
MA4J8 Commutative algebra II

Addenda to tidy up Week 1

2.1 More prerequisites

Zariski topology on SpecA Refresh your memory of SpecA with its
Zariski topology and principal open sets Xf = SpecA \ V (f), equal to
SpecA[ 1f ].

The radical rad I = {f ∈ A | fN ∈ A for some N} is characterised by
rad I =

⋂
P∈V (I) =

⋂
I⊂P P . This is a standard exercise using “plenty of

primes”.

Krull dimension Dimension theory is treated at length in Week 4, but I
made simple use of Krull dimension dimA of a ring A. This is the maximum
length n of a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime ideals. The height of a
prime ideal P of a prime htP is the maximum length of a chain up to P .
Thus a minimal prime of A has htP = 0. A standard exercise: show that
the localisation AP of A at a prime P has dimAP = htP .

Localisation S−1A and S−1M of ring and modules Refresh your
memory of partial ring of fractions and localisation S−1A and S−1M . In
particular, write down the kernel, functoriality and exactness properties of
M 7→ S−1M .

Let A be a ring, S a multiplicative set in A, and M an A-module. As
you know, the localisation S−1A and S−1M is the set of fractions

S−1A = {as | a ∈ A and s ∈ S}/∼
S−1M = {ms | m ∈M and ∈ S}/∼

(2.1)

Here ∼ (pronounced twiddles) is the equivalence relation

a1
s1
∼ a2

s2
⇐⇒ ∃t ∈ S so that t(s2a1 − s1a2) = 0 ∈ A.

resp. m1
s1
∼ m2

s2
⇐⇒ ∃t ∈ S so that t(s2m1 − s1m2) = 0 ∈M.

(2.2)

The point of “there exists t ∈ S” is that (in contrast to the integral domains
we worked with in Week 1), we allow S to contain elements s that are
zerodivisors of A or of M . After we make such an s invertible, any a with
sa = 0 necessarily maps to zero in S−1A.

Once we take that precaution, we get a new ring S−1A with a ring
homomorphism A → S−1A such that every s ∈ S maps to an invertible
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element of S−1A, resp. an A-module homomorphism M → S−1M with the
property that multiplication by every s ∈ S is an isomorphism S−1M →
S−1M . In fact A → S−1A and M → S−1M are characterised by saying
that they satisfy the UMP for the condition that s maps as a bijection.

Noetherian conditions, picture of M fibred over SpecA So far we
have had lots of stuff on Noetherian rings and modules. (If in doubt, read
the prerequisites.) We frequently assume that we work with Noetherian
rings A, and modules M that are finite over them, so also Noetherian.

It is often a good strategy to break something complicated into smaller
components. I want to explain the picture at the front of [UCA]. It has
SpecA drawn as a geometric base space, and a module M as an object
living over A or preferably over its closed subsets.

I assume the Zariski topology on SpecA as a prerequisite. The closed
sets are V (I) = {P | I ⊂ P}. The letter V means variety, so V (I) is the
locus where every f ∈ I maps to zero in the residue ring A/P (an integral
domain), or in its field of fractions k(P ) = Frac(A/P ). One checks this is a
topology.

Write X = SpecA. Then for f ∈ A, we have the closed set V (f) (the
set of primes P with f ∈ P ), and its complement Xf , the principal open set
{P ∈ SpecA | f is a unit of AP }. One checks that Spec(A[1/f ]) = Xf .

For a Noetherian ring, the closed set of X = SpecA have the descending
chain property: any chain V1 ) V2 ) · · · ) Vn must eventually stop. It
follows that X or V (I) in X contains a finite number of irreducible compo-
nents, that correspond to the minimal primes of X or of V (I). See [UCA,
p.76–77].

Apart from small side-steps in language, this agrees with what we do
with affine algebraic sets in An

k over an algebraically closed field, where
we only work with k-valued points P = (a1, . . . , an) or the corresponding
maximal ideals mP = (xi − ai).

Associated primes, primary decomposition, dévissage Now assume
that A is Noetherian. I discussed the idea of associated prime in Week 1:
P ∈ SpecA is an associated prime of M (written P ∈ AssM) if there exists
m ∈ M such that Annm = P , or equivalently, M contains a submodule
·m isomorphic to A/P . Think of the integral domain A/P as a solid plank:
multiplication by a acting on A/P is either 0 or injective. Therefore any
submodule N ⊂ A/P is either 0 or has P as its only associated prime.

If M is finite over A then M is a Noetherian module. In this case, [UCA,
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Theorem 7.6] asserts that AssM is a finite set of primes of A. The proof is
a dévissage (disassembly, breaking up into parts). If M 6= 0, it has at least
one associated prime, so a submodule M0 ⊂M with M0

∼= A/P0.
Consider the s.e.s. M0 ⊂M � M . Then one sees that AssM is a subset

of AssM0 ∪ AssM . By the above “solid plank” argument, AssM0 = {P0}.
Continuing thus gives an increasing filtration

M0 ⊂M1 ⊂ · · ·Mi ⊂Mi+1 ⊂ · · ·Mn = M. (2.3)

with each Mi+1/Mi
∼= A/Pi for Pi an associated prime of Mi+1. By the

Noetherian assumption the filtration must stop, and then AssM is contained
in the finite set {P0, . . . , Pn}.
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Week 2. Regular local rings, Artinian conditions

2.2 Regular local rings

I want to set up regular local rings (slightly breaking rigorous logical order),
because they follow on naturally from DVRs, and are central to applications
to algebraic number theory and algebraic geometry. I use one little fact
about dimension theory that is only proved in Week 3 or 4. (I don’t want
logic to stand in the way of understanding.)

DVRs I start with a round-up of DVRs to put regular local rings in con-
text. The conditions for a DVR are:

(1–4) A is (1) a Noetherian ring, (2) an integral domain, (3) local with
maximal ideal m, and (4) has Krull dimension 1.

(5) The maximal ideal is principal m = (z).

(1–4) mean A is a Noetherian ring with SpecA = {0,m}. Condition (5)
is more specialised. It gives immediately all the useful properties of DVRs,
to do with factorisation with a single prime element z, the valuation v(f)
that gives you the powers of primes in numerators and denominators for
a number field, and the divisor of zeros and poles of a rational function
f ∈ K = FracA in the case of an algebraic curve.

The Main Theorem on DVRs says that (5) holds if (1–4) hold and A
is normal (integrally closed in its field of fractions K = FracA). Taking
integral closure is an automatic procedure in practical applications.

Start from a Noetherian integral domain with SpecA = {0,m}, and pass
to the integral closure B in K = FracA (or in a finite extension field K ⊂ L).
One proves that B is finite over A using an extra assumption (see [UCA,
8.11]) – but this holds for all the constructions used in number theory and
algebraic geometry and we usually ignore it.

The ideal m · B has quotient B/mB a finite dimensional vector space
over the residue field k = A/m. It follows that B has only finitely many
maximal ideals (it is a semilocal ring). If A is 1-dimensional then so is B,
and all its localisations are DVRs. (There are a couple of little exercises for
you implicit in this.)

Now for regular local rings of dimension n ≥ 1. My treatment here
short-circuits a small point from dimension theory, which is a main topic
later in Week 3 or 4. The analog of the above definition of DVR is this
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Definition 2.1 A regular local ring (A,m) is a Noetherian local integral
domain with dimA = n for which the maximal ideal m is generated by n
elements, m = (x1, . . . , xn).

First,notice that each md/md+1 for d ≥ 0 is a module over A on which
m acts by 0, so is a k-vector space where k = A/m is the residue field.
Nakayama’s lemma gives that (x1, . . . , xn) generate the ideal m if and only
if (x1, . . . , xn) span m/m2 as k-vector space.

It then follows that m2/m3 is generated as a k-vector space by quadratic
monomials

S2(x1, . . . , xn) = (x21, x1x2, . . . , x
2
n), (2.4)

and similarly for md/md+1.
In each degree d there are

(
d+n−1

d

)
monomials, that span the vector space

md/md+1.

Exercise 2.2 Recall the properties of binomial coefficients, then recall them
again until you have them on board. In k[x, y, z], write down the monomials
of degree 0, 1, 2, 3, 4 and count them. Spend 2 minutes writing out Pascal’s
triangle1. More generally, state and prove a formula for the number of
monomials of given degree d ≥ 0.

Now the same question for monomials of degree up to and including
d. Write m = (x, y, z) for the maximal ideal of k[x, y, z]. Calculate the
dimension of the quotient k[x, y, z]/md+1.

If you think this is all too trivial to be worth your attention, let me
assure you that it is a major item in the cohomology of coherent sheaves on
projective varieties, and we use it again for dimension theory in Week 4.

Recall that Definition 2.1 had n = dimA (Krull dimension), and I write
x1, . . . , xn for generators of m. The following result is the main point:

Theorem 2.3 Let A,m be a Noetherian local integral domain with residue
field A/m = k.

If dimA = n then dimk m/m2 ≥ n. Thus the maximal ideal m needs at
least n = dimA generators.

Moreover, if m is generated by exactly n = dimA elements x1, . . . , xn
then they are algebraically independent: that is, for each d, the monomials
Sd(x1, . . . , xn) (of which there are

(
d+n−1

d

)
) are linearly independent over k,

and base md/md+1.

1or YANG Hui’s triangle (11th Century, but it goes back millenia before this.)
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Corollary 2.4 Suppose also that A contains the field k as a subring, such
that k maps isomorphically to A/m. Then the monomials of degree ≤ d are
linearly independent over k and base A/md+1 as k-vector space.

Exercise 2.5 With your new-found familiarity with binomial coefficients,
prove that dimk A/m

d+1 =
(
d+n
d

)
=
∑d

a=0

(
a+n−1

a

)
.

Remark 2.6 The assumption A contain k with composite k → A→ A/m
an isomorphism always holds when we do algebraic geometry over an al-
gebraically closed field. This assumption is the main reason that algebraic
geometry over C is easier than over Z or Q or R.

However, in many cases the assumption of Corollary 2.4 does not hold.
For example, Z[t] or its localisation Z[t](p,t) at the maximal ideal (p, t) is not
an algebra over any field. Or A = R[x] has maximal ideal m = (x2 + 1), and
the quotient Am/m is an extension field of the field of definition R.

The notion of finite length `(m) of an A-module remedies the situation.
After the definition, we simply replace dimk A/m

d+1 by `(A/md+1). The
descending chain of ideals

A ⊃ m ⊃ m2 ⊃ · · · ⊃ md ⊃ md+1 (2.5)

has successive quotients md/md+1, each of which is a f.d. vector space over
k = A/m, so has the length stated in Theorem 2.3.

2.3 Noetherian and Artinian conditions

We have seen the Noetherian conditions on modules many times: TFAE

a.c.c. on submodules

every submodule of M is f.g.

any nonempty set of submodules has a maximal element.

Then many results of the type: adjoining something finite

to Noetherian object gives new Noetherian ring or module.

Prerequisites: Hilbert Basis theorem and corollaries:

If A is Noetherian ring, B = f.g. A-algebra again Noetherian.

M a finite A-module is Noetherian. If

0 -> N -> M -> M/N -> 0

then M is Noetherian <=> N, M/N both are Noetherian.

We now switch to the Artinian conditions on a module M that are super-
ficially similar: equivalently,
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(1) The submodules of M satisfy the d.c.c. condition.

(2) Every nonempty set of modules of M has a minimal element.

Exercise 2.7 In a short exact sequence of A-modules

0→ N →M →M/N → 0, (2.6)

M is Artinian if and only if N and M/N are both Artinian.

As with Corollary 2.4, a key case is when A is a k-algebra. Then we
may view M as a k-vector space. It is clear that M finite dimensional over
k implies both Noetherian and Artinian.

Remark 2.8 If A,m is a local ring, it follows from Akizuki and Hopkins’
Theorem 2.5 that

A is Artinian ⇐⇒ m is finitely generated and mn = 0 for some n.

2.4 Jordan-Hoelder filtration and modules of finite length

Theorem Let M be an A-module. Then the following are

equivalent:

(1) M is both Artinian and Noetherian

(2) There exists a finite filtration

0 = M0 inneq M1 inneq .. M_{n-1} inneq Mn = M.

such that for each i, there is no A-module strictly

intermediate between Mi and M{i+1}.

The last condition is: if Mi inneq N inneq M_{i+1} then

either Mi = N or N = M_{i+1}. You can also say that the

module M_{i+1}/M_i is simple (has no nontrivial submodule).

Each is a 1-dimensional vector space of a field k(P) for

some P in Spec A.

(1) => (2) is straightforward. M is Noetherian so (if <> 0)

there is a maximal submodule M’ in M. The inclusion M’ in M

has not no strictly intermediate property by construction.

Apply the same to M’ (assuming <>) and get a descending

chain. Since M is Artinian, this must terminate, giving (2).

Jordan-Hoelder filtration is not unique. Any two filtrations
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have successive simple quotients M_{i+1}/M_i that up to

permutation are isomorphic. (The proof that length is well

defined and additive in s.e.s. is a useful exercise, that

may be familiar to you from the case of finite groups.) In

particular, the length of the chain is well defined, and is

called the _length of M_, \ell(M).

This section has 2 aims:

(I) to treat modules that satisfy both chain conditions, and

characterise them as modules of finite length.

(II) To discuss Artinian rings, that are analogous to

k-algebras that are finite dimensional as vector spaces over

a field k. As opposed to modules, Artinian rings are

necessarily also Noetherian. Definition: Simple module. M is

a simple A-module if its only submodules are 0,M. One sees

that then M iso A/m = k(m) for some maximal ideal k.

Obviously, if M is a simple module and N any module,

any homomorphism M -> N is 0 or injective

any homomorphism N -> M is 0 or surjective

If M, N are both simple, any M -> N is 0 or an isomorphism.

Definition: A a ring, and M an A-module. A Jordan-Hoelder

filtration is a chain of submodules

0 = M0 in M1 in .. M_{n-1} in M_n = M (*)

with no strictly intermediate modules between M_{i-1} and

M_i. The latter condition holds if and only if M_i/M_{i-1}

is simple.

Theorem Equivalent conditions on M:

(1) M is Artinian and Noetherian.

(2) M has a Jordan-Hoelder filtration.

Moreover, if they hold, the set of simple quotient modules

Mi/M_{i-1} in any JH filtration is unique up to isomorphism

and permutation. This means that M is just a bunch of residue

fields k(m) tied together in a successive extension module.

If the conditions hold we say M has _finite length_, or has

length n as an A-module where n is in (*). (This of course

depends on A -- if we view M as a module over a smaller
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ring, it might lose the finite length property, and its

length will usually increase.)

(1) => (2) is the obvious follow-your-nose argument:

First, define Si = set of all nonzero submodules. If M <> 0

this is nonempty, so by the Artinian condition it has a

minimal element M1. Next, set Si = set of all submodules

strictly bigger that M1. If this is empty, M1 = M and we are

finished. If nonempty, it has a minimal element M2. Continue

by induction: we construct

0 = M0 < M1 < .. Mi <= M

where each step cannot be refined. At any stage, either we

have reached M or we can take another step. So far, this has

only used Artinian. Now since M is also Noetherian the

increasing chain must terminate, so at some point Mn = M.

You can also do this from the other end, working down from M

and taking maximal nontrivial M’ < M.

The proof of (2) => (1) and the "moreover" final clause

involve standard arguments using the isomorphism theorems.

Given one JH filtration (*), and any chain of submodules

{Ni}, if none of the Ni contain M1, they are part of a chain

for M/M1, which has a JH chain of length n-1. In the

contrary case, there is some i s.t. N_{i-1} does not contain

M1 but Ni does, so necessarily Ni/N{i-1} iso M1. etc. (Clean

up the proof for yourself.)

2.5 Artin implies Noetherian for rings

Theorem [Akizuki and Hopkins] An Artinian ring A is

Noetherian

Step 1 A has only finitely many maximal ideals m_i.

Proof: An exercise that is "easy", but I always have to do

again from first principles. (Please do it for yourself

before reading the hints in 2.6 below.)

Step 2 Write J = product mi = intersection mi. (The Jacobson
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radical.) Then every x in J is nilpotent.

Since every prime ideal is maximal, J is also the

intersection of all prime ideals of A, which is its

nilradical.

Step 3

Claim. J^n = 0.

J = intersection mi = intersect of all primes,

so every x in J is nilpotent. Consider the descending chain

J > J^2 > .. > J^n.

This must terminate (again by the d.c.c.), say in N = J^n

with

J*N = N^2 = N.

We prove that N = 0 by contradiction.

If N <> 0 the set Si of ideals b such that b*N <> 0 is

nonempty, so has a minimal element c (again by the d.c.c.).

Now some x in c has x*N <> 0, and c = (x), else (x) would

be smaller than minimal.

Now (x*N)*N = x*N^2 = x*N <> 0. So x*N is an ideal contained

in (x), and again by minimality, x*N = (x). Therefore x = x*y

for some y in N, and hence x = x*y = x*y^2 = .. x*y^n.

But y is an element of N, and every element of J is

nilpotent, so x = x*y^n = 0. This is a contradiction, hence

N = 0.

Step 4. An Artinian ring A has a JH filtration, and so is

Noetherian as A-module.

In fact we proved that the finitely many prime ideals m_i

have prod m_i^n = 0.

The Artinian condition on A implies that m_i^n/m_i^{n+1} is

an Artinian module; but it is a vector space over the

10



residue field k(m_i) = A/m_i, so finite dimensional.

Therefore taking prod m_i^{ni} with one of the exponents

increasing by 1 at a time, we get a decreasing sequence with

each a finite dimensional vspace over one of the k(m_i).

Q.E.D.

The above argument divides into a number of fairly tricky

steps, making repeated use of minimality of ideals in a

sequence. Is there an improved argument with fewer appeals

to d.c.c.? [A&M] and [Matsumura] give essentially the same

proof (possibly cribbed from a common source? [Ma, p.16]

refers to Akizuki 1935 and Hopkins 1939), and as far as I

know, no-one seems to have found a shorter argument.

2.6 The converse as an exercise

This result in the converse direction is straightforward:

Theorem 2.9 Let A be a Noetherian ring of Krull dimension dimA = 0.
Then A is Artinian.

The assumption on the dimension means that all primes are maximal. As
in the preceding argument, the intersection J of all maximal ideals is the
nilradical, that is, the set of all nilpotent elements. However, A Noetherian
means that its ideal J is finitely generated, so it is clear that Jn for some
n. Now A/J is a product of fields, and Noetherian implies there are only
finitely many of them.

Exc.1: m1, m2 distinct maximal ideals => m1+m2 = A (Easy).

Also m1 intersect m2 = m1*m2.

Suppose e1 in m1 and e2 in m2 satisfy e1+e2 = 1_A. Then for

x in m1 intersect m2 we get x = e1*x + e2*x. The first term

e1*x is in m1*m2 (because x in m2) and e2*x similarly.

The e1,e2 map to complementary idempotents of

A/(m1 intersect m2).

Exc.2: Now m1,m2,m3 distinct maximal ideals. Claim: there is

an x in m1 interect m2 such that x notin m3.
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Proof: Take y in m1 notin m3 and z in m2 notin m3. Then y*z

does what I claim.

Exc.3: Similar for m1,..mn, m_{n+1}. Compare for example

[A&M] Lemma 1.11.

2.7 Macaulay inverse systems

This is an Artinian modules, inverse polynomials, that you may never have
seen: let A = k[x] and consider the ring of Laurent polynomials k[x, x−1],
and its quotient module

M = k[x, x−1]/k[x]. (2.7)

As a vector space, this is countable dimensional, with basis {x−i}.
This M is Artinian: every A-submodule of k[x, x−1] that is proper (not

the whole of k[x, x−1]) only involves finitely many x−n. The same applies
to every f.g. A-submodule N ( M . Hence if x−n is the last of these (with
the biggest negative exponent),

N = Nn = k-vector space of M based by xi for i ∈ [−n,−1]. (2.8)

The k[x]-module multiplication by x does

x−i 7→ x−(i−1), and in particular, x−1 7→ 0. (2.9)

A decreasing chain is a chain of f.d. vector spaces, so terminates. All the
Nn are in the chain

· · ·Nn ) Nn−1 ) · · ·N−1 ) N0 = 0. (2.10)

Whereas multiplication by x in A = k[x] is injective, in M it is surjective, so
that M is infinitely divisible by x: for any x ∈M , we can find a predecessor
x′ ∈M with x · x′ = x.

There is no longest chain (you can always take a bigger Nn), but any
proper submodule stops at some n.

Multiplication by x is nilpotent when restricted to any A-submodule of
Nn. The submodule Nn has the single associated prime m, that is AssNn =
m, the annihilator of x−1. Whereas A = k[x] has 1 as the single generator,
the only unit monomial, that maps to a basis of the residue field k = A/m,
in Nn, the element x−1 is the socle, the last element to go under nilpotent
multiplication. That is, it is the submodule of Nn annihilated by m, which
is the same thing as HomA(A/m,Nn).
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The k[x]-module M is Artinian: although it has infinite basis {x−n},
every proper submodule N ⊂ M only involves finitely many of the x−n,
and is the k-vector space based by {xi | −n < i ≤ −1}. As with other
things in life, you have any number of choices, but you have to take one,
and whichever you go for involves excluding almost all the others.

On the other hand, M it is not finitely generated as module, and not
Noetherian. As n gets bigger, the submodules (x−n) get bigger, so infinite
ascending sequences are the order of the day.

We view M as a tempered dual of the polynomial ring k[x]. Since k[x]
is infinite dimensional, we really don’t want to say the dual vector space
k[x] = Hom(k[x], k), which is uncountable dimensional. Instead, think of
k[x] as the union of the finite dimensional spaces k[x]≤n of polynomials of
degree ≤ n. Then M is the union of their duals

Hom(k[x]≤n, k) based by {x−n−1, . . . , x−1}. (2.11)

The duality between M and k[x] is the analog of Cauchy residue of a
meromorphic function – take inverse polynomial q and polynomial f into
the residue of product f · q, that is, the coefficient of x−1. The free module
k[x] has basis {xi}, whereas M = k[x, x−1]/k[x] has basis {x−(i+1)}, which
is the dual basis under the residue pairing.

M is called the module of Macaulay inverse systems. It contains a unique
submodule N = k · x−1 isomorphic to the residue field k[x]/(x), and M is
injective as k[x] module in a sense to be discussed later. The map k[x]/(x) ↪→
M given by the basis x−1 of the socle is the injective hull of the residue field
k = k[x]/(x).

We can do the same thing with other rings. For example k[x1, . . . , xn]
and the module with basis

{∏
x−ai−1i

}
(Laurent monomials with strictly

negative exponents) so the socle is based by
∏

x−1i .
The same trick applies to the localisation Z(p) of Z at a prime p. The

module M = Q/Z(p) is generated by the negative powers p−n of p. Any
proper Z((p))-submodule N ( M has only finitely many p−n, and the chains
of modules have the same shape as above.

The module Q/Z is the direct sum of Q/Z(p) taken over all p. It is
Artinian but not Noetherian.
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