
MA4J8 Commutative algebra II

Week 1. Dedekind domains and prerequisites

1.1 Prerequisites

In the lectures, I dived into Dedekind domains at the deep end, and stepped
back to discuss prerequisites (that most of the audience know perfectly well).
The write-up lists some of the prerequisites first in more-or-less logical order.
This is very boring, and you should start at Section 1.2. The material is
intended to stand alongside the “frequently forgotten facts” (FFF) pages on
the course website (and later prerequisite sections).

All rings here are commutative with a 1.

Integral domain and its field of fractions K = FracA. For the time
being, we work with integral domains, so that the partial ring of fractions
S−1A is a subset of the familiar construction of field of fractions, the set
{as | a ∈ A, s ∈ S}. Later we use more general ring of fractions S−1A, with
S allowed to have zero divisors.

Principal ideal domain PID and unique factorisation domain UFD
from Year 2 algebra.

Prime and maximal ideals SpecA is the set of primes of A. The subset
of maximal ideals is m-SpecA.

Local ring (A,m) The textbooks give equivalent definitions:

(i) A is a ring with a single maximal ideal m.

(ii) The set of nonunits of A is an ideal m.

(iii) m is a maximal ideal and 1 + x is a unit for all x ∈ m.

Zorn’s lemma [UCA, 1.7]. This is the preferred version of the axiom of
choice used by in algebra and most of set theory. It is comparable to the
completeness axiom of the reals in Analysis courses, and could reasonably
be described as completeness of set theory.
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“Plenty of primes” [UCA, 1.9]. Zorn’s lemma implies that given a
proper ideal I and multiplicative set S in A, there exists an ideal P con-
taining I and disjoint from S that is maximal with those conditions. This is
prime. The statement that an ideal that is maximal among some specified
class is prime is a repeating narrative of the subject.

Determinant trick or Cayley–Hamilton [UCA, 2.6-2.7] or [A&M, Prop
2.4] or [Ma, p.7] or [Eis, Th. 4.3]. An endomorphism ϕ of a finite A-module
M satisfies a monic relation

ϕn + an−1ϕ
n−1 + · · ·+ a1ϕ+ a0 = 0. with ai ∈ A. (1.1)

Here n is the number of generators, and (1.1) is the characteristic polynomial
det(IdM −ϕ) = 0.

Integral extension Integral closure of A in a field L, definition of normal
integral domain. An integral element b in L (or in an overring B of A)
generates a finite ring extension A[b], and a composition of finite extensions
A ⊂ B ⊂ C is finite by the same easy argument as in Galois theory, but
to get the same result for integral extensions, and to get the result that the
integral closure of A in L is a ring requires the Determinant trick. See [UCA,
Chap. 4] or [A&M, Chap. 5] or [Ma, Chap. 3, Section 9].

Noetherian conditions on rings and modules. There are three equiva-
lent conditions in the definition. To go from all submodules are f.g. or the
a.c.c. to the maximal condition (every nonempty set of submodules has a
maximal element) involves Zorn’s Lemma.

Nakayama’s lemma [UCA, 2.8 and Ex. 2.5] If A,m is a local ring and
M a finite A-module then mM = 0 implies that M = 0. More general
statement: if M = IM for an ideal I and finite M then there exists an
x ∈ I with x ≡ 1 mod I such that xM = 0.

Ann and Ass Let A be a ring and M an A-module. For nonzero n ∈ M ,
set Ann(n) = {a ∈ A | an = 0}. It is obviously a proper ideal of A, the
annihilator ideal of n.

An associated prime of M is a prime P ∈ SpecA such that P = Ann(n)
for some n ∈ M . Equivalently, M contains a submodule isomorphic to the
integral domain A/P . The set AssM of associated primes of M plays a key
role in many arguments.
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Lemma 1.1 An ideal that is maximal among Ann(n) is prime. Therefore
A Noetherian and M 6= 0 implies AssM 6= ∅.

Straightforward: if fg ∈ Ann(n) and g /∈ Ann(n) then f ∈ Ann(gn) =
Ann(n) by the maximality of Ann(n). This is an instance of the “maximal
in a class implies prime” narrative.

1.2 First view of Dedekind rings

Definition 1.2 (1) Let A be an integral domain with field of fractions
K = FracA. For I a nonzero ideal of A, the inverse I−1 is the subset

I−1 = {s ∈ K | sI ⊂ I}. (1.2)

You could say that I−1 consists of the common denominators of all
a ∈ I.

(2) A nonzero ideal I of A is invertible if I−1 · I = A.

(3) A is a Dedekind domain if every ideal I of A is invertible.

This is an extremely strong condition as we will shortly show. Dedekind
domains are among the most important rings in pure math.

Exercise 1.3 (1) If ideal I is f.g., prove that I−1 6= 0.

(2) (Harder) Give an example of A, I such that I−1 = 0.

(3) Let M1,M2 ⊂ K be nonzero A-submodules of K. Prove that any
A-linear map ϕ : M1 →M2 is multiplication by some s ∈ K.

(4) Show that I−1 = HomA(I, A).

Lemma 1.4 An invertible ideal I is finitely generated. Therefore a Dedekind
domain is a Noetherian ring

Proof Since I−1 · I = A, there exists an expression

1 =
∑

siai with si ∈ I−1 and ai ∈ I. (1.3)

This is a finite sum. Now for every x ∈ I,

x = 1 · x =
∑

(six)ai (1.4)

so I is generated by the finitely many ai. For the second part, every ideal
of A is f.g., one of the equivalents definitions of Noetherian. (See the pre-
requisites. The equivalence of the definitions needs Zorn’s lemma.)
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Definition 1.5 The localisation of an integral domain A at a prime ideal
P is

AP = {a/s ∈ K | a, s ∈ A, s /∈ P}. (1.5)

This is a subring of K, and it is a local ring with maximal ideal PAP . In
fact, an element a/s ∈ AP for which a /∈ P has inverse s/a ∈ AP , so the
nonunits of AP consist of the ideal PAP .

Exercise 1.6 (1) See the equivalent definitions of local ring in the pre-
requisites, and make you understand why they are equivalent.

(2) Maximal ideals m1 6= m2 have m1 +m2 = A and m1 ∩m2 = m1m2.

Lemma 1.7 If A is a Dedekind domain and I a nonzero ideal then the ideal
IAP is principal for every P ∈ SpecA.

Proof As above,
∑
siai = 1 ∈ A. Now 1 /∈ P , so at least one of them (say

with i = 0) has s0a0 /∈ P . Hence

u = s0a0 = s0a0
1 is a unit of PAP . (1.6)

Therefore a0 ∈ I generates IAP . In fact,

ux = (s0x)a0 for any x ∈ I. (1.7)

Here u is a unit of AP and s0x ∈ A.

Exercise 1.8 Prove the following:

(1) Any ideal I of a Dedekind domain A is generated by at most 2 ele-
ments.

(2) Any two distinct prime ideals of A satisfy P1 + P2 = A.

(3) Any nonzero x ∈ A is only contained in finitely many ideals.

(4) If I is an ideal of A with (a1, . . . , ak), and (s1, . . . , sk) as in (1.3) the
surjective map π : A⊕k → I that takes the ith basis element ei to ai
has a right inverse (or “lift”) s with π ◦ s = IdI . Deduce that I is
isomorphic to a direct summand of the free module A⊕k. See [Ma,
Th. 11.3, p. 80] and compare later treatment of projective modules.

I will treat DVRs a bit later, so this is a bit out of order. For integral
closure, see the prerequisite section.
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Corollary 1.9 Let A be a Dedekind domain and P ∈ SpecA a nonzero
prime ideal. Then the localisation (AP , PAP ) is a DVR. For P = 0, obvi-
ously AP = K = FracA.

In fact by the lemma, AP is a Noetherian local ring and its maximal
ideal PAP is principal. This is one of the simple definitions of DVR.

Proposition 1.10 A Dedekind ring A is normal. That is, any element
of x ∈ K = FracA that is integral over A (satisfies a monic polynomial
equation over A) is already an element of A.

Proof Suppose that x is integral over A. Then x satisfies a monic depen-
dence relation over A, and the same relation is also a monic relation over
AP for every P ∈ SpecA. On the other hand AP is a DVR, hence a UFD,
and so x ∈ AP . Therefore x is contained in the intersection of AP taken
over every P ∈ SpecA.

However, this intersection is A itself. Proof [UCA, 8.7 Lemma]. Write
D = {d ∈ A | dx ∈ A ⊂ A (the set of all possible denominators of x, and 0).
This is an ideal of A. If D 6= A then D is a proper ideal, so is contained in
a maximal ideal P of A, so that x /∈ AP . �

The converse is also true, but the argument is longer. I prove the fol-
lowing Main Theorem below (mainly following [Ma, Theorem 11.6, p. 82]).

Theorem 1.11 (Characterisation of Dedekind domains) Let A be an
integral domain. Equivalent conditions:

(1) A is a Dedekind domain.

(2) A is one dimensional normal Noetherian domain.

(3) A is Noetherian and its localisation at every nonzero prime ideal is a
DVR.

(4) Every nonzero ideal of A can be written as a product
∏

i p
si
i of a finite

number of powers of prime ideals.

Moreover, the factorisation in (4) is unique.

1.3 Characterisation of DVRs

The baby definition is UFD with single prime element z ∈ A, so that every
element of A is zvu with a a unit. This is equivalent to Noetherian integral
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domain, that is a local ring A,m with principal maximal ideal m = (z). It
is also equivalent to the conditions that the field of fractions K = FracA
has a valuation v : K � Z t {∞} (a multiplicative homomorphism on K×

s.t. v(f + g) ≥ min(v(f), v(g))) such that A = {x ∈ K | v(x) ≥ 0} and
m = {x ∈ K | v(x) > 0}. Exercise: prove equivalence.

So far, this is quite straightforward. The main result goes in a more
abstract direction:

Theorem 1.12 A is a DVR if and only it is a Noetherian integral domain
that is local with exactly two prime ideals {0,m} (in other words, has Krull
dimension 1), and is normal (integrally closed in K = FracA).

Local integral domain means that 0 and m are prime. SpecA = {0,m}
gives no prime ideals strictly between 0 and m (so Krull dimension 1). Now
A is Noetherian, so the ideal m is f.g., and Nakayama’s lemma implies that
m 6= m2.

Claim 1.13 Any x ∈ m \m2 generates m.

The assumption that m/(x) 6= 0 leads to a contradiction. For this we
need the notion of associate prime, that is an important point for the rest
of the course. By Lemma 1.1 of the above prerequisite section, m/(x) 6= 0
would imply that Ass(m/(x)) 6= ∅, and therefore m/(x) must contain a
submodule isomorphic to A/P for some P ∈ SpecA.

However SpecA only has 2 elements 0 and m, and 0 certainly doesn’t
work so that (still working by contradiction), we can assumem ∈ Ass(m/(x)),
and m/(x) contains a nonzero element y killed by m. Lifting y to y ∈ m
gives an element y ∈ m \ (x) so that m · y ⊂ x. Now x, y ∈ A, so that y/x
is an element of K = FracA satisfying y/x /∈ A but m · y/x ∈ A.

Two possible cases:

(i) m · (y/x) = A.

(ii) m · (y/x) ⊂ m.

The first case gives 1 ∈ m · (y/x), with implies at once that x ∈ m · y,
which contradicts the assumption in the claim that x /∈ m2.

So far, we have not used the assumption of the Main Theorem that A
is normal. In case (ii), the contradiction arises by applying the Cayley–
Hamilton result to the A-linear homomorphism ϕ : m→ m given by multi-
plication by y/x. This gives a monic relation for y/x

(y/x)n + an−1(y/x)n−1 + · · ·+ a1(y/x) + a0 = 0.
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with coefficients in A. The relation holds as an endomorphism of m as A-
module, but everything takes place inside the field K, so that the relation
proves that y/x is integral over A. Since A is normal, this implies that
y/x ∈ A, or y ∈ (x), which contradicts y ∈ m \ (x). This proves the claim
and the Main Theorem.

The characterisation of Dedekind domains is similar --

Noetherian, 1-dimension and integrally closed implies Dedekind.

I leave the proof as exc. for now. See Exc. 1.8.

1.4 Dedekind and Weber’s synthesis

Dedekind domains include the ring of integers OK of a number field K, and
the coordinate ring k[C] of a nonsingular affine curve C. These objects are
main protagonists of algebraic number theory and algebraic geometry, and
are clearly very different in nature. However, Dedekind and Weber [DW]
say that these two rings can be studied using the same algebraic apparatus.
They are rarely UFDs, but (informally) can invariably be treated as UFDs
“away from finitely many primes”.

The good news: if A is a ring of either type (a Dedekind domain), the
ideals of A have unique factorisation into prime ideals.

1.5 Modern abstract algebra

The 1882 paper Dedekind and Weber [DW] marks a breakthrough: modern
algebra has axioms and abstract arguments, and often works with objects
in a symbolic way. In this case, without reference to what the elements
of the ring actually are. At bit later in the century, Cayley wrote several
essays on groups, emphasising that the important thing about them was the
mechanism of composing group elements, not the nature of the operators
making up the group.

[DW] Richard Dedekind and Heinrich Weber, Theorie der algebraischen
Funktionen einer Veränderlichen, J. reine angew. Math. 92 (1882), 181–290

1.6 Essay on organisation

Algebra has a logical development (definition, assertion, proof) but it also
has meaning (examples, applications, thought experiments, history, every-
thing else). The problem with the logical or “pure thought” approach is that
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it does not indicate the eventual aim, and that it frequently does not say
what is nontrivial and important. If you concentrate only on the logic, you
spend too much time worrying about tautologies, and lose out on everything
else. The logic is not necessarily memorable, and rarely suggests the next
step forward.

This course is a second course in commutative algebra, and has pre-
requisites at many levels. The student (and not infrequently the lecturer)
needs timely reminders rather than a full rigorous treatment. I summarise
these by keeping a list of FFF Frequently Forgotten Facts (but I have prob-
ably missed some items). Life is complicated, and its logical ordering is the
least of our worries.
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