
MA4J8 Commutative algebra II

1 Lectures 18–22. Syzygies

Complexes and syzygies, the Koszul complex and regular sequences. Free
and projective resolutions of finite modules, the Hilbert syzygies theorem
and the Auslander-Buchsbaum refinement.

1.1 Introduction

Have this picture in mind: for a nice ring A and a finite A-module M ,

0←M ← P0 ← P1 ← · · · ← Pn−1 ← Pn ← 0 (1.1)

I commonly assume

(1) (1.1) is an exact sequence of A-modules.

(1) Each Pi is a finite free A-module Pi = biA =
⊕
Aeij .

(2) The sequence P0, . . . , Pn has length n (or ≤ n).

(3) (Sometimes) A, the modules Pi and the maps are graded.

This object appears frequently in all kinds of arguments, and is called a
finite free resolution of M .

I write the maps in this order for 3 reasons:

• The object under study is M , and the surjective map P0 = b0A�M
means choosing generators of M . The argument at its most basic
starts here.

• In general, whether the free resolution ends after n steps with an
injective map Pn−1 ← Pn from a free module Pn is part of the problem:
it fails in general, and the Hilbert syzygies theorem gives conditions
under which it holds.

• If the free modules have specified bases Pi = biA =
⊕
Aeij , each

map Pi−1 ← Pi is a (bi−1 × bi) matrix Mi, taking column vector U =
(u1, . . . ubi) ∈ Pi to product MiU ∈ Pi−1). Writing the maps in this
order gives composition of maps as M1M2 = 0 etc.
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I spell out (1.1): P0 = b0A is a free A-module of rank b0 mapping
surjectively to M – it specifies b0 generators of M . Exactness of (1.1) at
P0 means that P1 maps surjectively to ker{P0 →M}, so P1 corresponds to
writing generators for the submodule of A-linear relations between the given
generators of M .

Now P2 corresponds to the relations between the relations, that are called
syzygies. (Greek for “yoke” – the relations are yoked together like a pair of
oxen in ploughing, or are subject to linear dependence relations like stars in
conjunction.) I give a discussion from scratch.

Examples Let A be an integral domain, and x ∈ A a nonzero element.
This gives the s.e.s. 0 → A

x−→ A → A/(x) → 0 that we have seen many
times. The principal ideal xA is isomorphic to A, that is, it is a free module
of rank 1. This is the only case when an ideal is a free module!

Suppose f, g ∈ A are coprime elements of a local integral domain, for
example x, y ∈ k[x, y](0,0). You might think that if f, g are algebraically
independent, the ideal I = (f, g) could be isomorphic to the direct sum
Af ⊕Ag.

Of course this never happens. Even in this simplest case, the f and g may
be algebraically independent (in the sense of eliminating different variables),
but they are not A-linearly independent. In fact, the map A← 2A that takes
(1, 0) 7→ f and (0, 1) 7→ g does (a, b) 7→ af+bg ∈ A. This always has (−g, f)
in its kernel. Stupid, but true!

If A is a UFD and f, g have no common factors then af = −bg if and
only if

f = −bc and g = ac for some c ∈ A. (1.2)

This gives the s.e.s.

0← I ← 2A← A← 0 with maps (f, g) and

(
−g
f

)
(1.3)

as the free resolution of the ideal I. Or we might choose to write

0← A/I ← A← 2A← A← 0 (1.4)

as the free resolution of the quotient ring A/I.
It is also common to rephrase this as the exact complex

A← 2A← A← 0 or P0 ← P1 ← P2 ← 0 (1.5)

with 0th homology H0(P q) = A/I. This the Koszul complex of (f, g), and I
elaborate on it later under weaker assumptions.
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For f, g ∈ k[x1, . . . , xn] with no common factors, the variety V (I) =
V (f, g) ⊂ An is a codimension 2 complete intersection. Its coordinate ring
k[V ] = A/I (or its local ring OV,P ) has the free resolution of length 2 given
by the Koszul complex of (f, g).

These ideas are close to some of the foundations of homological algebra. I
can’t do all of this, but I run through some of it, especially the ideas related
to the Hom functor and its derived Ext∗ treated in terms of projective
resolutions (usually free resolutions as above), and get some results related
to duality.

Projective modules Most of what I say uses finite free modules F =⊕
Aei (I also write nA as above). Projective is a mild generalisation of

free, and projective modules appear everywhere in the literature. The main
case of interest is finite modules over local rings (or graded rings), when
projective is equivalent to free.

Definition 1.1 A module P is projective if every homomorphism to a quo-
tient module M/L lifts to M . To spell that out: let p : M � N be a
surjective map (homomorphism) and f : P → N any map.

Then there exists a map g : P →M such that f is the composite f = pg.

The covariant functor HomA(P, ?) is automatically left exact, and a sim-
ple restatement of the definition is that P is projective if it is an exact
functor, that is, for every s.e.s. 0→ L→M → N → 0 the sequence

0→ Hom(P,L)→ Hom(P,M)→ Hom(P,N)→ 0 (1.6)

is exact. Think about it.
A free module F is projective: take a basis F =

⊕
Aei. Then M → N is

surjective, so f(ei) is the image of some vi ∈M and the map P →M taking
ei 7→ vi is defined and does everything required. (The same argument as in
Year 1 linear algebra.)

A module is projective if and only if it is a direct summand of a free
module. In fact let xi ∈ P be a generating set; set F =

⊕
Aei for the free

module with basis ei enumerated by the same set as xi, and consider the
short exact sequence

0→ K → F → P → 0, (1.7)

where F → P takes ei 7→ xi. If P is projective the lift g : P → F splits the
s.e.s., so F = P ⊕K. And conversely. Please think about this if you haven’t
met it before.
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If A,m, k is a local ring, a finite projective module P is free by an obvious
application of Nakayama’s lemma: in fact V = P/mP is a finite dimensional
k-vector space. Choose ei ∈ P that map to a basis of V . Nakayama’s
lemma implies that the ei generate P , that is,

⊕
Aei → P is surjective.

Then P is a direct summand of the free module F =
⊕
Aei. Moreover,

the complementary summand is zero because the number of ei equals the
dimension of V .

Matsumura [Ma, p. 10–11] proves the same assertion not assuming P
finite by an intricate transfinite induction (due to Kaplansky).

1.2 Regular sequences and the Koszul complex

I go back to the Koszul complex. Let A be a ring and I an ideal, and let M
be an A-module (the case M = A is often the most useful).

Definition 1.2 A sequence of elements x1, . . . , xn ∈ I is a regular sequence
for M if

(1) x1 is a regular element for M (that is, a nonzerodivisor)

(2) x2 is a regular element for M/x1M , and generally, each element xi is
a regular element for M/(x1M + x2M + · · ·+ xi−1M).

(3) M/(x1M + · · ·+ xnM) 6= 0.

The I-depth of M is defined as the maximum length n of a regular
sequence x1, . . . , xn in I.

If x ∈ A is a nonzerodivisor of A then the quotient A/(x) comes in a
s.e.s. 0→ A

x−→ A→ A/(x)→ 0 where the first two elements are isomorphic.
This corresponds to the idea of cutting an n-dimensional variety V by a
hypersurface section. In geometry, this is a really obvious thing to try, but
there is a hidden difficulty. The point is to make sure that this is a “clean”
cut, meaning that we have the whole ideal of the section (as a geometric
locus), and don’t have to clean up nilpotents after the cut.

The next section discusses examples where this obvious cutting fails.
I now give a first introduction to the relations between regular sequences

and the Koszul complex, restricted to length 2: if A, I are given and x, y ∈ I,
the Koszul complex

0← P0 ← P1 ← P2 ← 0 (1.8)

with P0 = A, P1 = 2A, P2 = A, and the first map (x, y) and second map
(−yx ). The complex (1.8) is clearly always defined (the composite is zero).
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Proposition 1.3 (1) Assume that (x, y) is a regular sequence. Then

P0 ← P1 ← P2 ← 0 (1.9)

is exact at P1 and P2. (The conditions A a UFD and f, g coprime used in
the above introduction are not the real issue.)

(2) If x is a regular element then H1(K(x, y)) = 0 implies that y is
regular for A/x, so that (x, y) (in that order) is a regular sequence.

(3) Assume in addition that A,m is local Noetherian, and x, y ∈ m.
Then H1(K(x, y)) = 0 implies also that every a ∈ A with xa = 0 (that is,
in the colon ideal kerx = (0 : x)) is a multiple of y. Therefore

kerx = y(kerx), (1.10)

so Nakayama’s lemma implies that x is regular.
(4) The complex K(x, y) is symmetric in x, y up to isomorphism, so that

in the local Noetherian case, (x1, x2) a regular sequence implies that (x2, x1)
is also.

Proof (1) P2 → P1 takes c ∈ A to (−yc, xc), and already the second factor
is injective (regardless of y).

For exactness at P1, the homology H1(K(x, y)) computes the module
quotient

{(a, b)
∣∣ xa+ yb = 0} / {(−yc, xc) for c ∈ A}. (1.11)

Let (a, b) ∈ P1 with xa + yb = 0 ∈ P0. This means that yb is a multiple of
x. The regular sequence assumption is that y is a nonzerodivisor modulo x:
however xa+ yb = 0 ∈ P0 means that multiplication by y takes the class of
b in A/(x) to yb = 0 ∈ A/(x), so b was already in (x).

Now set b = xc. Then xa + yb = 0 gives x(a + yc) = 0. But x was a
nonzerodivisor of A, so that in turn a = −yc. Thus the complex is exact at
P1.

(2) Conversely: if H1 = 0, an element b such that xa+yb = 0 is b = xc, so
that if yb = 0 ∈ A/(x) it follows that b is already a multiple of x. Therefore
y is a nonzerodivisor for A/(x).

As in (3), assume x, y ∈ m. Suppose a ∈ A is such that xa = 0. Then
the element (a, 0) ∈ P1 is in the kernel of P1 → P0. Then H1 = 0 gives
that a is a multiple of y. This proves that kerx = y(kerx). Since y ∈ m,
we have kerx = m(kerx). Now we are in the local Noetherian set-up, so
Nakayama’s lemma implies that kerx = 0. Therefore x is a nonzero divisor,
and (2) gives that x, y is a regular sequence.
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(4) is obvious. �

Without local (3) and (4) fail: Consider for example,

A = k[x, y, z]/(x− 1)z with the sequence x1 = x, x2 = (x− 1)y. (1.12)

Then multiplication by x is injective, so x1 is regular, and A/(x) = k[y], so
(x − 1)y acts injectively on it, and x1, x2 is a regular sequence. However,
(x− 1)y kills z, so that x2 is not regular.

The statement of the proposition applies verbatim with A replaced by
an A-module M , and the sequence by

M ← 2M ←M ← 0. (1.13)

For (3–4) we of course require A,m local Noetherian and M finite.

1.3 Examples of depth 0 and depth 1

Let A,m be a local ring. Then an A-module M has m-depth zero if and
only if every f ∈ m is a zero divisor of M . By basic facts on primary
decomposition, this happens if and only if m is an associated prime of M ,
in other words, there exists a nonzero x ∈M with mx = 0.

1. Embedded point The ideal I = (xy, y2) ⊂ A = k[x, y] is a key case of
primary decomposition. You can describe I as the functions f that satisfy
two conditions

• f vanishes on the x-axis y = 0.

• f is singular at (0, 0). Equivalently: it has multiplicity ≥ 2. It belongs
to m2 where m = (x, y); it has zero derivatives ∂f/∂x = ∂f/∂y = 0.

In the quotient A/I, the element y satisfies y2 = 0, so it takes the value
zero everywhere, and my = 0, so y is in the ideal away from the origin, but
y /∈ I, so its class is not zero in A/I. It is just a little piece of nilpotent fluff
hanging onto the line at 0, but it causes difficulties in different arguments.

The submodule (y)/I ⊂ A/I is nonzero, but annihilated by m, so is
isomorphic to k = A/m. This makes m an associated prime of A/I. Since
my = 0, no element of m is a nonzerodivisor for A/I, so that A/I has
m-depth 0.

In primary decomposition, we can write

I = (y) ∩ (x, y)2, (1.14)
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but equally well I = (y) ∩ (y2, x) or (y) ∩ (y2, x − ay). (If a curve already
contains the x-axis, requiring it to be tangent to any other curve through
(0, 0) forces it to be singular.)

2. Transverse planes in A4 Start from two transverse planes

X = A2
〈x,y〉 ∪ A2

〈z,t〉 with IX = (z, t) ∩ (x, y) = (xz, xt, yz, yt), (1.15)

and cut it by a general hyperplane through the origin, say

H : (y + t = 0). (1.16)

Geometrically, the hyperplane cuts the first A2 in the line y = 0, and the
second A2 in the line t = 0. So H cuts X simply in the line pair xz = 0 in the
plane A2

〈x,y〉 given by y = t = 0 in A4. Obvious isn’t it? Yes set-theoretically,
but not as far as the ideals are concerned.

The ideal IX does not have any linear entries, so cutting by y + t = 0
gives A3

〈x,y,z〉 with t = −y, and the ideal of IX restricted to A3 is

J = (xz, xy, yz, y2). (1.17)

The geometric picture also wants y = t = 0, but as in the first example, the
element y is not in the restricted ideal. Instead, y ∈ k[x, y, z]/J is a nonzero
nilpotent element with

my = (xy, zy, y2) = 0. (1.18)

Thus the origin of the line pair is an embedded point of k[x, y, z]/J .

3. Missing monomial The polynomial ring k[x, y] is polynomial func-
tions on the plane A2. The condition ∂f/∂x(0, 0) = 0 defines the subring
B ⊂ k[x, y] based by every monomial except x. One sees that it is generated
by

u = x2, v = x3, w = y, z = xy. (1.19)

The ideal of relations between u, v, w, z is

J = (v2 − u3, z2 − uw2, uz − vw, vz − u2w). (1.20)

In Magma:

RR<x,y,u,v,w,z> := PolynomialRing(Rationals(),6);

L := [-u+x^2,-v+x^3,-w+y,-z+xy]; I := Ideal(L); IsPrime(I);

MinimalBasis(EliminationIdeal(I,2));
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Obviously B is an integral domain, so every nonzero element is regular.
The image of A2 under the polynomial map to A4 given by (x, y) 7→

(u, v, w, z) might seem to be a perfectly nice variety V = V (J) ⊂ A4 with
coordinate ring B = k[u, v, w, z]/J , having a little cusp at the origin a bit
like the cuspidal cubic we know from primary school. However, the unquiet
spirit of the departed monomial x still haunts B and V .

Write m = (u, v, w, z) for the maximal ideal at the origin. Although
x /∈ B, his product with anything in m is in B. Any section of V through
the origin is marked by an embedded point, a little nilpotent submodule not
accounted for by the restriction of J .

To explain: pass to the quotient ring B/(f) by any nonzero f ∈ m. The
product fx ∈ A is in B, but is not a multiple of f in B. Therefore fx maps
to a nonzero element ξ ∈ B/(f). Now this ξ is nilpotent, and is annihilated
by every element of the maximal ideal m/(f): in fact for g ∈ m, the product
gξ is zero in B/f , because it is the class of gfx = f · gx in B.

This means that although B is an integral domain, it only has m-depth
1. The quotient B/f by any f ∈ m has a nonzero element ξ annihilated
by m, so the regular element f does not extend to a regular sequence of
length 2 in m.

4. Macaulay’s quartic curve The rational normal curve in P4 is the
image of P1

〈u,v〉 under its 4th Veronese map (u4 : u3v : u2v2 : uv3 : v4).

However, omitting the monomial u2v2 also embeds P1 ↪→ P3 by the map
(u4 : u3v : uv3 : v4). The affine cone over this is the subring B ⊂ k[u, v]
generated by the monomials (x, y, z, w) = (u4, u3v, uv3, v4) related by

xw − yz, x2z − y3, xz2 − y2w, yw2 − z3. (1.21)

It is interesting to carry out the same arguments as in Example 3 above to
verify that B also has m-depth 1.

1.4 More Koszul complexes

The Koszul complex K(x1, x2, x3) of length 3 is just a bit more involved: it
is

A← 3A← 3A← A← 0 (1.22)

with homomorphisms given by the matrices

(
x1 x2 x3

)
,

 0 x3 −x2
−x3 0 x1
x2 −x1 0

 ,

x1x2
x3

 . (1.23)
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The 3 columns of the first syzygy matrix give the 3 identities xixj = xjxi.
Moreover, these 3 are linearly dependent in A3, as expressed by the final 3×1
matrix.

The logic is as in Proposition 1.3: in any case, (1.22) is a complex. If
x1, x2, x3 is a regular sequence it is exact. And the converse under similar
extra assumptions. This is treated more formally below.

As you know 3 dimensions is special in lots of ways. For example, you
were introduced to cross product of 2 vectors in R3 in applied math. This
gives a skew (antisymmetric) bilinear map R3 × R3 → R3, which sadly is
never mentioned by our algebraists because it is too advanced for 2nd year
algebra and just a special case that is too elementary for 4th year courses.
In algebra, the right-hand R3 should really be

∧2R3 (I discuss this formally
below). I was interested to read that in particle physics, R3 has polar vectors
(e.g. momentum) whereas

∧2R3 has axial vectors (e.g. angular momentum).
It is a well-known problem in algebra that there is no good general

ordering for the k × k minors of an n ×m matrix. In (1.23) I ordered the
columns vectors of the first syzygy matrix as for cross product of vectors.
Dimension 3 is the last time that this rational and elegant choice is available.
For n ≥ 4 this get progressively messier, and we need a better solution.

The Koszul complex for n = 4 is

0← A← 4A← 6A← 4A← A← 0 (1.24)

with maps
(
x1 x2 x3 x4

)


0 x3 −x2 x4 0 0
−x3 0 x1 0 x4 0
x2 −x1 0 0 0 x4
0 0 0 −x1 −x2 −x3

 ,



x4 0 0 −x1
0 x4 0 −x2
0 0 x4 −x3
0 −x3 x2 0
x3 0 −x1 0
−x2 x1 0 0

 ,


x1
x2
x3
x4


(1.25)

Note the block form [A
∣∣ B] and [tB \\−tA].

Similar exercise as to why it is exact.

1.5 Exterior algebra and general Koszul complex

This is taken from Eisenbud [Ei, pp. 427–429]. The exterior algebra provides
a neat formal solution to the issue of notation.

As usual A is a ring and M and N are A-modules. I assume that you
have the tensor product of modules M ⊗A N on board.
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The exterior algebra of N over A is∧
N =

⊕
r≥0

∧r
N (1.26)

where the skew (antisymmetric) product
∧rN is the quotient of the r-fold

tensor N ⊗· · ·⊗N by relations n⊗m+m⊗n = 0 for all n,m ∈ N . Assume
also the relations n ∧ n = 0 to dispel any fear of ambiguity. The image of
n ⊗m in

∧2N in the quotient is written n ∧m. In (1.26), the product of
u ∈

∧aN and v ∈
∧bN is u ∧ v ∈ W a+bN , satisfying v ∧ u = (−1)abu ∧ v.

In other words, two homogeneous elements of the exterior algebra (1.26)
anticommute if a and b are both odd, and commute if either is even.

A popular device with algebraists is to declare that
∧2N is the universal

A-module having a skew A-bilinear map N×N →
∧2N . As you know, this

is the categorical statement that
∧2N is the solution to the UMP for skew

maps N × N to an A-module. (Similarly for
∧rN .) Since the algebraic

rules (A-bilinear and skew) are laid out in advance, it can be constructed as
the A-module of linear combinations

∑
aijni ∧ nj quotiented by those rules

only.
This is just a definition; in some cases the “universal” nature of the

construction may give undesired consequences – e.g., if N is not a free A-
module then N ⊗N or

∧2N may have torsion elements that you were not
expecting.

For N an A-module and x ∈ N , the Koszul complex K(x) is defined as
the graded exterior product

∧
N with differential multiplication by x:

K(x) : 0→ A→ N →
∧2

N → · · · →
∧r

N → · · · (1.27)

Each differential dx :
∧r →

∧r+1 takes a 7→ x∧a. The notation is very slick:
the composite d2x of two differentials involves multiplying by x∧x = 0, so is
zero. The construction is coordinate-free, and the definition also highlights
the functoriality of the construction.

1.6 Koszul complex K(x1, . . . , xn,M)

The only case we use is the free module of rank n

N = nA =
⊕

Aei with basis e1, . . . , en, (1.28)

and x =
∑
xjej .
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Then
∧
N is the free module of rank 2n =

∑
i

(
n
i

)
: the degree r compo-

nent
∧rN is generated by skewnomials∧r

N =
⊕

Aei1 ∧ ei2 · · · ∧ eir with 1 ≤ i1 < · · · < ir ≤ k. (1.29)

The differential dx :
∧rN →

∧r+1N is premultiplication by x =
∑
xjej ,

that is, a 7→ x ∧ a. Acting on the skewnomial basis it does

ei1 ∧ · · · ∧ eir 7→
∑

xjej ∧ ei1 ∧ · · · ∧ eir . (1.30)

The formula in (1.30) politely conceals a pile of unsightly notation – this
is more-or-less the formula for the (r + 1) × (r + 1) minors of a matrix by
expanding them along the j row.

In detail, each term xjej of x multiplies the skewnomial. If j equals one
of the subscripts il skewsymmetry gives zero. Otherwise, the subscript j is
either < i1, or fits between il and il+1 for some l, or is > ir, and that term
of the skew product is then

= (−1)lxjei1 ∧ · · · ∧ eil ∧ ej ∧ eil+1
∧ · · · ∧ eir . (1.31)

The ±1 is the sign of the permutation taking ej to its rightful place after
the first l of the ei.

I defined the Koszul complex K(x1, . . . , xn, A) for A, but there is also a
Koszul complex for an A-module M given by

K(x1, . . . , xn,M) = K(x1, . . . , xn, A)⊗M. (1.32)

Since each term of K(x,A) is a direct sum of
(
n
i

)
copies of A, each term of

K(x1, . . . , xn,M) is a direct sum of the same number of copies of M .

1.7 The top end of K(x1, . . . , xn,M)

The differential of K(x1, . . . , xn,M) is increasing, going from
∧rM →∧r+1M . It ends with

∧nM → 0.

Proposition 1.4 The cohomology of K(x1, . . . , xn) at the final term equals
A/(x1, . . . , xn). In the same way, K(x1, . . . , xn,M) has top cohomology
M/(x1, . . . , xn)M .
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Proof The final term Kn of the complex K(x1, . . . , xn) =
∧nN is the free

module of rank 1 Af based by the single skewnomial f = e1 ∧ · · · ∧ en that
involves all the indices 1, . . . , n. The penultimate term Kn−1 =

∧n−1N is
free of rank n, based by the skewnomials fi

fi = e1 ∧ . . . ∧ êi ∧ . . . ∧ en for i = 1, . . . , n (1.33)

that omit just one index i.
Now the differential dx applied to fi gives (−1)ixif . This is clear from

the above description. Therefore the image of dx is the submodule of A = Af
generated by (x1, x2, . . . , xn). The cohomology Kn/dx(Kn) is the quotient
module A/(x1, . . . , xn).

The argument for K(x1, . . . , xn,M) is the same: the final term K(M)n is
a single copy Af⊗M of M ; the penultimate term K(M)n−1 is the direct sum
of n copies of M based by Afi ⊗M , and the differential dx : K(M)n−1 →
K(M)n multiplies the ith summand by xi, with image xiM . Thus the
quotient K(M)n/dx(K(M)n−1) is as stated. �

[Ma, p. 127] uses a descending notation, where Pk has basis

e{i1..ik} and the differential omits each i one at a time with

the appropriate sign change. Relating the two notations is

straightforward.

1.8 Tensor product by K(x) q
Let L q be a complex with differentials dL : Li → Li−1. For x ∈ A, the basic
Koszul complex K(x) q with entry x is 0 → A

x−→ A → 0, with first term A
of degree 1 mapping to A of degree 0.

Write L(x) q for the tensor product L q⊗ K(x) q with the 2-term Koszul
complex. Since K(x) consists of 2 terms of degree 1 and degree 0, with
differential x : A → A decreasing degrees by 1, the tensor product is the
following extension of L q by L[1] q:

L[1] q : · · · → Lp → Lp−1 → Lp−2 → · · ·
@R @R

L q : · · · → Lp+1 → Lp → Lp−1 → · · ·
(1.34)

The top line L[1] q is the complex obtained by shifting the degree of L q up
by 1: it has Lp in degree p + 1, that is L[1]p+1 = Lp, so that the three
columns in (1.34) have terms of the same homological degree, respectively
p+ 1, p, p− 1.
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The tensor product L(x) q is the direct sum of top and bottom rows, with
the differential

d⊗(ξ, η) = (dLξ + (−1)pxη, dLη) for ξ ∈ Lp and η ∈ L[x]p = Lp−1. (1.35)

Each parallelogram of (1.34) has sloping arrows given by multiplication by
x, and the alternating ± ensure that these anticommute. The condition
d2 = 0 for L(x) q to be a complex follows. (This is the usual argument for
tensor product of complexes).

Proposition 1.5 The tensor product complex L(x) q fits in a short exact
sequence of complexes

0→ L q→ L(x) q→ L[1] q→ 0. (1.36)

The resulting long exact homology sequence does

· · · → Hp(L q) → Hp(L(x) q) → Hp−1(L[1] q)→
(−1)p−1x−−−−−−→ Hp−1(L q) → · · ·

(1.37)

Moreover, multiplication by x acts by zero on the homology of the tensor
product complex. That is, x ·Hp(L(x)) = 0.

Proof The lower row of (1.34) has no arrows going out of it, so L q is a
subcomplex of L(x) q, with quotient the top row L[1] q, establishing the s.e.s.

For the boundary map, an element of Hp−1(L[1] q) is represented by a
cycle η ∈ Lp with dL(η) = 0. It is the image of (0, η) ∈ L(x)p+1 that has
differential ((−1)p−1xη, 0). This is the assertion of (1.37).

For the final statement, an element of Hp(L(x)) is represented by a cycle
(ξ, η) ∈ Lp ⊕ Lp−1 with differential (dξ + (−1)p−1xη, dη) = (0, 0), which I
spell out as

xη = (−1)pdξ and dη = 0. (1.38)

From this, we calculate the boundary of (0, (−1)pξ) in L(x) q to be x(ξ, η).
This proves that x times our cycle is a boundary. �

Theorem 1.6 (Ma, Th 16.5) (1) If x1, . . . , xn is a regular sequence for
M then the Koszul complex K(x1, . . . , xn,M) has H0 = M/(x1...n) and Hp =
0 for p > 0.

(2) If (A,m) is local and x1, . . . , xn ∈ m then a stronger form of the
converse holds. Namely, M 6= 0 and H1(K(x1, . . . , xn,M)) = 0 implies that
x1, . . . , xn is a regular sequence for M .

In the particular case M = A, it follows that K(x1, . . . , xn, A) = 0 is a
finite free resolution of the quotient A/(x1, . . . , xn), as in the introduction.
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Both parts are proved by induction on n, applying Proposition 1.5 with

L = K(x1, . . . , xn−1,M) and L(xn) = K(x1, . . . , xn,M). (1.39)

Proof of (1) We assume x1, . . . , xn is a regular sequence, so we can as-
sume by induction that K(x1, . . . , xn−1,M) is exact except at H0, where
H0(K(x1,...,n−1,M)) = M/((x1, . . . , xn−1)M). Everything we need now
comes from Proposition 1.5.

For p ≥ 2, the homologyHp of the extended complex L(xn) is sandwiched
between two groups that are zero by induction. For p = 1 the end of the
long exact sequence (1.37) includes

0 = H1(L)→ H1(K(x1, . . . , xn,M))→ H0(L)

±xn−−−→ H0(L)→ H0(K(x1, . . . , xn))→ 0. (1.40)

Since xn is regular for M/((x1, . . . , xn−1)M), this implies K(x1, . . . , xn,M)
is exact at H1 and has H0 = M/((x1, . . . , xn)M), which proves (1).

Proof of (2) Since the xi ∈ m and M 6= 0, Nakayama’s lemma gives
M/((x1, . . . , xn)M) 6= 0 and, of course, also M/((x1, . . . , xi)M) 6= 0 for
i < n).

We assume H1(K(x1, . . . , xn,M)) = 0. The first aim is to show that
H1(K(x1, . . . , xn−1,M)) = 0, which will allow us to assume by induction
that x1, . . . , xn−1 is a regular sequence. In fact, the terms immediately
before it H1(K(x1, . . . , xn,M)) = 0 in the long exact sequence (1.37) are
H1(L)

xn−→ H1(L). Thus H1(L) = xnH1(L), so Nakayama’s lemma implies
that H1(L) = 0.

Now we know that x1, . . . , xn−1 is a regular sequence, and the same exact
sequence continues with

0→ H0(L)
±xn−−−→ H0(L)→ H0(K(x1, . . . , xn,M))→ 0. (1.41)

Therefore xn is a nonzerodivisor for H0(L) = H0(K(x1, . . . , xn−1),M) =
M/()(x1, . . . , xn−1)M). �

Appendix: Tensor product of complexes (L., dL)⊗ (M., dM)

Make the double complex Li tensor_A Mj for all i, j

with two differentials
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d_L x 1_M decreasing i

1_L x d_M decreasing j

The corresponding single complex is

sum_{i+j=k} (Li tensor Mj), with the differential

dk = sum dL_i + (-1)^{jk} dM_j.

Here the (-1)^jk has the effect of introducing one minus sign

in each square, so that instead of commuting, the arrows now

anticommute, making dk.d_{k-1} = 0 to make the sum a complex.

1.9 Hilbert syzygies theorem

I discuss the Hilbert syzygies theorem in more-or-less the original form. Let
S = k[x1, . . . , xn] be a graded polynomial ring over a field k, and write
m = (x1, , . . . , xn) for the graded maximal ideal.

Theorem 1.7 (Syzygies theorem (1890)) Let M be a finite graded S-
module.

Then there exist a finite free resolution of the form (1.1)

0←M ← P0 ← P1 ← · · · ← Pn−1 ← Pn ← 0 (1.42)

Overall shape of the proof Work by induction on n. There are two
ideas: First, if one of the generators xi is a nonzerodivisor for M , we can
assume the result for N = M/xiM by induction, and lift the finite free
resolution of N to one for M , using simple diagram chasing. The condition
that xi is a nonzerodivisor is used here to ensure that the snake lemma gives
exact sequences as usual.

Next, if all the xi annihilate something in M (for example if m ∈ AssM),
choose generators m1, . . . ,mb0 ∈ M , and write p : P0 = b0S � M for the
standard surjective map. Now switch attention to ker p. This is a submodule
of the free S-module P0, so it is torsion-free: every nonzero element is a
nonzerodivisor, so the first idea certainly applies to this.

Roughly speaking, the first step assumes depthM > 0 and decreases the
dimension by passing to the hyperplane section xi = 0. The second step
increases the depth if necessary, thus making the first step applicable. I
treat this first in a naive way, as if we were still in the 1890s, but we can
soup up the result by turning on some more recent technology, as I sketch
later.
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Theorem 1.8 (Hilbert syzygies + Auslander–Buchsbaum) Let S,m
be a regular local ring of dimension n, and M a finite graded S-module of
m-depth ≥ d. Then M has a finite free resolution of length ≤ n− d. Proof
omitted. The modern form is in [Ma] and [Ei].

The induction starts at n = 0, with the statement that a finite dimen-
sonal vector space has a basis. The first step in detail. Suppose n ≥ 1.
Assume that xn is a nonzerodivisor for M .

Consider the standard short exact sequence

0→M
xn−→M

π−→ N → 0. (1.43)

Now N is a finite module over S = k[x1, . . . , xn−1], so by induction, it has
a finite free resolution by graded free S-modules:

0← N ← Q0 ← Q1 ← · · · ← Qn−1 ← Qn−1 ← 0 (1.44)

Each Qi is a finite free graded module. Set1 Qi =
⊕bi

j=1 S(−aij). Write
p : Q0 � N – its image is generated by the images nj ∈ Ndnj

of the basis
elements of Q0.

Lemma 1.9 (Hyperplane section principle) (1) Suppose given homo-
geneous generators mi ∈ N and homogeneous elements mj ∈ M such that
mj 7→ nj. Then the mi generate M .

(2) Now assume that xn is M -regular (a nonzerodivisor of M). Write
P0 = b0S for the free S-module corresponding to the generators mj, and
K0 = ker{P0 �M} giving the s.e.s.

0→ K0 → P0 →M → 0. (1.45)

Write Q0 = b0S → N for the same construction for the generators ni of N
of S, and L0 = ker{Q0 → N}. Then K0 → L0 is surjective.

(3) Under the same assumption, a finite free resolution Q q � N can be
lifted to a resolution P q � M of the same shape (the same Betti numbers
and graded pieces of the same degree).

(1) If the rings were local, I could just say that the mj generate M mod-
ulo mM , so the result follows by Nakayama’s lemma. Finite graded modules

1The notation S(−a) means the module S graded in degree −a. The only point of this
is to keep track of the grading – my resolution complexes have morphisms with entries
S(−a) → S(−b) given by polynomials of degree a − b ≥ 0, so I can view the morphisms
as having degree 0.
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offer a different (and much older) trick: induction on the degree of homo-
geneous elements. In fact, for c ∈ M , write π(c) ∈ N as the combination
π(c) =

∑
αjnj . Then c−

∑
αjmj is in kerπ, so is divisible by xn. That is,

c−
∑
αjmj = xnc

′ with deg c′ = deg c− 1. Now by induction on the degree
we can assume that c′ ∈

∑
Amj , which proves the lemma.

(2) We have seen that we can get generators of M (giving P0 with the
surjective map P0 � M) by lifting generators of N . We want to deal with
the kernel K0 of P0 � M in the same way, in terms of the kernel L0 of
Q0 � N . (2) asserts that the surjective map P0 → Q0 induces a surjective
map K0 → L0. I prove this using the commutative diagram

0 → K0 → P0 → M → 0yx yx yx
0 → K0 → P0 → M → 0y y y
0 → L0 → Q0 → N → 0

↓ ↓
0 0

(1.46)

In (1.46) the horizontal rows 0 → K0 → P0 → M → 0 are exact, and the
maps P0 � Q0 and M � N are surjective by construction.

It is here that the assumption that x is M -regular is needed: the top
right vertical map M

x−→ M is injective. Then the snake lemma (the long

exact sequence 0 → ker → ker → ker
δ−→ coker → coker → coker → 0)

then implies that in the bottom row, L0 = ker{Q0 → N} coincides with the
cokernel of K0

x−→ K0. Therefore K0 � L0, as required.
(3) follows by applying (1) and (2) repeatedly.

Proof of Theorem 1.7 If some xi is M -regular, the Lemma allows us
to decrease the dimension of S. If we can’t do that, choose generators of
M and the corresponding surjection P0 � M from a free module P0. The
kernel K0 = ker{P0 � M} is a submodule of a free module, so is torsion
free. In this case, every nonzero element of S is M -regular, and in particular
xn. Then we can decrease n by passing to the quotient by xn. The initial
step of passing from M to K0 added 1 to the length of the resolution chain,
but the next step cuts the dimension down by 1, so by induction, we get a
free graded resolution of length ≤ n. �
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Notice that the worst score for the length of a free resolution is given by
M = S/m = k, with length n given by the Koszul complex K(x1, . . . , xn).
We set P0 = S, and the kernel K0 = kerS → k is the maximal ideal m
itself. This is torsion free, but has depth only 1 for the reason described
in Section 1.3: in this case K0/xnK0 as an S module is isomorphic to the
quotient field k as the module k[x0, . . . , xn−1]/(x0, . . . , xn−1).

1.10 Regular local ring

Theorem 1.10 Let A,m, k be a Noetherian local ring, and n = dimA.
Then A is regular if

(i) The associated graded ring GrA =
⊕

km
k−1/mk is isomorphic to the

polynomial ring k[t1, . . . , tn].

(ii) m/m2 has dimension n as a k-vector space.

(iii) The maximal ideal m is generated by n elements.

(i–iii) also imply:
The maximal ideal m is generated by a regular sequence.

This is easy: (i) implies (ii) is obvious. (ii) implies (iii) follows as usual
from Nakayama’s lemma: if x1, . . . , xn ∈ m generate m/m2 then they also
generate m. For (iii), if x1, . . . , xn generate m then polynomials of degree
d base md/md+1. A linear dependence between them would imply that
dimA < n (by the Hilbert series characterisation of dimension), so that
GrA is the symmetric k-algebra on x1, . . . , xn.

If x1 maps to t1 is (i), then x1 is a nonzerodivisor of A. Applying this to
A/(x1) and using induction gives that x1, . . . , xn is a regular sequence. �

Remark 1.11 The simple-minded statement and proof I gave of Theo-
rem 1.7 extends readily to the case of A a regular local ring of dimension n.
As in the above proof, we can always pass to K0 = ker{P0 → M} that is
torsion-free (because it is a submodule of a free module). Then any ele-
ment x ∈ m \m2 can be used in place of xn in the argument of Lemma 1.9
decreasing the dimension by 1.

However, this is not quite enough to prove the Auslander–Buchsbaum
form of the theorem in general. This needs some characterisations of depth
in terms of homological algebra and some more work. See [Ma] and [Ei].
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