (g) = dimV if and only if

ρ(g) = IdV . State and prove necessary conditions on ρ(g) for |χV (g)| = dimV .
(ii) State and prove a method of determining from the character table of

G which conjugacy classes are contained in the commutator subgroup [G,G].
[Hint: Dimensions and kernels are in the character table. [G,G] is determined
as the kernel of 1-dimensional representations. ]

7.6. Past exam paper, slightly reworded Someone spilt gravy on a char-
acter table of a finite group G, leaving the following information:

e g2 g3 g4 g5 g6 g7

χ1 1 ∗ ∗ ∗ ∗ ∗ ∗
χ2 1 −1 1 1 −1 1 −1

χ3 1 1 1 1 1 −1 −1

χ4 1 ∗ ∗ ∗ ∗ ∗ ∗
χ5 2 i

√
2 0 −2 −i

√
2 0 0

χ6 2 ∗ ∗ ∗ ∗ ∗ ∗
χ7 2 ∗ ∗ ∗ ∗ ∗ ∗

(7.22)
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(a) Fill in the missing information, stating briefly the results from the course
that you use. [7]

(b) Compute the order of G and the size of its conjugacy classes. [6]

(c) Determine the order of the centre of G. Justify. [4]

(d) What is the order of the commutator subgroup [G,G]? [4]

(e) Is G isomorphic to a subgroup of GL(2,C). Justify. [4]

This puzzle is fun, and each piece of it involves remembering some useful
points from the course.

7.12 Exercise on G2,3,p

Add Ex. SL(2,Fp) has generators

x =

(
0 −1
1 0

)
and y =

(
0 1
−1 −1

)
with xy =

(
1 1
0 1

)
They satisfy x2 = Id2 is central and x4 = y3 = (xy)p (and other relations).
Therefore PSL(2,Fp) is a quotient of the triangle group G2,3,p.

7.13 Exercise on presentation G2,3,3 gives A4

Consider the abstract group G =
〈
x, y

∣∣ x2, y3, (xy)3
〉
. Show that G is a group

of order 12 isomorphic to A4.

Step 1 Working in the abstract groupG, use the relations x2 = y3 = (xy)3 = e
to deduce the following:

xyxy = y2x, xy2x = yxy, yxyx = xy2,

y2xy2 = xyx and yxyxy2 = xy.

Easy: start from xyxyxy = e and multiply both sides successively by x and y.

Step 2 Using these, check that the list of 12 elements

L = {e, x, y, y2, xy, yx, xy2, y2x, xyx, yxy, yxy2, y2xy}

is closed under multiplication on left and on the right by x and y.
Therefore these 12 elements form a group and G has at most 12 elements.

We only need to be really sure that there are not any more equalities between
them implied by the relations x2 = y3 = (xy)3 = e that we may have missed.
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Step 3 At the same time as checking closure under left and right multiplica-
tion, you probably noticed a couple of cases where xg = gx; write these out and
check that they are conjugates of x in the abstract group. If we assume for the
moment that the 12 elements are distinct, then x and its conjugates generate a
normal subgroup V4 CG.

Step 4 Show that G divided by V4 is Z/3, and conclude that G ∼= A4.

Step 5 I don’t really trust the assumption that the 12 elements of L are
distinct. However if we take x = (12)(34) and y = (123) in A4, we can check
that they are generators, satisfy the relations, and the 12 elements of L are
all the elements of A4. Therefore there is a surjective group homomorphism
G→ A4, so that |G| ≥ 12. In Magma:

A4 := Alt(4);

x := A4!((1,2)(3,4)); y := A4!(1,2,3); x*y;

L := [Id(A4), x, y, y^2, x*y, x*y^2, y*x, y^2*x, x*y*x,

x*y^2*x, y*x*y^2, x*y*x*y^2]; #L; #SequenceToSet(L);

The same method can be used (in principle) to prove that the abstract
triangle groups

〈
x, y

∣∣ x2, y3, (xy)n
〉

for n = 4, 5 are isomorphic respectively to
S4 and A5. But the calculations become quite a lot bigger, and there is more
and more excuse to entrust them to the computer.

7.14 Exercise on the triangle groups G2,3,r and their Cay-
ley graphs

The Cayley graph of a group G with a set of generators xi is the graph having
g ∈ G as its nodes and edges g—xig for each generator xi. (Compare (4.5),
the Cayley graph of the free group on 2 generators.) For the triangle groups
G2,3,n, the Cayley graph can be identified with the 3-fold central subdivision of
the tesselation of S2, E2 or H2 by regular triangles.

An element of G2,3,r acts on a regular triangular tesselation of the sphere
S2 (for r ≤ 5) or the Euclidean plane E2 (for r = 6) or the hyperbolic plane
H2 (for r ≥ 7). Thus in Figure 7.3, one can make a frame of reference out of
a triangle marked with an edge. For example, with the triangle ∆ and the line
[0, 1], draw the inward perpendicular to [0, 1] at the midpoint 1/2. The group
acts simply transitively on the set of all such frames.
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8 New representations for old

8.1 Representations from a quotient group G/H

Definition A representation ρ : G→ GL(V ) is faithful if no element of G acts
on V by the identity. Since ρ is a group homomorphism, its kernel is a normal
subgroup H = ker ρCG, and any ρ arises from a faithful representation of the
quotient G/H.

If H CG is a normal subgroup and π : G→ G/H the quotient group by H
then a representation of G/H gives rise to a representation of G with kernel H.
We have already seen, for example, that A4 and S4 act as the full symmetric
group S3 on the set of 3 pairings {(1, 2; 3, 4), (1, 3; 2, 4), (1, 4; 3, 4)}, and that
this defines surjective homomorphisms A4 � Z/3 and S4 � S3 with kernel
the 4-group V4. Thus the representations of S3 give rise to the (unfaithful)
representations of A4 and S4 that we use in deriving their character tables.

8.2 Products of 1-dimensional representation

A 1-dimensional representation of G is a homomorphism α : G → C×. Taking
the character of a 1 × 1 matrix identifies GL(C) = C×, so that we can simply
identify a 1-dimensional representation with its character. We can take the
product of 1-dimensional representations in an obvious way: if α, β : G → C×
are homomorphisms then αβ : G → C× given by αβ(g) = α(g)β(g) is again a
1-dimensional representation. Thus the 1-dimensional representations of G form
a group Homgroups(G,C×) in its own right. To repeat the material of 4.4–5, it
follows from the universal property of the Abelianisation A = GAb = G/[G,G]

(quotient by the commutator subgroup) that this is Â = Homgroups(A,C×) and
is (noncanonically) isomorphic to A.

8.3 Product of a representation V by 1-dim representation

In the same way, if V is a CG-module with representation ρV , we can take its
product by a 1-dimensional representation α by taking αρV : V → GL(V ) to be
defined by g 7→ α(g)ρV (g). Here we are just taking the product of homomor-
phism ρV (g) by the scalar α(g) ∈ C×. Taking the product of a matrix aM by a
scalar just multiplies each entry by a, so the sum of the diagonal entries is also
multiplied by a, and we get

χαρV = αχρV or χαρV (g) = α(g)χρV (g) for g ∈ G. (8.1)

We use this as an automatic trick in working out character tables.

8.4 Tensor product V1 ⊗ V2

Let V1 and V2 be vector spaces. The tensor product V1 ⊗ V2 is most easily
constructed using bases: Let e1, . . . , en base V1 and f1, . . . , fm base V2. Then the
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tensor product V1⊗V2 is the vector space with basis the n1n2 formal expressions
ei ⊗ fj .

From a theoretical point of view, the best way to deal with this is via its
Universal Mapping Property. Recall from linear algebra that a bilinear map
s : V1 × V2 →W is a map that is linear separately in both variables.

Proposition (i) There is a bilinear map t : V1×V2 → V1⊗V2 that is uniquely
determined by specifying that (ei, fj) 7→ ei ⊗ fj. It is given by(∑

aiei,
∑

bjfj

)
7→
∑
i,j

aibjei ⊗ ej . (8.2)

(ii) Moreover, t has the following UMP for bilinear maps: for any bilinear
map s : V1×V2 →W there exists a unique C-linear map ϕs : V1⊗V2 →W
such that s factors as s = ϕs ◦ t:

V1 × V2
t−→ V1 ⊗ V2

HHj
c©

s

yϕs

W

(8.3)

The proof is straightforward: the ei⊗fj base V , so a linear map ϕ : V →W
is uniquely determined by where it sends them. To achieve s = ϕs ◦ t, we can
and must send ei ⊗ fj 7→ s(ej , fj). This proves the proposition.

The UMP clarifies what part of the discussion is the definition and what
part the construction: we can state the UMP without saying basis, and think of
the vector space with basis ei ⊗ fj as a construction proving that the universal
object V1 ⊗ V2 in (ii) actually exists. The UMP guarantees that the solution
is unique: indeed for two solutions W1 and W2 of the UMP, there are C-linear
maps W1 → W2 and W2 → W1 between them compatible with the bilinear
requirements, and unique with that property; then, again by uniqueness, the
composite map W1 → W2 → W1 equals IdW1

and ditto for W2 → W1 → W2.
Uniqueness means in particular independence of the choice of basis.

The UMP also gives a clean way of making the tensor product V1 ⊗ V2 of
two CG-modules into a CG-module. In the proposition below, a map C-bilinear
map s : V1 × V2 →W is CG-bilinear if the maps

s(v, –) : V2 → V1 ⊗ V2 and s(–, w) : V1 → V1 ⊗ V2 (8.4)

are CG-module homorphisms for fixed v ∈ V1 and w ∈ V2.

Theorem (I) The tensor product V1 ⊗ V2 of two CG modules has a unique
CG-module structure with the property that t : V1 × V2 → V1 ⊗ V2 is CG-
bilinear.

(II) The character of V1 ⊗ V2 is the product of those of V1 and V2:

χV1⊗V2 = χV1χV2 . (8.5)

75



(III) In the case V1 = V2 = V , the tensor product V ⊗ V decomposes as a
direct sum of tensors that are symmetric and skew under the involution of
V ⊗V given by v⊗w 7→ w⊗ v, that is V ⊗V = Sym2 V ⊕

∧2
V , and each

summand is a CG-module.

(IV) The characters of Sym2 V and
∧2

V are given by

χSym2 V (g) = 1
2

(
χV (g)2 + χV (g2)

)
χ∧2 V (g) = 1

2

(
χV (g)2 − χV (g2)

) (8.6)

for g ∈ G.

Proof (I) Given the actions of G on V1 and V2, make G act on the product
V1 × V2 by its diagonal action ρ1 × ρ2, that is, g(v, w) = (gv, gw) for g ∈ G.

Let t : V1×V2 → V1⊗V2 be the universal bilinear map of the Proposition. The
map t(g(v, w)) is also a bilinear map V1 × V2 → V1 ⊗ V2, so by Proposition (ii),
it factors uniquely via t. That is, for each g ∈ G there is a C-linear map
ρ12(g) : V1 ⊗ V2 → V1 ⊗ V2 such that the diagram

V1 × V2
t−→ V1 ⊗ V2

ρ1×ρ2

y c©
yρ12

V1 × V2
t−→ V1 ⊗ V2

(8.7)

commutes. Here the t and ρ1 × ρ2 arrows are given, and the UMP provides the
downarrow ρ12 = ρV1⊗V2

. It is straightforward to check that g 7→ ρ12(g) is a
representation ρ12 : G→ GL(V1 ⊗ V2).

(II) It follows from the definition that ρ12(g)(v ⊗ w) = (gv ⊗ gw) for g ∈ G
and for any v ∈ V1, w ∈ V2. When calculating a character, we are allowed to
restrict to one element g ∈ G at a time, and the trace χ(G) is independent of the
choice of basis. So I can choose bases e1, . . . , en1 of V1 and f1, . . . , fn2 of V2 to
diagonalise g, so that ρ1(g) = diag(λ1, . . . , λn1) and ρ2(g) = diag(µ1, . . . , µn2).
Then g acts diagonally on V1 ⊗ V2, by

g(ei ⊗ fj) = g(ei)⊗ g(fj) = λiµjg(ei ⊗ fj), (8.8)

so that its trace is the sum of the eigenvalues∑
i,j
λiµj =

(∑
i
λi
)(∑

j
µj
)

= χV1(g)χV2(g). Q.E.D. (8.9)

(III) The direct sum decomposition V ⊗ V = Sym2 V ⊕
∧2

V is clear. The

maps V ⊗ V → Sym2 V and V ⊗ V →
∧2

V have the same type of UMP for
symmetric bilinear maps, respectively skew bilinear maps as described above
for V1 ⊗ V2. The G-action on the two summands follows from this, as does the
fact that, given any basis e1, . . . , en of V , the symmetric product Sym2 V is
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based by (ei ⊗ ej + ej ⊗ ei) for 1 ≤ i ≤ j ≤ n, and the skew product
∧2

V by
(ei ⊗ ej − ej ⊗ ei) for 1 ≤ i < j ≤ n.

(IV) As before, diagonalise the action of g ∈ G, so that g = diag(λ1, . . . , λn).

Now g acts diagonally on Sym2 V and
∧2

V , with eigenvalue λiλj on each of
ei ⊗ ej ± ej ⊗ ei. The result (IV) comes by paying attention to the range of
summation. On V ⊗ V , we summed both i and j from 1 to n independently,
giving

∑
i,j λiλj = (

∑
λi)

2 = χV (g)2. On Sym2 V , we restrict the sum to i ≤ j,
so count the two equal off-diagonal elements λiλj and λjλi once only, giving
just half as much, except that we count the diagonal elements λ2

i once. Thus

χSym2 V (g) =
∑
i≤j

λiλj = 1
2

(∑
i,j

λiλj +
∑
i

λ2
i

)
= 1

2

(
χV (g)2 + χ(g2)

)
, (8.10)

where the second term
∑
λ2
i = χV (g2), since the eigenvalue λ2

i of g on ei ⊗ ei
equals the eigenvalue of g2 on ei. Similarly,

χ∧2 V (g) =
∑
i≤j

λiλj = 1
2

(∑
i,j

λiλj −
∑
i

λ2
i

)
= 1

2

(
χV (g)2 − χ(g2)

)
. (8.11)

As a mnemonic, it is useful to consider the character of g = eG: the dimensions

dim Sym2 V =
(
n+1

2

)
= n2+n

2 and dim
∧2

V =
(
n
2

)
= n2−n

2 are familiar. They
are the result of giving each summand one half of n2 = dimV ⊗ V except that
the diagonal terms are all given to Sym2.

8.5 Additional notes

For more on tensor products, see [James and Liebeck, Chap. 19]. You need to be
aware that they write group actions on the right, so G×V → V by (g, v) 7→ vg.

The dual representation V ∨ is discussed in Ex. 8.5–6. Its character is given
by χV ∨(g) = χ(g−1) = χ(g).

The C-linear maps V1 → V2 form a CG-module HomC(V1, V2) with action
ϕ 7→ g◦ϕ◦g−1. (See Ex. 8.3–4.) There is a natural isomorphism HomC(V1, V2) =
V ∨1 ⊗ V2 (see Ex. 9.1–3).

Applications, for example: the symmetric group S5 has a 4-dimensional
irreducible representation V4 (obtained by taking a complement to the main
diagonal (1, 1, 1, 1, 1) in the natural permutation representation of S5 on C5). Its

exterior square
∧2

V4 = V6 is 6-dimensional, and evaluating 〈χV6
, χV6
〉 shows it is

irreducible (see Ex. 9.8). Its symmetric square Sym2 V4 = V10 is 10-dimensional.
Calculating the inner product of its character with χ1 and χV4 shows that V10

is the direct sum of 1, V4 and a new irreducible representation V5 (see Ex. 9.9).
Together with couple of the usual tricks, this allows us to complete the character
table of S5. For more on this, see Ex. 9.7–10, plus [James and Liebeck], around
19.14, pp. 199.

8.6 Homework to Chapter 8

8.1. Faithful representations A representation is faithful if the only g ∈ G
that acts trivially is the identity e. Define the kernel of a representation.
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Prove from first principles that every finite group G has a faithful finite
dimensional representation.

If G has a nontrivial normal subgroup H C G, show how to construct a
nonfaithful representation of G. Show how to construct every representation of
G on which H acts trivially.

8.2. Kernel of a character If ρ is a representation of G, show how to use
its character χρ to determine whether ρ is faithful. Use your argument to give
an appropriate definition of the kernel of a character.

Write out the character table of the dihedral group D12. This is easy enough
by hand, or you may prefer to use the Magma code below.

Show that D12 has a faithful irreducible representation. Show that D12×Z/2
has no faithful irreducible representation.

K6<ep> := CyclotomicField(6); GL2 := GeneralLinearGroup(2,K6);

A := elt< GL2 | ep,0,0,ep^-1 >; B := elt< GL2 | 0,1,1,0 >;

G := sub < GL2 | A, B >; CharacterTable(G);

G2 := DirectProduct( quo< G | Id(G) >, CyclicGroup(2) );

CharacterTable(G2);

Better, give a theoretical reason why D12 × Z/2 cannot have a faithful ir-
reducible representation. (The group is very close to being Abelian, and its
irreducible representations are all 1 or 2-dimensional. So their characters take
only a few possible values. Or you may like to consider group homomorphisms
Z/2× Z/2 into µ2 = {±1}.)

8.3. Right action of G by g−1 Let V be a f.d. vector space over K, and
G = GL(V ). Think of (g, v) 7→ gv (with g ∈ GL(V ) a matrix and v a column
vector) as the given representation of GL(V ).

Explain why (w, g) 7→ wg (with w a row vector) is not a representation of
GL(V ). Show that (w, g) 7→ wg−1 is a representation of GL(V ).

8.4. Hom space For two f.d. vector spaces, HomC(V1, V2) is the space of
C-linear maps ϕ : V1 → V2. Choosing bases makes it into Mat(n2 × n1,C).

Now suppose V1, V2 are CG-modules, with representations ρi : G→ GL(Vi).
Show that HomC(V1, V2) becomes a CG-module by ϕ 7→ ρ2(g) ◦ ϕ ◦ ρ1(g−1).
Draw that commutative diagram again. Understand why writing ρ1(g) as the
first factor in the composite doesn’t work.

8.5. Dual representation V ∨ For a f.d. vector space V , the dual vector
space V ∨ = HomC(V,C) consists of linear maps ϕ : V → C. If we view V as the
column vectors in some basis, V ∨ becomes the row vectors.

Now let V be a CG-module. Let C be the trivial CG-module: every g ∈ G
acts by the identity. Show that the dual vector space V ∨ = HomC(V,C) has a
natural structure of CG-module defined by precomposing in V , that is

g(ϕ) = ϕ ◦ g−1 for ϕ : V → C. (8.12)
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8.6. Compatibility of V ∨ With the above definition of the CG-module V ∨,
verify that the evaluation map V ∨ × V → C defined by (ϕ, v) 7→ ϕ(v) ∈ C is
CG-bilinear.

8.7. Is V ∨ equivalent to V ? The opportunity to introduce some confusion
is too much to resist. V ∨ is isomorphic to V as a vector space. A nondegen-
erate bilinear form (such as x · y =

∑
xiyi) defines an isomorphism V = V ∨.

Nevertheless, this isomorphism depends on a noncanonical choice of basis, and
there is no reason why it should be compatible with a CG-module structure.

The way that we define the CG-action on V ∨ makes the bilinear pairing
V ∨×V → C invariant under G. If we view V as column vectors and V ∨ as row
vectors, this means that the pairing goes

row · column 7→ row ·R(g)−1 ·R(g) · column (8.13)

where R(g) is the matrix of ρ(g). It does not make sense to multiply row×R(g)
and still expect to get a G-action on row vectors, as explained in Ex. 8.3.

If G = Z/3 and ρ1 is the linear representation “multiply by ω” the dual ρ∨1
is multiply by ω−1 = ω2 = ω. These two representations are not isomorphic.
(They are 1 × 1 matrices with unequal entries.) On the other hand, they are
complex conjugates of one another.

8.8. Let ρ : G→ GL(n,R) be a representation of G on Rn. Prove that Rn has
a G-invariant R-bilinear inner product Φ. [Hint: The usual argument; take any
positive definite inner product such as

∑
xiyi in any basis, and average over G.]

For an orthonormal basis of Rn w.r.t. this inner product, the matrices defining
ρ are orthogonal with respect to Φ, so that the representation ρ takes values in
the orthogonal group O(n,R)

Deduce that V ∨ is isomorphic to V . A bilinear inner product on V provides
an isomorphism V ∨ ∼= V .

8.9. Prove that V ∨∨ ∼= V . If V is irreducible, prove that V ∨ is also irreducible.

8.10. A permutation representation is the vector space CX with basis a finite
set X, and G-action given by a permutation action of G on X. If V is a
permutation representation of G, prove that V ∨ ∼= V . This applies in particular
to the regular representation CG.

8.11. Let g ∈ G be an element of order 2. For any representation V of G,
show that χV (g) is an integer n ≡ dimV mod 2. If moreover G does not have
any subgroup of index 2, prove that n ≡ dimV mod 4.

8.12. Tetrahedral group T12 in coordinates The alternating group G =
A4 acts by permutations on a set of 4 elements. Consider its permutation
representation on R4 (or C4). The diagonal element (1, 1, 1, 1) is invariant, so
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generates a trivial KG-submodule. Show how to find a complementary KG-
submodule.

Write down in coordinates an action of A4 on R3 that permutes the 4 vertices
of a regular tetrahedron. [Hint. Let ei be the standard basis of Euclidean
R4. Their centroid is d = 1/4

∑
ei. The 4 vectors fi = ei − d are linearly

dependent, so only span a subspace R3. Choose f1, f2, f3 as basis of R3 (N.B.
it is not orthonormal) and write f4 as their linear combination.] Explain how
the different elements of A4 act by matrices in this basis.

8.13. More T12 Write Σ for a regular tetrahedron in R3, say with vertices
P1, P2, P3, P4. Let X be the rotation by angle π around the median line joining
the midpoint of P1P2 and P3P4, and R the rotation by 2π

3 around the axis
joining P4 to the centroid of face P1P2P3. Show that X and R generate A4.
Write Y = XR, and show that X,Y generate A4 with relations X2 = Y 3 =
(XY )3 = e. The group T12 = A4 acts on the 4 vertices, 6 edges and 4 faces.
Determine how each of the corresponding permutation representations break up
into irreducibles.

8.14. Similar for O24 Prove O24
∼= PGL(2,F3). Prove that it has a normal

subgroup of index 2 isomorphic to T12. Find the conjugacy classes of O24. The
character table was given earlier in the course. O24 acts on the 6 faces, 8 vertices
and 12 edges of the cube, and the corresponding set of 3, 4 and 6 antipodal pairs
thereof. Show how the corresponding permutation representations break up into
irreducibles.

8.15. Characterisation of an Abelian group Prove that a group G is
Abelian if and only if every irreducible representation of G is 1-dimensional.

8.16. Another crossword puzzle Solve this puzzle (adapted from a past
exam), quoting without proof whatever results of the course you need.

Given: A group G of order 12 has 4 conjugacy classes with representatives
{e, g1, g2, g3}, and a character χ2 that scores χ2(e) = 1, χ2(g1) = 1, χ2(g2) = ω,
χ2(g3) = ω2 on them (as usual, ω a primitive 3rd root of 1).

(I) Write out the full character table.

(II) Exhibit a group G having this character table.
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9 Induced representations

9.1 Restricted representations

The material discussed in Chapter 8 concerns CG-modules and homomorphisms
between them for a fixed G. This is simpler material than the stuff on induced
representations (CH-modules to CG), where the underlying group also varies.

Let H ⊂ G be a subgroup. Give a representation V of G, we can restrict the
map ρV : G→ GL(V ) to the subset H ⊂ G to get the restricted representation

ResGH V = same vector space V , with ρ
V
∣∣H : H → GL(V ). (9.1)

The character of ResV is simply the character of V restricted to H ⊂ G. Even
if V is irreducible, there is no particular reason for ResV to remain so; likewise,
two distinct representations of G may restrict to isomorphic representations of
H. Both of these happen when restricting from S5 to A5. For example, S5

has a 6-dimensional irreducible representation V6, whereas A5CS5 does not. It
is interesting (see Ex. 9.11) to calculate the restriction of the character to the
smaller subgroup A5, and deduce that it must split as the direct sum of two
3-dimensional representations, those with α, β in 6.5, (30). [James and Liebeck],
Chapter 20 has lots more on this.

9.2 Induced representation

The operation in the other direction is called induced representation. It takes a
representation L of a subgroup H ⊂ G to a representation V = IndGH L of G.
Many representations of interest are constructed in this way, even starting from
seemingly trivial subgroups H.

My approach in the first instance is to say what I want an induced repre-
sentation to be. We can get a long way just assuming it exists: this includes
deriving its UMP, proving the formula for its character, and proving the Frobe-
nius reciprocity theorem. However, there is still just a bit missing: namely,
given only H ⊂ G and the H-module L, we still have to construct V = IndGH L
or prove it exists. Doing this properly involves a small difficulty, that I leave
until last.

9.3 Examples

The binary dihedral group BD4m ⊂ SL(2,C) is the subgroup generated by the
matrices a =

(
ε 0
0 ε−1

)
and b =

(
0 1
−1 0

)
where ε = exp 2πi

2m , or can be viewed

as the abstract group
〈
a, b

∣∣ a2m, am = b2, ba = a−1b
〉
. It has the cyclic group

A = 〈a〉C BD4m as a normal subgroup of index 2, so is close to being Abelian.
Now BD4m has (m − 1) 2-dimensional irreducible representations Vi for i =
1, . . . ,m− 1, on which a and b act by

ρk(a) =

(
εi 0
0 ε−i

)
and ρk(a) =

(
0 1

(−1)i 0

)
(9.2)
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In each case, Vi is made up as a direct sum of 2 different representations Li and
L2m−i of the subgroup A, that are interchanged by the action of b or of any
element of the coset bA.

The family of trihedral groups T3r is similar. Choose an integer s ≥ 1 and
suppose that r divides 1 + s + s2, so that s3 ≡ 1 modulo r. (The cases s = 2,
r = 7 or s = 3, r = 13 are fairly typical.) Let ε = exp 2πi

r be a primitive rth
root of 1. Consider the matrices

a = diag(ε, εs, εs
2

) and t =

0 1 0
0 0 1
1 0 0

 ∈ SL(3,C). (9.3)

They generate a group T3r ⊂ SL(3,C) of order 3r, having a normal subgroup
A = 〈a〉 C T3r with quotient Z/3. It can be described as the abstract group〈
a, t

∣∣ ar = t3 = e, ta = ast
〉
. The given representation of T3r on C3, when re-

stricted to A, splits as a direct sum of 3 representations Lε ⊕ Lεs ⊕ Lεs2 , and
these 3 are permuted as a 3-cycle by the action of t or by any element of the
coset tA.

9.4 First definition

Let H ⊂ G be a subgroup (not necessarily normal). Given a representation
V of G and a subspace L ⊂ V , we say that V = IndGH L is induced from a
representation of H on L if

(i) L is a H-invariant subspace of V ;

(ii) V =
⊕

γ∈G/H γL.

Here I write γL as the product of the whole coset γ with L, but in fact
γL = gL for any element g ∈ γ, since HL = L; we will feel the need to fix coset
representatives g ∈ γ later in this chapter. The point of the definition is that
V is a direct sum of copies γL of the fixed representations L of H, indexed by
G/H, and G permutes these copies by its left action on G/H.

Please check that you understand how this applies to the binary dihedral
groups BD4m and the trihedral groups T3r discussed in 9.3. As another key
example, consider the permutation action of G on G/H by left multiplication,
and the corresponding permutation representation, that has basis eγ , and G
acting by permuting the eγ in the same way. This permutation representation

is IndGH L in Definition 9.4, with L = C the trivial CH-module. The particular
case H = {e} gives the regular representation CG.

9.5 The UMP of V = IndG
H L

Proposition Suppose that V = IndGH L in the sense of Definition 9.4. Then
it has the properties

(1) There is CH-module homomorphism i : L→ ResGH V , namely the inclusion
of L as the first summand of the direct sum

⊕
γL.
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(2) Moreover, the CG-module V is universal w.r.t. (1), in the sense that for a
CG-module W and a CH-module homomorphism α : L→ ResGHW , there
is a unique CG-module homomorphism ϕα : V →W such that α = ϕα ◦ i.

The property can be stated in the alternative form

HomCH(L,ResGHW ) = HomCG(IndGH L,W ). (9.4)

The left-hand side consists of maps α : L → W that are CH-module homo-
morphisms (with W viewed only as the restricted representation ResGHW of H),
and on the right-hand side we have maps from V =

⊕
γL to W that are CG-

module homomorphisms. The equal sign in (9.4) means that there is a canonical
identification between the two sides (no choices involved).

The statement is a bit complicated to state, but the proof is very easy.
Indeed, V is a CG-module and V =

⊕
γL; if a map α : L→W is given, a CG-

module homomorphism ϕα must map each summand γL to W by gv 7→ gα(v)
for any g ∈ γ. This is the only possible image in order for ϕα to be a CG-module
homomorphism, and it does define one.

9.6 Simple analogy

For L = Rn a vector space over R, set V = Cn = L⊗R C for L extended to C.
We can also view V as an R vector space of twice the dimension (“restriction
of scalars”, an analog of restriction). Then V has the two properties

(1) There is an R-linear map i : L → V , namely the inclusion Rn ↪→ Cn. (It
is R-linear, so V is only viewed as V with restricted scalars.)

(2) Moreover, V is universal w.r.t. (1): for any C-vector space W and R-
linear map α : L → W , there is a unique C-linear map ϕα : V → W with
α = ϕα ◦ i.

If you restrict scalars in V , you get Cn as R-vector space, which is of course
R2n. So induction followed by restriction is a bigger object.

9.7 Character of an induced representation

If V = IndGH L =
⊕
γL is an induced representation as in (9.4), H acts on L

and on each factor γL by the same action. On the other hand g ∈ G acts on
V by permuting the summands according to the left action of G on the cosets
G/H. The following sections analyse the character of V as a CG-module. The
basic formula is

χV (g) =
1

|H|
∑
x∈G

(χL)0(xgx−1). (9.5)

This will be expanded and manipulated in several ways in what follows, but the
rough picture is perfectly clear. In the sum (9.5), for g ∈ G, if gγ 6= γ then
g maps the summand γL of V to a different summand, so that it contributes
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0 to the trace χV (g) = Tr(ρV (g)): only the diagonal blocks contribute to the
trace of a block matrix. On the other hand, to say that gγ = γ means that
some conjugate of g is in H; then for each occurrence of xgx−1 ∈ H we take
χL(xgx−1). The more subtle point in the case gγ = γ is to ask how often the
conjugate xgx−1 belongs to H, and to which H-conjugacy classes it belongs.
The next section treats this in a slightly wider context.

9.8 Induced class function

Write C(H) for the space of class functions H → C of H and C(G) for that
of G. The restriction from G to H of a class function ψ ∈ C(G) is simply
ResGH ψ = ψ|H ∈ C(H), or if you prefer, the composite ψ ◦ i of the inclusion
i : H ↪→ G with ψ.

To go the other way, a function ϕ : H → C is not defined on the bigger set
G, so we first extend it by 0: write ϕ0 for the function that is ϕ on H but just
scores 0 for g ∈ G \ H (that is, g /∈ domϕ). Induction of class functions is a
map IndGH : C(H)→ C(G) obtained by composing two operations: extend by 0,
then average over the conjugacy action of G. The formal definition is as follows:
for ϕ ∈ C(H), set

IndGH(ϕ)(g) =
1

|H|
∑
x∈G

ϕ0(x−1gx), where ϕ0(g) =

{
ϕ(g) if g ∈ H,
0 else.

(9.6)

This is now defined on the whole of G, and is a class function for G because we
average over G. The sum in (9.6) runs over all x ∈ G, but the elements of one
coset xH all contribute the same term: in fact,

(xh)−1gxh = h−1(x−1gx)h ∈ H ⇐⇒ x−1gx ∈ H for h ∈ H, (9.7)

and when this holds, ϕ ∈ C(H) takes the same value on the two. This proves
the next result.

Lemma
IndGH(ϕ)(g) =

∑
x∈G/H

ϕ0(x−1gx) (9.8)

where now the sum involves just one representative of each coset.

The definition simplifies by analysing how the conjugacy class CG(g) of g ∈ G
intersects H. The subset CG(g)∩H ⊂ H may be empty, but it is invariant under
conjugacy by H, and so is a disjoint union of conjugacy classes inside H:

CG(g) ∩H =
⊔
CH(gi) for some g1, . . . , gm, with m ≥ 0. (9.9)

For example, let H = A5 ⊂ G = S5. Then H ∩ CG(g) = ∅ is empty if g is odd;
but as we have seen, the single conjugacy class of 5-cycles such as g = (12345)
(of size 24) in S5 breaks up into two conjugacy classes of g and g2 = (13524) in
H (of size 12 each).
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In the sum (9.8), ϕ ∈ C(H) scores the same value ϕ(gi) on all the elements
of its conjugacy class CH(gi) in H, so that the value of IndGH(g) is a weighted
average of ϕ(gi) weighted by the size |CH(gi)| of CH(gi), its conjugacy class inH.
To state the result more formally, recall that I write ZG(g) for the centraliser2

of g in G, which is the number of times x−1gx hits the same value g. The Main
Formula is as follows:

Proposition In the notation of (9.9),

IndGH ϕ(g) =
1

|H|
× |ZG(g)| ×

m∑
i=1

|CH(gi)|ϕ(gi)

= [G : H]

m∑
i=1

|CH(gi)|
|CG(g)|

ϕ(gi).

(9.10)

Proof When we evaluate the sum over x ∈ G in (9.6), we only score when
x−1gx is in CH(gi) for one of the gi. The number of times this happens is |ZG(g)|
(the number of times that x−1gx stays at g) times |CH(gi)| (the number of

successful hits). The second line simply replaces |ZG(g)|
|H| by |G|

H×|CG(g)| . Q.E.D.

9.9 Induced character

The definition of induced class function in 9.4 was fixed up so as to include the
character of an induced representation.

Proposition Let H ⊂ G and V =
⊕
γL be as in Definition 9.4, and write χL

for the character of L as CH and χV for that of V as G-module.
Then χV = IndGH χL.

Proof χV (g) is the trace of ρV (g) : V → V . But the action of g is subordi-
nate to the direct sum decomposition V =

⊕
γL, taking each summand γL to

another summand gγL. Which summand it goes to is determined by the left
action of G on G/H: if x represents a coset xH then gx represents gxH. When
we calculate the trace of g acting on V in this block form, any off-diagonal block
scores 0. The diagonal blocks correspond to gxH = xH, that is x−1gx ∈ H.

In this case the component ρV (g) does g : xL→ xL and fits into a commu-
tative diagram with ρ(x−1gx) : L → L, so has the same trace. (Write out the
commutative diagram as Ex. 9.17.)

This makes Tr(ρV (g)) =
∑
x∈G/H χ

0
L(x−1gx), with the sum taken over cosets

(that is, include just one representative of each coset xH when summing). If
we write instead

∑
x∈G the effect is to include all |H| elements of the coset xH

so we compensate by writing 1
|H| as in (9.6). Q.E.D.

2To compare with [James and Liebeck], Proposition 21.23, please bear in mind that they
write xG for the conjugacy class of x, my CG(g), and CG(g) for the centraliser of g, my ZG(g).
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9.10 Induced representation, the construction

Theorem Given H ⊂ G and a CH-module L, there exists a CG-module
V = IndGH L containing L as an H-invariant subspace with the properties of
Definition 9.4.

In particular, V = IndGH L has the UMP described in 9.5 and (9.4), and is
uniquely characterised by it. That is, V = IndGH is a CG-module that is universal
with the property that its restriction has a CH-morphism i : L→ ResGH V . This
UMP should be viewed as the genuine definition of IndGH L, and the construction
below as the proof that the UMP problem has a solution.

Proof We intend to set V equal to a direct sum of copies of L indexed by
G/H. We think of the copies as gL for coset representatives, with the G action
permuting these copies by its left action on G/H. However, we need some more
notation and a little care to define the G action consistently.

The notation: write γ ∈ G/H for the cosets, and choose once and for all
a particular representative gγ of each coset; choose e = eG as representative
for the identity coset H. Now define V =

⊕
γ∈G/H Lγ where the γ are indices

labelling copies of L. This is V as a C-vector space and as a CH-module. I still
have to say what its G-action is.

For x ∈ G, the product xgγ is in some new coset βH, so xgγ = gβh where
h = g−1

β xgγ ∈ H. It is this element h that tells us how to multiply by x as

a map x : Lγ → Lβ ; namely, it sends w 7→ hw = g−1
β xgγw. This is defined,

because L is an H-module, Lγ , Lβ are copies of L, and h ∈ H. In terms of the
motivating Definition 9.4, we think of the abstract summand Lγ as gγL, and
define the action of x ∈ G on it as fitting in the commutative diagram

gγL
w−−→ gβL

gγ

x c©
xgβ

L
h−−→ L

(9.11)

For each x ∈ G and each coset γ, this specifies x : Lγ → Lβ . Summing
over all the Lγ gives a map x : V → V , and defines a G action on V =⊕

γ∈G/H Lγ . Q.E.D.

9.11 Frobenius reciprocity

The pair of operations ResGH and IndGH are defined for representations in 9.4
and 9.10 and on class functions and characters in 9.7–9.9. On representations,
9.5 discussed the relation between them as the Universal Mapping Property of
(9.4). That equality of vector spaces gives

dim HomCH(L,ResGH V ) = dim HomCG(IndGH L, V ). (9.12)
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This numerical result implies the following adjunction property between the
restriction ResGH : C(G) → C(H) and induction IndGH : C(H) → C(G) of class
functions.

Corollary (Frobenius reciprocity) (I) Suppose that L is an irreducible
H-module and V an irreducible G-module. Then the number of copies of
L occurring in the direct sum decomposition of ResGH U equals the number
of copies of U occurring in the direct sum decomposition of IndGH L.

(II) Let ϕ ∈ C(H) be a class function on H and ψ ∈ C(G) a class function on
G. Then 〈

ϕ,ResGH ψ
〉
H

=
〈

IndGH ϕ,ψ
〉
G
. (9.13)

Proof (I) Write ResGH V =
∑
aiLi for the irreducible decomposition of the

restricted CH-module and IndGH =
∑
bjUi for that of the induced CG-module.

Then dim HomCH(L,ResGH V ) equals the number a1 of occurrences on L = L1

in ResGH V by Schur’s lemma on CH-modules, whereas dim HomCG(IndGH L, V )
equals the number b1 of occurrences of V = V1 in IndGH L. These two numbers
are equal by (9.4), which proves (I).

The Main Theorem tell us that the characters χLi
of irreducible CH-modules

form a basis of C(H) and the characters χVj
of irreducible CG-modules form

a basis of C(G). (II) thus follows from (I) by the bilinearity property of the
Hermitian pairings 〈–, –〉H and 〈–, –〉G: if we set ϕ =

∑
λiχLi

and ψ =
∑
µjχVj

,

both sides of (9.13) equal
∑
i,j λiµj .

9.12 Homework to Chapter 9

9.1. Tensor product The tensor product V1 ⊗ V2 of two vector spaces can
be defined as the vector space with basis {ei ⊗ fj} where {ei} is a basis of V1

and {fj} a basis of V2. If g1 ∈ GL(V1) and g2 ∈ GL(V2) are both diagonalisable,
describe the action of g1 ⊗ g2 ∈ GL(V1 ⊗ V2).

Deduce that Tr(g1 ⊗ g2) = Tr(g1) Tr(g2).

9.2. Character of V1 ⊗ V2 If V1, V2 are representations of a finite group G,
show that χV1⊗V2 = χV1χV2 .

9.3. Character of Sym2 V and
∧2

V If V is a representation of G, the
tensor product V ⊗ V splits as a direct sum

V ⊗ V = Sym2 V ⊕
2∧
V. (9.14)

Here the space of symmetric tensors Sym2 is based by ei ⊗ ej + ej ⊗ ei for

1 ≤ i ≤ j ≤ n whereas
∧2

is based by ei ⊗ ej − ej ⊗ ei for 1 ≤ i < j ≤ n. Prove
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that the characters are given by

χSym2 V (g) = 1
2

(
χ2
V (g) + χV (g2)

)
and χ∧2 V (g) = 1

2

(
χ2
V (g)− χV (g2)

)
.

(9.15)
[Hint: work in a basis in which ρV (g) is diagonal, separately for each g ∈ G.]

9.4 Recall dual CG-module V ∨ = HomC(V,C), and how G acts on it. Calcu-
late its character χV ∨ .

9.5 Run through the definitions then give a proof of the following assertion:
the Hom space HomC(V ∨1 , V2) is canonically isomorphic to V1 ⊗C V2 as CG-
modules

9.6 Show that a linear map ϕ : V ∨ → V can be interpreted as a bilinear form
V × V → C and state and prove an assertion on the Hom space HomC(V ∨, V )

analogous to the splitting of V ⊗ V as the direct sum of Sym2 V and
∧2

V .

9.7 The symmetric group S5 has a 4-dimensional irreducible representation
V4 (obtained by taking a complement to the main diagonal (1, 1, 1, 1, 1) in the
natural permutation representation of S5 on C5).

Show that its character is

S5 e (12)(34) (12) (123) (1234) (12345) (123)(45)

size 1 15 10 20 30 24 20

χV4
4 0 2 1 0 −1 −1

(9.16)

9.8 With S5 and V4 as in Ex. 9.7, determine the character of
∧2

V4. Use the
formula χ∧2V = 1

2

(
χ(g)2 − χ(g2)

)
.

By calculating its inner product 〈χ, χ〉, prove that it is irreducible.

9.9 With S5 and V4 as in Ex. 9.7, determine the character of V10 = Sym2 V4

using the formula χ∧2V = 1
2

(
χ(g)2 − χ(g2)

)
.

Calculate its inner product 〈χ, χ〉, and prove that it is the sum of 3 irre-
ducibles. Calculate the inner product of its character with χ1 and χV4

, and
use this to show that V10 is the direct sum of C, V4 and a new irreducible
representation V5, and write out the character of V5.

9.10 Use the sign representation and all the above to assemble the whole
character table of S5.
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9.11 Restrict each of the representations of S5 to A5 and determine how they
decompose into irreducibles. For examples the restrictions of V4 and ∧2V4 have
characters

A5 e (12)(34) (123) (12345) (13524)

size 1 15 20 12 12

χV4 4 0 1 −1 −1∧2
6 −2 0 1 1

(9.17)

so that one remains irreducible, and the other splits as a sum of two irreducibles.

9.12 Each of the dihedral groups D2m and binary dihedral groups BD4m has a
cyclic normal subgroup ACG of index 2. Show how to find their 2-dimensional
irreducible representations by inducing up from A. Specifically, consider D14

and the 1-dimensional representations of A = Z/7 given by multiplication by
ε, ε2, ε3 where ε = exp 2π

7 . Write out the character table of D14.

9.13 Consider the group G39 =
〈
x, y

∣∣ x3, y7, xy = y3x
〉
. Show that xykx−1 =

y3k, and deduce that H C G and that conjugacy by x acts as a product of 4
3-cycles on H, that is the permutation

(y, y3, y9)(y2, y6, y5)(y4, y12, y10)(y7, y8, y11). (9.18)

Calculate the effect of conjugacy on the elements xyk and x2yk for k = 0, . . . , 12,
and deduce that G39 has exactly 7 conjugacy classes.

9.14 G39 has H = 〈y〉 as a normal subgroup, with quotient G39/H = Z/3
generated by the class of x. As a cyclic group, H has 13 representations Lk
(for k = 0, . . . , 12) consisting of C on which y acts by εk (where ε = exp 2πi

13

is the usual 13th root of 1. Calculating the induced characters IndGH Lk for
k = 0, . . . , 12, show that G39 has 4 nonisomorphic irreducible 3-dimensional
representation.

9.15 Write out the whole character table of G39.

9.16 Prove Proposition 9.4. [Hints: Start from the sum in (9.8). We need to
know how many of the conjugates x−1gx of g ∈ G are in H, and then how many
are conjugate to each of the gi.]

9.17 The construction of the induced representation in Theorem 9.6 involved
the choice of coset representatives gγ . The action of x on

⊕
W γ is made up

of components h : W γ → W β , where the element h ∈ H is deduced from the
formula xgγ = gβh. If W ⊂ V is given by the more simple-minded definition of
Section 9.3, draw the corresponding commutative diagram and deduce the con-
tribution that each component makes in the formula for the induced character
in 9.5.
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10 The simple group G168

10.1 Introduction

There are 4 separate descriptions of G168 in geometry.

(1) G168
∼= PSL(2,F7). Its action on P1

F7
makes it into a permutation group

on 8 elements {0, 1, 2, 3, 4, 5, 6,∞}.

(2) G168
∼= GL(3,F2). This acts on the projective plane P2

F2
, a configuration

of 7 points and 7 lines with 3 points on each line and 3 lines through each
point (also called the Fano plane, see Ex. 10.8). This action makes G168

into a permutation group on the 7 column vectors:

P1 P2 P4 P3 P5 P6 P7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

(10.1)

(3) G168 is constructed from the infinite reflection group R2,3,7 generated by
reflections in the sides of a hyperbolic triangle ∆2,3,7 with angles π

2 ,
π
3 ,

π
7 .

(The point is that π
2 +π

3 +π
7 = 41

42π < π.) This is the symmetry group of the
tesselation of the hyperbolic plane H2 by triangles congruent to ∆2,3,7, or
equivalently, the tesselation by regular heptagons of angle 2π

3 . The index 2

subgroup R+
2,3,7 C R2,3,7 of direct motions includes the rotations of order

2, 3, 7 about the vertices of ∆2,3,7, but no reflections. In turn, R+
2,3,7 has

a unique normal subgroup π1 of index 168 that acts with no fixed points
(that is, avoids every rotation), and G168 = R+

2,3,7/π1.

This description makes G168 into the symmetry group of a certain poly-
hedron drawn on the Riemann surface H2/π1 of genus 3, that has many
beautiful descriptions. My treatment here is intended to advertise and
complement John Baez’s webpage “Klein’s quartic curve”

http://math.ucr.edu/home/baez/klein.html

(4) G168 is the group of automorphisms of the Klein quartic curve

K4 : (xy3 + yz3 + zx3 = 0) ⊂ P2
C,〈x,y,z〉 (10.2)

As you see from the equation, this curve K4 has the remarkable property
that each of the 3 coordinate lines is the tangent line at a flex (inflexion
point) and cuts it at a second such flex (for example z = 0 intersects K4 at
(1, 0, 0) with multiplicity 3 and (0, 1, 0) with multiplicity 1. In fact there
are 8 such triangles, the other 7 defined over the cyclotomic field Q[ε] of
degree 7. This description makes G168 a subgroup of SL(3,C).

(5) We will see by computer algebra that G168 has the presentation

G168 =
〈
x, y

∣∣ x2, y3, (xy)7, (yxyxy)4
〉
. (10.3)

90



Status This chapter is not examinable, and is basically a self-indulgent work-
out of personal obsessions. However, some of the material (esp. Ex. 10.1–5)
provide useful practice in handling groups in various contexts, roots of unity,
representations and character tables, all of which are examinable.

With each of the models, a basic aim should be to express everything so
that all the calculations can be done in a convincing way, preferably without
excessive reliance on computer algebra. I have fallen short of this aim to some
extent, but maybe I can do better next year.

10.2 Linear groups over finite fields

Groups such as PSL(n,Fq) over a finite field Fq of order q = pn are an important
source of finite simple groups. We know a lot about them, based on the analogy
with the theory of algebraic groups. The reason for considering PSL(n,Fq) is
that a nontrivial determinant map G → K× or central element λ Id prevents
a group G from being simple. Setting determinant equal to 1 and dividing by
the centre gets around this trivial disqualification. I give a brief round-up of
notation and basic facts. (Similar ideas apply to other simple algebraic groups.)

The general linear group GL(n,K) has rows giving every possible basis of
the vector space Kn. In particular, over K = Fq there are qn−1 choices for the
first row (any nonzero vector), then qn − q for the second row (anything other
than a multiple of the first row), and qn − qi−1 for the ith row, giving order
|GL(n,Fq)| =

∏n
i=1(qn − qi−1).

The special linear group SL(n,K) is the kernel of the surjective group homo-
morphism det : GL(n,K) → K×. Its order over K = Fq is thus |SL(n,Fq)| =
|GL(n,Fq)|/(q − 1).

The projective general linear group PGL(n,K) is the quotient of GL(n,K)
by its centre, the scalar matrices λ Id. In other words it is the quotient by the
equivalence relation M ∼ λM with λ ∈ K×. Over K = Fq there are q − 1
elements in every equivalence class, so its order is also |GL(n,K)|/(q − 1). We
can also define PGL(n,K) as the group of all projective linear transformations
of Pn−1

K , so its order is the number of projective frames of reference in Pn−1
K .

Finally, PSL(n,K) is the projective special linear group. The kernel of
SL(n,K) → PSL(n,K) consists of the scalar matrices λ Id of determinant 1.
This means λ ∈ K× has λn = 1, so λ is an nth root of 1 in K; the number of
these depends on n and on K. For our present purposes the most important
case is n = 2. In this case, Fq has two distinct square roots of 1 if and only if
K has odd characteristic, charK 6= 2.

Another way of counting the order of PSL(n,K) is via the following claim:
an element g ∈ PGL(n,K) has a well defined determinant in the quotient group
K×/(K×)n, and g ∈ PSL(n,K) if and only if this is 1. Indeed, g is a class of
matrices M up to scalar multiplication, and det(λM) = λn detM . For a finite
field, the nth power map

K×
n−−→ K× given by λ 7→ λn (10.4)
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has kernel µn(K) and cokernel K×/(K×)n of the same order, so the index
[PGL(n,K) : PSL(n,K)] equals the order of µn(K), and the two ways of cal-
culating |PSL(n,K)| give the same answer.

10.3 PSL(2,F7)

Over F7 the matrices

X =

(
0 −1
1 0

)
, Y =

(
0 1
−1 −1

)
, XY =

(
1 1
0 1

)
(10.5)

satisfy X2 = − Id, Y 3 = Id, (XY )7 = Id. Passing to the projective linear group
PSL(2,F7) gives X2 7→ Id, since we quotient by scalar matrices. X acts on P1

by z 7→ −1/z, and XY acts by (z 7→ z + 1).
Over F7 the projective line has 8 points. It is convenient to label z = j as Pj

for j = 1, . . . , 6, with the point z = 0 as P7, and z =∞ as P8. Then X,Y,XY
act as

x = (1, 6)(2, 3)(4, 5)(7, 8), y = (1, 3, 5)(6, 8, 7), xy = (1, 2, 3, 4, 5, 6, 7).
(10.6)

The context of permutations in S8 is a convenient playground to experiment
with PSL(2,F7). For example, we know that G7 :=

〈
x, y

∣∣ x2, y3, (xy)7
〉

is
infinite, whereas permutation groups and linear groups over finite fields are
finite. We can easily find other relations satisfied by the generators x, y of
(10.6): for example, composing permutations gives (xy)3 = (1, 4, 7, 3, 6, 2, 5),
hence x(xy)3 = (1, 5, 6, 3)(2, 4, 8, 7). This is an element of order 4, which implies
that (x(xy)3)4 = (yxyxy)4 = Id. At the level of matrices (Y XY XY )4 = − Id
is a relation between the matrices (10.5). Magma says that adding (yxyxy)4 as
a relation cuts G7 down to a group of order 168.

Gbar<x,y> := Group< x,y | x^2, y^3, (x*y)^7, (y*x*y*x*y)^4 >;

Order(Gbar);

I’ve not seriously attempted to prove this by hand. Two of the relations are
words of order 14 and 20 in x, y, making hand calculations from first principles
with this presentation cumbersome and extremely error-prone.

At the same time, we can use the permutation group playground to list the
conjugacy classes in PSL(2,F7). Experimenting a bit gives the 6 classes:

• e

• 21 elements conjugate to x = (1, 6)(2, 3)(4, 5)(7, 8)

• 56 elements conjugate to y = (1, 3, 5)(6, 8, 7)

• 42 elements conjugate to yxyxy = (1, 5, 6, 3)(2, 4, 8, 7)

• 24 elements conjugate to xy = (1, 2, 3, 4, 5, 6, 7)

• 24 elements conjugate to (xy)3 = (1, 4, 7, 3, 6, 2, 5)

92



There is an interesting point about the 48 elements of order 7. Namely xy,
(xy)2, (xy)4 are in one conjugacy class, while their inverses (xy)6, (xy)5, (xy)3

are in another (compare Ex. 10.6). Here 1, 2, 4 are the quadratic residues mod 7,
and 3, 5, 6 the nonresidues. This is analogous to the 5-cycles (1, 2, 3, 4, 5) and
(1, 3, 5, 2, 4) = (1, 2, 3, 4, 5)2 in A5, that are conjugate in the slightly bigger group
S5. The bigger group PGL(2,F7) of order 336 plays the same role for G168.

10.4 GL(2,F2)

Over F2 the matrices

X =

1 0 1
0 1 0
0 0 1

 , Y =

0 0 1
1 0 0
0 1 0

 , XY =

0 1 1
1 0 0
0 1 0

 (10.7)

satisfy the relations X2 = Y 3 = (XY )7 = (Y XY XY )4 = Id.
Acting by these matrices on the 7 columns P1...7 of (10.1) permutes them as

x = (4, 5)(6, 7), y = (1, 2, 4)(3, 6, 5), xy = (1, 2, 5, 3, 7, 6, 4),

that satisfy x2 = y3 = (xy)7 = Id and (yxyxy) = (1, 3, 5, 7)(2, 6), so that
(yxyxy)4 = Id.

Much the same games apply as in the case of permutations on 8 elements.
It is an interesting (if somewhat elaborate) exercise to arrange all the elements
of order 3 and 7 of GL(2,F2) into 8 conjugate subgroups H21 ⊂ GL(2,F2) of
order 21, and thus recover the action of GL(2,F2) as a permutation group on a
set of 8 elements. It is a straightforward puzzle to derive the whole character
table of G168 using only the conjugacy classes described in 10.3, and the two
permutation representations on P1

F7
and P2

F2
(see Ex. 10.12).

10.5 Tesselation of H2 by 2, 3, 7 triangles

Let PQR = ∆2,3,7 be a triangle in H2 with ∠P = π
2 , ∠Q = π

3 , ∠R = π
7 .

sR

sPsQ
ss

s
s

s s
(10.8)

Write a, b, c for the reflections a = Refl(QR), b = Refl(PR), c = Refl(PQ) and
R2,3,7 for the group of hyperbolic motions they generate. Since both a and b fix
R, one sees that ba is the rotation by 2π

7 anticlockwise about R, and (ba)7 = Id.
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The successive images of 42,3,7 under a, b exactly cover the regular heptagon.
In the same way, ac is rotation by 2π

3 about Q, and bc = cb is half-turn or

rotation by π about P . These rotations generate a subgroup R+
2,3,7 C R2,3,7 of

index 2 with R+
2,3,7
∼= G7. One sees that performing the reflections and rotations

of R2,3,7 iteratively leads to a tesellation of H2 by triangles congruent to 42,3,7.
More precisely the last picture on John Baez’s webpage depicts this tesselation,
with the images of 4PQR by rotations drawn as coloured triangles, and their
reflections in grey. The triangles correspond 1-to-1 with the elements of the
group R2,3,7, and the coloured triangles to the subgroup R+

2,3,7 so this picture

is its Cayley graph drawn out as a geometric model in H2.
It follows from this that the topological quotient space H2/R2,3,7 is a single

triangle with angles π
2 , π

3 , π
7 . The quotient H2/R+

2,3,7 by the rotation group is
made of two copies of the same (2, 3, 7) triangle glued along their edges. It is
a figure like a samosa, topologically S2 but with 3 cone points as corners, with
total angle around P , Q, R respectively π, 2π

3 , 2π
7 . Outside the corners, the

surface S2\{P,Q,R} inherits the structure of hyperbolic 2-manifold from the
covering space H2 → S2.

10.6 The torsion free subgroup π1

The Magma argument in 10.3 tells us that the 4th power of the word w = yxyxy
generates a normal subgroup in G7 = R+

2,3,7 of index 168. We can verify this
explicitly in Magma by writing out 6 of the first few conjugates of w, and
considering the subgroup of G7 generated by their 4th powers. After some trial
and error, I choose the following 6 conjugates of w = yxyxy:

w, xwx, y2wy, ywy2, yxwxy2, xyxwxy2x (10.9)

and let their 4th powers generate π1 ⊂ G. Magma asserts that π1 is normal of
index 168. Then x, y ∈ G/π1 satisfy the relations x2, y3, (xy)7, (yxyxy)4 so
that G/π1 is isomorphic to G168.

G<x,y> := Group< x,y | x^2,y^3,(x*y)^7 >; // G7 as f.p. group

w := y * x * y * x * y;

L:=[w, x*w*x, y^2*w*y, y*w*y^2, y*x*w*x*y^2, x*y*x*w*x*y^2*x];

pi1 := sub< G | [w^4 : w in L] >;

Index(G, pi1); IsNormal(G, pi1);

Choosing a fundamental domain for π1 ⊂ G is closely related to choosing
the 24 heptagons described on John Baez’s website. (Sorry, no time to do this
in detail.) The elements w ∈ R+

2,3,7 in (10.9) are hyperbolic translations, and
their 4th powers identify the heptagons with the same number 1, . . . , 24.

10.7 The group R+
2,3,7 as Möbius transformations

To write out the reflection group R2,3,7 and its rotation subgroup R+
2,3,7, the

most convenient model ofH2 is the unit ball |z| < 1 in C with hyperbolic motions
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given by fractional-linear transformations z 7→ az+b
cz+d preserving the boundary

S1 : |z| = 1. For s in the real interval (0, 1), the transformation X : z 7→ z−s
sz−1

does 0 ↔ s and 1 ↔ −1. The generators I want are X, the 7-fold rotation
R : z 7→ εz and their composite Y = XR. The angle at Ps is a monotonically
decreasing function of s (going from 2π

7 down to 0), and there is a unique value
of s for which it is π

3 , so that Y is a rotation by 2π
3 . Writing Y 3 = Id gives rise

to a quadratic equation having the root s =
√

2 cos 2π
7 − 1

.
= 0.496970, with

minimal polynomial s6 + 4s4 + 3s2 − 1 = 0.
With this choice of matrices

X =

(
1 −s
s −1

)
, R =

(
ε 0
0 1

)
, Y = XR (10.10)

generate a copy of G7 =
〈
x, y

∣∣ x2, y3, (xy)7
〉

acting on the ball |z| < 1 in C, a
model of hyperbolic space H2. Compare Ex. 10.14.

10.8 The Klein quartic

The Klein quartic is the plane curve

K4 : (xy3 + yz3 + zx3 = 0) ⊂ P2
C,〈x,y,z〉. (10.11)

A nonsingular plane quartic has genus g = 3. The curve K4 is remarkable as
the algebraic curve having the maximal number 84(g− 1) of symmetries of any
curve of genus g ≥ 2. The order 3 symmetry b : x 7→ y 7→ z 7→ x is clear.

Assuming that we own ε = ε7 = exp 2πi
7 , we also get the order 7 symmetry

of P2 given by 1
7 (1, 2, 4), meaning a : (x, y, z) 7→ (εx, ε2y, ε4z). Since xy3 is

multiplied by ε · (ε2)3 = 1 and similarly for yz3 and zx3, each monomial in the
equation of K4 is invariant under this action, so that a is a symmetry of K4 of
order 7.

We see that ab = ba2, which means that a, b generate a group H21 of order 21
with A = 〈a〉 = Z/7 as a normal subgroup of index 3:

Z/7CH21 � Z/3. (10.12)

It turns out that there are 8 other coordinate systems on P2 in which K4 has
the same symmetry.

10.9 Flexes of K4 and G168 ⊂ SL(3,C)
I express everything about the action of G168 on K4 in terms of the 24 flexes
of K4 given in (I) below. For example, each row of each matrix of G168 is
proportional to one of the flexes. Finding the flexes requires a little algebraic
geometry, that I explain in Section 10.10 to avoid interrupting the algebra.

Proposition (I) The flex points of K4 are the three coordinate points

P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1), (10.13)

95



the 18 points

Ri = (1− εi, εi − ε5i, 1− ε2i), Si = (1− ε2i, 1− εi, εi − ε5i),

Ti = (εi − ε5i, 1− ε2i, 1− εi) for i = 1, . . . , 6,
(10.14)

and the 3 points

Q1 = (ε− ε6, ε4 − ε3, ε2 − ε5), Q2 = (ε2 − ε5, ε− ε6, ε4 − ε3),

Q3 = (ε4 − ε3, ε2 − ε5, ε− ε6)
(10.15)

(or as real ratios, Q1 =
(
sin 2π

7 : sin 8π
7 : sin 4π

7

)
and similar).

(II) The flex lines to K4 are

TK4,P1
: z = 0, TK4,P2

: x = 0, TK4,P3
: y = 0,

TK4,Ri
: (−εi + ε3i)x+ (1− ε6i)y + (1− ε3i)z = 0,

TK4,Si : (1− ε3i)x+ (−εi + ε3i)y + (1− ε6i)z = 0,

TK4,Ti : (1− ε6i)x+ (1− ε3i)y + (−εi + ε3i)z = 0,

TK4,Qi
: (ε2i − ε−2i)x+ (εi − ε−i)y + (ε4i − ε−4i)z = 0.

(10.16)

Each flex line meets K4 at a further flex point. Thus

TK4,Ri
∩K4 = 3Ri + S2i, TK4,S2i

∩K4 = 3S2i + T4i,

TK4,T4i
∩K4 = 3S2i +Ri for i = 1, . . . , 6.

(10.17)

This gives the 8 flexing triangles referred to above.

P1P2P3, Q1Q2Q3, RiS2iT4i for i = 1, . . . , 6. (10.18)

Curiously, the flex lines and points are given by the same array of numbers:
the line TK4,R1

has the coordinates of T3 as its coefficients, and so on.

(III) Consider the subgroup G = 〈I, A〉 ⊂ SL(3,C) generated by

I =
−1√
−7

ε2 − ε5 ε− ε6 ε4 − ε3

ε− ε6 ε4 − ε3 ε2 − ε5

ε4 − ε3 ε2 − ε5 ε− ε6

 and A =

ε 0 0
0 ε2 0
0 0 ε4

 .

(10.19)

Then |G| = 168. There are 336 triples of matrices (X,Y,XY ) in G that
satisfy the relations X2 = Y 3 = (XY )7 = (Y XY XY )4 = e, so that
G ∼= G168.

(IV) Every g ∈ G has rows and columns made up of triples proportional to the
flex points of K4.

96



(V) For every g ∈ G, if I write xg, yg, zg for the linear formsxgyg
zg

 = g

xy
z

 (10.20)

then xgy
3
g + ygz

3
g + zgx

3
g = K4. That is, the equation of K4 is invariant

under G168.

10.10 Flexes and Hessian

For a nonsingular plane curve C : (F = 0) ⊂ P2
C and P ∈ C, the tangent line

TPC is the unique line L having intersection multiplicity ≥ 2 with C at P . This
means simply that if x is a local coordinate on the line at P , the equation F
restricted to L written as a polynomial in x has a zero of multiplicity ≥ 0 at P ,
or is divisible by x2. The tangent line is given by the linear equation

TPC :
(
∂F
∂x (P )x+ ∂F

∂y (P )y + ∂F
∂z (P )z = 0

)
⊂ P2. (10.21)

For example, the tangent line to K4 at (1, 0, 0) is z = 0.
It sometimes happens that the tangent line TPC has higher order contact

with C (that is, the equation of C restricted to TPC has a zero of order ≥ 3
at P ). In this case, P ∈ C is called a flex (or inflection point). For example,
K4 has the 3 lines xyz = 0 as flex lines, with z = 0 intersecting K4 in xy3 = 0,
that is, the point (1, 0, 0) (given by y = 0) with multiplicity 3, and (0, 1, 0) with
multiplicity 1.

This behaviour is controlled by second derivatives. A familiar analogy from
school calculus is that a function y = f(x) has a maximum where f ′(x) = 0 and
f ′′(x) < 0, and a minimum where f ′(x) = 0 and f ′′(x) > 0. If f ′(x) = f ′′(x) = 0
then the line y = f(x) f restricted to the line y = f(x) has a zero of order ≥ 3.

It is known that the flex points of a plane curve F = 0 in P2 are determined

by the Hessian, or matrix of second derivatives
∣∣∣∂2F
∂xi

∣∣∣. In our case K4 = xy3 +

yz3 + zx3, (taking out common factors of 3 and 2) we get

H =
1

2
× det

∣∣∣∣∣∣
2xz y2 x2

y2 2xy z2

x2 z2 2yz

∣∣∣∣∣∣ = 5x2y2z2 − x5 − y5 − z5x. (10.22)

Part (I) of Proposition 10.9 states that the curves K4 and H intersect in the
24 points listed. This Magma routine performs the calculations that prove (I).

K7<ep> := CyclotomicField(7);

Rxyz<x,y,z> := PolynomialRing(K7,3); K4 := x*y^3+y*z^3+z*x^3;

HessMat := 1/3*Matrix(3,

[Derivative(Derivative(K4,Rxyz.i),Rxyz.j) : i,j in [1..3]]);

HessMat; H := 1/2*Determinant(HessMat); H;

PP := Proj(Rxyz); Flex := Points(Scheme(PP,[K4,H]));
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#Flex; // Flex[1..4];

Flex[2]; Flex[2] eq PP![1-ep^3, ep-ep^6, -1+ep];

Flex[6]; Flex[6] eq PP![ep-ep^6, ep^4-ep^3, ep^2-ep^5];

10.11 Homework to Chapter 10

10.1 Let ε = exp 2π
7 be the standard primitive root of 1. Find the quadratic

equation with roots α = ε + ε2 + ε4 and β = ε6 + ε5 + ε3. Hence find a surd
expression for α and β. Or if you prefer, find an expression for

√
−7 as a linear

combination of the εi.

10.2 Using the fact that cos 2π
7 = ε + ε6, find the cubic equation with roots

cos 2π
7 , cos 4π

7 , cos 6π
7 .

10.3 Check that z 7→ −1/z acts on P1
F7

(with the points labelled as in 10.3)
by (1, 6)(2, 3)(4, 5)(7, 8).

10.4 Over any field K, any 3 distinct points of P1
K form a projective frame of

reference; it is a theorem of projective geometry that there is a unique projective
linear transformation P1

K → P1
K taking any projective frame of reference to

any other. Therefore, for a finite field Fq, the group PGL(2,K) has order
q · (q − 1) · (q − 2); in particular |PGL(2,F7)| = 8.7.6 = 336.

10.5 Label the points of P1
F7

as in 10.3, so that P7 = (0 : 1), P8 = (1 : 0)
and P1 = (1, 1) is the standard projective frame of reference. Show that for
i = 1, . . . , 7 the projective linear transformation taking

(P7, P8, P1) 7→ (P7, P8, Pi) (10.23)

is in PSL(2, F7) if and only if i = 1, 2, 4, that is, i is a quadratic residue mod 7.

10.6 G168 = PSL(2,F7) is a subgroup of index 2 of PGL(2,F7) (see the end
of 10.3). This is in complete analogy with the inclusion A5 ⊂ S5 that we have
seen several times in earlier chapters. In the notation of 10.3, verify that xy
and (xy)3 (that are not conjugate in PSL(2,F7), as I said in the last sentence
of 10.3) are conjugate in the bigger group PGL(2,F7).

10.7 The following Magma code verifies the conjugacy classes of PSL(2,F7)
as listed in 10.3:

F7 := FiniteField(7); G := ProjectiveSpecialLinearGroup(2,F7);

ConjugacyClasses(G);

98



10.8. The Fano plane The finite projective plane P2
F2

with its 7 points and
7 lines is traditionally pictured as follows:

s s s
4 6 2
















s

s35

J
J
J
J
J
J
JJ

s s 7

s1

P1 P2 P4 P3 P5 P6 P7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

(10.24)

The 7 lines (whose equations are given by the same array) are

L1 = P2P4P6, L2 = P1P4P5, L4 = P1P2P3,

L3 = P3P4P7, L5 = P2P5P7, L6 = P1P6P7

and L7 = P3P5P6.

(10.25)

10.9 In the same coordinates as (10.24), write down the matrix Y ∈ GL(3,F2)
that permutes the points as (1, 2, 4)(3, 6, 5) (that is, rotates the triangle clock-
wise) and the matrix X that does (4, 5)(6, 7). Check that X2 = Y 3 = 1,

that XY =
(

0 1 1
1 0 0
0 1 0

)
does (1, 2, 5, 3, 7, 6, 4) and that (Y XY XY ) =

(
1 0 0
1 1 0
1 1 1

)
does

(1, 3, 5, 7)(2, 6), so (Y XY XY )4 = e.

10.10 Check that the matricesX,Y,XY of 10.4 act as claimed on the 7 column
vectors (10.24). Deduce that they satisfy the stated relations (10.3). (This is
quite a lot easier than multiplying the matrices.)

10.11 Argue on the collinearity properties of the Fano plane (Figure (10.24))
to prove than any symmetry x of order 2 is conjugate to (4, 5)(6, 7). [Hints:
First assume that x fixes 3 collinear points, for example, P1, P2, P3. Prove that
it then swaps two pairs of points, and that all three cases are possible. Next,
prove that there are 21 possible sets of 3 ordered collinear points, and any x of
order 2 must fix one of these.]

10.12 The character table of G168 is an interesting extended puzzle. The
conjugacy classes were discussed in 10.3–4, which also exhibited faithful per-
mutation representations of G128 on sets of 8 and 7 elements. Derive 7- and
6-dimensional irreducible representations from them in the usual way, and cal-
culate their characters. Calculate the character of

∧2
of the 6-dimensional

representation by the methods of 8.4, and show that it splits as a sum of 2
irreducible representations whose dimensions add to 15. Finish the character
table from these hints. G168 must have a 3-dimensional representation over C,
since it acts on the Klein quartic curve K4 ⊂ P2

C.
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10.13 I leave it as a fun exercise to calculate the character table of PGL(2,F7)
(no more hints, this is a challenge question!).

10.14 Generators for G7 acting on H2. Take the ball |z| < 1 in C as the
model of H2. Write its isometries as fractional linear transformation z 7→ az+b

cz+d

for suitable
(
a b
c d

)
∈ PSL(2,C).

The rotation R : z 7→ εz of order 7 corresponds to the matrix
(
ε4 0
0 ε

)
.

For s in the real interval (0, 1), the map X : z 7→ z−s
sz−1 is an order 2 map

exchanging (0 ↔ s) and (1 ↔ −1). It can be represented by the matrix
1√
s2−1

(
1 −s
s −1

)
∈ PSL(2,C).

Show that Y = XR satisfies Y 3 = Id if an only if s2 = 2 cos 2π
7 − 1 =

−1 + ε+ ε−1.
This gives generators for the group of the tesselation of 10.4. Programming

these in floating point complex numbers, allowing us to draw the pictures of the
tesselation of H2 by 2, 3, 7 triangles or by regular heptagons.

K7<ep> := CyclotomicField(7);

s2 := -1+ep+ep^6; s2; // s2 is 2*cos 2pi/7 - 1

MinimalPolynomial(s2); IsSquare(s2);

RT<T> := PolynomialRing(K7); Ks<s> := NumberField(T^2-s2);

s^2; // Ks is the field K7[s] with s^2 = s2.

X := Matrix(2, [1,-s, s,-1]); X^2/((X^2)[1,1]) eq 1;

R := Matrix(2, [ep, 0, 0, 1]); R^7 eq 1;

Y := X*R; Y^3/((Y^3)[1,1]) eq 1;
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11 Appendix: Final notes, scrap

11.1 Cyclic groups and roots of unity

I recall for emphasis what I said in Chapter 1. The cyclic group Z/n and its
representation theory is the key case of the whole theory. A 1-dimensional
representation of Z/n over C consists of the generator 1 ∈ Z/n acting on C by
v → εiv for some i ∈ [0, . . . , n− 1], where ε = exp 2πi

n . Every finite dimensional
representation of Z/n is a direct sum of 1-dimensional representations.

Ex. 1.2 asked the easiest possible exam question in the subject (a fraction
of students did poorly on it).

11.2 Strength and weakness of the theory

A group representation is a priori a sophisticated and complicated object. An
n-dimensional representation ρ of a group G is by definition the data of a map
of G into n × n matrices. If |G| and n are reasonably large, this amounts to
a huge pile of data – no-one will ever write out a hundred 8 × 8 matrices by
hand and get them right. The character of the representation records only the
trace of the matrices ρ(g), and we only need to specify it for one element of each
conjugacy class. The main theorems say that characters know everything about
the representations up to isomorphism. Thus it is the perfect kind of mathe-
matical invariant. It maps the complicated thing we want to study faithfully
onto a small and easily manipulated set of numbers.

Thus characters give you everything. Everything that is, except how to
write out the actual matrices. So if you’re happy with an existence result you
are perfectly satisfied, but you might feel that there is an element of ineffectivity
about the knowledge achieved.

11.3 Characters

A square matrix M over C of finite order is determined up to conjugacy by its
eigenvalues λi. The elementary symmetric functions σj of the eigenvalues are
the coefficients of the characteristic polynomial

∏
(T − λi) =

∑
(−1)jσjT

n−j .
The character is just TrM = σ1 =

∑
λi. However, ρ(G) also contains all the

powers M , M2, . . . , and if you include these, the character also knows the sums
of the powers of the eigenvalues TrM j = Σj =

∑
λji . Newton’s rule recovers the

elementary symmetric functions σj from the power sums Σi. So the character
gives the matrix M up to conjugacy, and it is pretty reasonable to say that it
tells you a lot about the representation.

11.4 Problems with set-theoretic foundations

In the preamble to the Main Theorem 5.6, we had to choose a “complete set
of nonisomorphic irreducible representations, that is a list {Ui} of irreducible
modules containing exactly one copy of every irreducible module up to isomor-
phism. There are set-theoretical and categorical constraints on what we have to
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say there. For example, it is illegat to talk of the “set” of irreducible modules,
because it is not a set, but a proper class (by doing so, we would fall into a
version of Russel’s paradox about the set of all sets).

Around 1900 various researchers following in the footsteps of Georg Cantor
were trying to write textbooks that defined a number as an equivalence class
of sets, which is messed up by Russel’s paradox. You can’t get away from this
obstruction by restricting to finite sets: sets with only 1 element already form
a proper class.

Every irreducible representation of a finite group G is isomorphic to a sub-
representation of the regular representation. At least assuming that we take for
granted the notion of a field K, and of a group G, the regular representation is a
single definite object, namely V reg =

⊕
g∈GK · g, and we can restrict attention

only to subsets of V reg, which is a perfectly respectable set. This does not really
solve the set-theoretic problem, but it does shift it somewhere else.

11.5 Isotypical decomposition as a canonical expression

When we write a representation as a direct sum of irreducibles, we get something
like . . . ahem . . . once we have made a some choice of irreducible representations
Ui that are not isomorphic but contain a complete list of irreducibles up to
isomorphisms. Once we have made a choice of Ui (one particular module in each
isomorphism class of irreducibles) every finite dimensional expression V can be
written as a direct sum of irreducibles V ∼=

⊕
niUi (that is,

⊕
U⊕ni
i ); moreover,

the multiplicities ni are uniquely determined. The submodule niUi ⊂ V is
determined as the image of all possible KG-homomorphisms Ui → V , or as the
kernel of all possible KG-homomorphisms V → Uj for j 6= i. It is sometimes
called the isotypical summand of Ui in V .

It is also natural to write this summand as Kni ⊗K Ui or Ei ⊗K Ui, where
Ei an ni-dimensional vector space (with no nontrivial G-action). In fact (after
the above choices), there is a canonical equality

V =
∑

Ei ⊗K Ui, with Ei = HomKG(Ui, V ). (11.1)

11.6 Free group F (m)

You’re supposed to think of the graph of 4.2, (5) as a discrete variant of the
hyperbolic plane. It is homogeneous (looks the same from every vertex), con-
nected, and simply connected (has a unique shortest path between any two
vertices).

11.7 Group algebra KG

Recall that 2.4 described concisely the algebra structure of KG, but then
promptly added the disclaimer that the expression KG-module just means a
K-vector space V together with a representation of G on V , viewed as a group
homomorphism ρ : G → GL(V ). I arranged the material of the course to be
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independent of the algebra structure of KG insofar as possible, so that for ex-
ample, I supressed the action KG × V → V making V into a module over the
algebra KG. Several of the many textbooks adopt a similar strategy, which
has the advantage of avoiding a longwinded detour into noncommutative ring
theory.

However, several results of the course are most naturally stated in terms of
KG, here with K = C. The notation CG reappeared as the regular representa-
tion CG = V reg in 6.3, and the preferred element 1CG = 1 · eG ∈ CG of 6.4 is of
course the identity element of the algebra CG.

At a deeper level, results of ring theory apply to the noncommutative algebra
CG. Wedderburn’s theorem implies that CG splits up to isomorphism as a
direct product of full matrix rings CG ∼= R1 × R2 × · · · × Rk where each Ri =
Mat(di × di,C). Then the irreducible representations of G and the isotypical
decomposition of CG-module correspond 1-to-1 to irreducible idempotents of
CG. This is a strategy to an alternative treatment of the Main Theorem and
the equality

∑
d2
i = |G|.

11.8 What’s hard about the induced representation?

The group algebra is relevant to the tricky part of the definition of induced
representation in 9.4 and Theorem 9.10. If A → B is a homomorphism of
commutative algebras, we pass automatically from a B-module to an A-module
by “restriction of scalars” (forget the action of B, just remember A). In the
other direction, the tensor product M 7→ B ⊗A M provides an automatic way
of taking an A-module to a B-module. It has the following UMP, as in 9.6: for
any A-module M and B-module N we have a canonical isomorphism

HomA(M,N|A) = HomB(B ⊗AM,N) (11.2)

(with various functorial compatibilities). For a subgroup H ⊂ G, if we treat
KG as an algebra, then KH ⊂ KG is of course a subalgebra, and induced
representation can be handled in a similar style. However, there is still a little
issue involved in doing this properly. Namely, KG is a KG-bimodule (with
multiplication on the left and on the right), and to write IndGH L = KG⊗KH L
involves treating KG as a right module when making the tensor product, and
as a left module when making the whole construction into a KG-module. This
explains what is going on in the proof of Theorem 9.10, and why we need the
nasty h = g−1

β xgγ trick.

11.9 Abelian category

It may seem paradoxical that at the start, I found the theory of KG-modules
(or representations of G) easier to describe than the theory of the group G itself.
The point is that KG-modules form an Abelian category, and it is semisimple
by Maschke’s theorem. The word category just means the class of all modules
and A-linear maps between modules. Saying that it is Abelian just means that
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we have subobjects and quotient objects by subobjects, satisfying the same
compatibilities as for vector spaces. If you ever say “exact sequence”, you must
be working in an Abelian category (whether you realise it or not). The category
of groups has no such useful structure.

More generally, when discussing a module M over a ring A, the study of
M given A is a problem analogous to linear algebra. The structure of the
ring A itself is a harder object to study, and is a nonlinear problem, with linear
algebra providing little or no help. Similarly, the study of sheaves over a space is
amenable to methods of linear algebra, whereas the are usually no such explicit
methods of studying the space itself.

11.10 Finite subgroups of SL(2,C) and SL(3,C) and their
role in algebraic geometry

This is a research topic that I would like to have developed more in the course.
Felix Klein classified the finite subgroups of SL(2,C) around 1860; there are

two infinite families corresponding to regular polygons in the plane, together
with three exceptional groups of order 24, 48 and 120 that are binary or “spinor”
double covers of the symmetry groups of the regular polyhedra the tetrahedron,
octahedron and icosahedron (see footnote ??). The finite subgroups of SL(3,C)
are also classified (and also SL(n,C) for higher n), although the problem gets
harder and it is not clear how to view the assortment of solutions with any
pretence to elegance.

The quotient spaces X = C2/G by Klein’s finite subgroups G ⊂ SL(2,C)
form a very remarkable family of isolated surface singularities, that were studied
by Du Val during the 1930s (aided by Coxeter). Du Val’s work was central
to the study of algebraic surfaces during the 1970s and 1980s, and played a
foundational role in the study of algebraic 3-folds from the 1980s onwards. In the
1980s McKay observed that the representation theory of the group G is reflected
in the geometry of the resolution of singularities of X. This correspondence has
been generalised to 3-dimensions, with the same proviso concerning the nature
of the problem and its solutions.

11.11 Unsorted draft homework and exam questions

11.1 The condition that two n × n matrices A and B commute implies com-
patibilities between their eigenspaces. For example, if A is diagonalisable with
n distinct eigenvalues, prove that AB = BA implies that B is also diagonal (in
the eigenbasis of A).

More generally, prove that AB = BA implies that B takes the eigenspaces
of A to themselves.

Consider a finite dimensional representation ρ : Z/n×Z/m→ GL(V ) of the
product of two cyclic groups. Show that V decomposes as the sum of 1-dim
irreducible summands.
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11.2 Write ε = exp 2πi
n for a primitive nth root of 1. Show how to write down

n different irreducible representations Li of the cyclic group Z/n. Prove that
every representation of Z/n is a direct sum of copies of these.

For ε = exp 2πi
5 , set

A =


ε 0 0 0
0 ε2 0 0
0 0 ε4 0
0 0 0 ε3

 and B =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


and write G20 ⊂ GL(4,C) for the subgroup generated by A and B.

(i) Prove that G20 contains a copy of Z/5 as a normal subgroup, with quotient
group cyclic of order 4. [4]

(ii) Prove that the given representation of G20 is irreducible. [4]

(iii) Prove that AB, A2B, A3B and A4B are all conjugate to B. Deduce that
the conjugacy classes of G20 are

e, {A,A2, A3, A4}, {AiB}, {AiB2}, {AiB3} [8]

(iv) Use the above to write out the character table of G20 with a brief justifi-
cation. [9]

11.3 The same exercise with 5 7→ 7, and the primitive 7th roots of 1 organised
as the 6× 6 diagonal matrix diag(ε, ε3, ε2, ε6, ε4, ε5).

11.4 For all the groups that you know about of order ≤ 24, the character table
can be written out somehow or other by the methods we have discussed.

Do this for the quaternion group H8.
Likewise the alternative group A4.
Likewise the binary dihedral groups BD16 and BD18.

11.5 Let F3 be the field with 3 elements and G = SL(2,F3) the group of
2 × 2 matrices with entries in F3 and determinant 1. Write a =

(
1 −1
1 0

)
and

b =
(

1 1
−1 0

)
. Prove that a2 = bab and b2 = aba.

Deduce that G has a 2-dim representation ρ : G → SL(2,C) with ρ(a) =
1
2

(
1+i 1+i
−1+i 1−1

)
and ρ(b) = 1

2

(
1+i −1+i
1+i 1−1

)
.

Prove the sporadic isomorphism SL(2,F3) ∼= BT24, where BT24 the binary
tetrahedral group of Chapters 2–3.

11.6. Conjugate 5-cycles in A5 Recall that a = (01234) and a2 = (01243)
are conjugate in S5 but not in A5. Find x ∈ A5 such that xa2x−1 = a2. [Hint:
To spell this out, it means to find an even permutation of {0, 1, 2, 3, 4} which
applied to the entries of a2 = (02413) gives (01243) as a 5-cycle up to cyclic
permutation. There are several solutions, of which one is a product of two
2-cycles.]
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11.7. Outer automorphism of A5 Construct an automorphism of A5 that
take the 5-cycle a = (01234) to its square a2 = (02413). [Hint: Assume as given
that A5 is generated (say) by a = (01234) and b = (031) with defining relations
a5 = b3 = (ab)2 = e. Find a suitable element c ∈ A5 to map it to, so that
a 7→ a2, b 7→ c defines a group homomorphism.]

11.8 Let F5 be the field with 5 elements and SL(2,F5) the group of 2 × 2
matrices with entries in F5 and determinant 1.

Let A =
(−1 −1

0 −1

)
and B =

(
1 1
−1 0

)
; calculate the order of A, B and AB.

11.9 Prove that the centre of SL(2,F5) equals the scalar diagonal matrices
{±1}.

Prove that the quotient G = PSL(2,F5) = SL(2,F5)/ 〈±1〉 is isomorphic to
A5. [Hint: Use the images in G of the matrices of (11.8).]

11.10 By considering the action of PSL(2,F5) on the projective line P1
F5

=
{0, 1, 2, 3, 4,∞} prove that A5 has a permutation action on a set of 6 elements,
such that any 3-cycle of A5 acts as the product of two disjoint 3-cycles.

11.11. Fifth roots of 1 Write ε = exp 2πi
5 for a primitive 5th root of 1, so

that 1 + ε + ε2 + ε3 + ε4. Calculate the sum and product of 2 cos 2π
5 = ε + ε4

and 2 cos 4π
5 = ε2 + ε3, and deduce that ε+ ε4 and ε2 + ε3 are the two roots of

x2 + x− 1 = 0.
It follows that cos 2π

5 = −1+
√

5
4 and cos 4π

5 = −1−
√

5
4 . Although not essential,

we note for completeness that sin 2π
5 =

√
5+
√

5
8 and sin π

5 = sin 4π
5 =

√
5−
√

5
8 .

11.12. More preparation for the icosahedron

(i) Prove that any rotation matrix M ∈ SO(3) of order 2 is conjugate to
diag(1,−1,−1) and therefore has trace = −1.

(ii) Prove that any rotation matrix M ∈ SO(3) of order 3 is conjugate to1 0 0

0 cos 2π
3 − sin 2π

3

0 sin 2π
3 cos 2π

3

 =

1 0 0

0 − 1
2 −

√
3

2

0
√

3
2 − 1

2

 , (11.3)

and conjugate over C to diag(1, ω, ω2), where ω = exp 2πi
3 = −1+

√
−3

2 , and
so has trace = 0. [Hint. Determine the eigenvalues.]

(iii) A rotation of R3 of order 5 has angle either ± 2π
5 or ± 4π

5 . Prove that in
the first case the rotation is given by a matrix conjugate to1 0 0

0 cos 2π
5 − sin 2π

5

0 sin 2π
5 cos 2π

5

 =

1 0 0

0 −1+
√

5
4 − sin 2π

5

0 sin 2π
5

−1+
√

5
4

 (11.4)
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or over C to diag(1, ε, ε4), so has trace the Golden Ratio −ε2−ε3 = 1+
√

5
2 .

The other case is similar, with trace −ε− ε5 = 1−
√

5
2

11.13 Consider the alternating group A5 on 5 elements {0, 1, 2, 3, 4} and its
permutation representation W5 = C5

{e0,...,e4}. Write out the conjugacy classes of

A5 and their sizes (number of elements) (repeating Chapter 4, (4.2)). Calculate
the character χW5 and verify that (χW5 , χW5) = 2. [Hint: The trace of a
permutation matrix is the number of elements fixed by the permutation.]

11.14 Write L0 for the trivial representation C. The permutation representa-
tion W5 contains a copy of L0 based by

∑
ei, with A5-invariant complement

V4 =
{∑

xiei
∣∣ ∑xi = 0

}
. (11.5)

Calculate the character of V4 and prove that V4 is irreducible.

11.15 Write A6 for the symmetric group on {0, 1, 2, 3, 4, 5} and consider the
permutations

A = (01234) and B = (015)(243). (11.6)

Show that A,B generate a subgroup of A6 isomorphic to A5. [Hint: Assume
known that A5 is generated by a = (01234), b = (031) with ab = (04)(23) and
the defining relations a5 = b3 = (ab)2 = e.]

11.16 Write W6 for the permutation representation of A5 corresponding to A
and B of (11.14). Calculate its character χW6 and verify that (χW6 , χW6) = 2.

11.17 As in (11.14), deduce that A5 has a 5-dim irreducible representation
and calculate its character.

11.18 For this question, assume as given that A5 is isomorphic to the subgroup
I60 ⊂ SO(3) of rotations of the icosahedron in R3. Its elements must be rotation
matrices of order 2, 3 or 5. Use (11.11–12) to prove that there are exactly two
possible cases for the character of this representation. Both occur. Use this to
complete the character table of A5.

11.19 A5 contains 20 3-cycles falling into 10 subgroups of order 3,

G123, G124, G125, G134, G135, G145, G234, G235, G245, G345. (11.7)

Conjugacy by A5 defines a permutation action on these 10 subgroups. WriteW10

for the corresponding permutation representation. Calculate its character χW10
.

[Hint. For example, conjugacy by (12)(34) takes G125 and G345 to themselves,
and no other. Therefore χW10

((12)(34)) = 2.]
Calculate (χ, χ), and use the character table (given on p. 5 below) to prove

that W10
∼= L0 ⊕ V4 ⊕ V5.
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11.20 Continuing the game of (11.19), let U20 be the permutation represen-
tation of A5 acting by conjugacy on the 20 3-cycles (1, 2, 3), (1, 3, 2), etc. This
space has an involution ι : U20 → U20 defined by (i, j, k) 7→ (i, k, j) (taking the
generator of each Gijk to its inverse).

The involution ι splits U20 as a sum of two eigenspaces. The ι = 1 eigenspace
of U20, based by all possible (i, j, k) + (i, k, j), is the representation W10 of
(11.19). The ι = −1 eigenspace U−20 is based by all possible (i, j, k)− (i, k, j).

As a representation of A5 it is formed of matrices with a single entry ±1 in
each row and column. (A kind of decorated permutation matrix.) Calculate its
character χU−20

and its norm-squared (χ, χ). [Hint: Similar to (11.19); the main

point is to calculate (12)(34)(125)(12)(34), etc.]
Use the character table to prove that U−20 = V4 ⊕ U3 ⊕ U ′3.

11.21 Use the notation N,P1...5, Q1...5, S for the vertices of the icosahedron as
in the lectures (see below), and let α be the 3-fold rotation in the face 4P1P2N .
Prove the following:

(i) α permutes the vertices as the product of 4 disjoint 3-cycles

(P1, P2, N)(P3, P5, Q4)(Q3, Q5, P4)(Q1, Q2, S). (11.8)

(ii) α permutes the edges as

P1P2 7→ P2N 7→ NP1 7→ P1P2, P2P3 7→ NP5 7→ P1Q4 7→ P2P3, (11.9)

etc., and therefore permutes the 5 orthogonal frames

Σk : PkN ||SQk, Qk−1Pk+1 ||Qk+1Pk−1, Pk−2Pk+2 ||Qk+2Qk−2

(11.10)
as the 3-cycle (Σ1,Σ4,Σ2). (Each frames is an unordered triple of pairs of
orthogonal vectors ±e0,±e1,±e2.)

(iii) a = (12345) and b = (142) with ab = (15)(34) generate A5, with the
defining relations a5 = b3 = (ab)2 = e.

(iv) If we write Li : PiQi and L0 : NS for the 6 axes of 5-fold rotation then α
permutes them as the product of disjoint 3-cycles (L1, L2, L0)(L3, L5, L4).

(v) A = (12345) and B = (126)(354) with AB = (13)(26) (satisfying A5 =
B3 = (AB)2 = e) generate a subgroup of A6 isomorphic to A5.

11.22 Each orthogonal frame Σk is taken to itself by a tetrahedral group
T12
∼= A4 (generated in that basis by diag(1,−1,−1) and a 3-fold rotation).

The permutation action of I60 on the Σk thus corresponds to the action of A5

by conjugacy on its 5 subgroups isomorphism to A4.
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11.23 Calculate the character table of S5 by the following scheme.

(a) Compute the 7 conjugacy classes of S5 and their number of elements.

(b) Compute the character of the permutation representation, and its twist
by the sign character g 7→ sign(g).

This gives you 4 irreducible characters.

(c) Let ϕ be an irreducible character of A5 of degree 3. Compute the induced
character ϕS5

A5
and prove that it remains irreducible.

(d) Let ψ be the irreducible character of A5 of degree 5. Compute the induced
character ψS5

A5
and prove that it is the sum of the two remaining irreducible

characters of S5.

(e) Use ψS5

A5
and the orthogonality to fill in the rest of the character table.

11.24 Let χ be a character of a group G and g ∈ G an element of order 2.

(i) Prove that χ(g) is an integer, with the same parity as χ(1).

(ii) Suppose that G has an irreducible character of degree 2. Prove that G
has an element of degree 2. [Hint: The degree of an irreducible character
divides the order of the group.]

Assume moreover that G is simple. We wish to prove that G has no
irreducible character χ of degree 2. As above, write g for an element of
order 2.

(iii) Prove that χ(g) 6= 0.

(iv) Prove that g is in the centre of G. Show that this contradicts the assump-
tion that G is simple.

11.25 A finite group G acts on each of its conjugacy classes by the action is
g 7→ xgx−1. Show that the stabiliser of g is its centraliser CG(g) and that the
conjugacy class of g is the set of right cosets CG(g)\G.

11.26 If Vi are CG-modules with characters χi, calculate the character of the
direct sum

⊕
i niVi.

11.27 For a finite group G, write U1, . . . , Uk for a complete set of noniso-
morphic irreducible representations and χi for their characters (hereinafter ir-
reducible characters.) We know that the χi form an orthonormal basis for the
class functions C(G) under the inner product (χ, ψ). Deduce that a represen-
tation V is irreducible if and only if (χV , χV ) = 1 and is a direct sum of two
irreducibles if and only if (χV , χV ) = 2.
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11.28 Let G be a group. Show that the formula

x ∈ G acts by g 7→ xgx−1. (11.11)

defines an action of G on itself. The orbit of g ∈ G under this action is the
conjugacy class CG(g).

Prove that the stabiliser of g under this action is the centraliser ZG(g). If
G is finite, use the orbit-stabiliser formula to deduce that CG(g) consists of
|G|/|ZG(g)| elements.

Describe and count the conjugacy classes of the permutation (1, 2)(3, 4) in
the alternating group A5 and in the symmetric group S5.

Describe and count the conjugacy classes of the permutation (1, 2, 3, 4, 5) in
A5 and in S5.

11.29. Characters Define the character of a finite dimensional CG-module
V . Prove that it is a class function (that is, conjugacy invariant). If Vi are
CG-modules with characters χi, calculate the character of

⊕
Vi.

Let G be finite, and U1, . . . , Ur a complete set of nonisomorphic irreducible
CG-modules. Assume known that their characters χi form an orthonormal basis
of the class functions C(G) under the Hermitian inner product 〈–, –〉.

(I) Prove that two finite dimensional representations are isomorphic if and
only if they have equal characters.

(II) State and prove a criterion for a representation to be irreducible in terms
of its character and the pairing 〈f, g〉.

Consider the natural permutation representation of A5 on C5 (that is, an
element σ ∈ A5 permutes the coordinates). Calculate its character. Find an
invariant subspace of C5. Find a complementary invariant subspace and cal-
culate its character. Use the Hermitian inner product 〈f, g〉 to determine the
irreducible decomposition of C5.

11.30. Binary dihedral group BD4m For m > 0 write εm = exp 2πi
m for a

chosen primitive mth root of 1. Choose any m ≥ 2 and set ε = ε2m. Consider
the two matrices

A =

(
ε 0
0 ε−1

)
and B =

(
0 1
−1 0

)
. (11.12)

Prove that Am = B2 = −1 and BAB−1 = A−1 so that A and B generate a
matrix group in GL(2,C) of order 4m, isomorphic to the abstract group

BD4m =
〈
A,B

∣∣ A2m = B4 = e, Am = B2, BAB−1 = A−1
〉
. (11.13)

It contains the subgroup 〈A〉 ∼= Z/2m as a subgroup of index 2. Prove that the
quotient by the central element Am = B2 is the usual dihedral group of order
2m:

BD4m /
〈
B2
〉

= D2m. (11.14)
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11.31. Alternative construction of BT24 and T12
∼= A4 Let F3 = Z/3

be the field with 3 elements, and consider the group G0 = GL(2,F3) of 2 × 2
nondegenerate matrices over F3. Calculate |G|. [Hint: the first row e1 is any
nonzero vector in F2

3; once that is chosen, the second row is any vector in
F2

3 \ F3 · e1.]
The special linear group G = SL(2,F3) is the kernel of det : G0 → F×3 .

Calculate |G|.
Set

a =

(
1 −1
1 0

)
and b =

(
1 1
−1 0

)
∈ SL(2,F3). (11.15)

Prove that a2 = bab and b2 = aba.
By considering the action of a and b on the four 1-dimensional subspaces of

F2
3 based by ( 1

0 ), ( 0
1 ), ( 1

1 ), ( 2
1 ), construct a surjective homomorphism G→ A4.

Calculate enough words in a, b to deduce that subgroup of G they generate
has order divisible by 4 and by 6, and deduce that 〈a, b〉 = G.

Prove that G has three different 1-dimensional representations. [Hint: try
a 7→ ω and b 7→ ω?.]

Prove that G has a 2-dimensional representation G→ GL(2,C) taking

a 7→ 1

2

(
1 + i 1 + i
−1 + i 1− i

)
and b 7→ 1

2

(
1 + i −1 + i
1 + i 1− i

)
. (11.16)
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