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Lectures 7—8. Completion

The material here is mostly taken from [A&M], Chapter 10, [Matsumura]
Section 8. Or see [Schlichting] Chapter 2

Informal discussion — why modules?

To study a ring A, we may need to do linear algebra inside A, but also in all
kinds of structures related to A: its ideals I, how the I are generated, the
quotients A/I, the relations between the generators of I, eventually tensor
products A ® A, derivations and differentials, and much more. We might as
well go the whole hog and do linear algebra systematically in modules over
A.

Why completions? Let A be a ring and M an A-module. Suppose we
are told M = I'M for an ideal I of A. Can we deduce that M = 07

Take m € M. Then m = ) a;m; with a; € I and m; € M. On the
other hand, the same argument applies to each m;: if m; = " b;;m; then
m = ), ;abijm;, so that M = I’M, then M = I?M. This is getting
ridiculous! Surely continuing the argument gives M = 07 Not so. For
example, it may happen that I contains invertible elements, in which case
M = IM tells us nothing.

That’s not the right way to go. I remind you of a basic result.

Lemma 3.1 (Nakayama’s lemma) Suppose M is finite (that is, finitely
generated as A-module) and M = IM. Then there existsa € A witha—1 € I
such that aM =0

Proof (the “determinant trick”) Choose generators my, ..., m, such
that

M =Y Am;,. (3.1)
Then each m; € M, so m; € IM. Hence there exists elements a;; € I with
m; = Y a;ymj. Rewrite this as

Z(éij —a;;)m; =0 where § is the Kronecker delta. (3.2)

Write N for the n xn matrix N = {de;j —a;;}. Recall the standard linear
algebra formula NT- N = (det N)Id,, where NT is the adjugate matrix of
N (made up of (n — 1) x (n — 1) cofactors).



Multiply (3.2) by N}k and sum over j to get (det N)m; = 0 for all j,
hence (det N) - M = 0. This is what we wanted:

a=detN has aM =0and a=1mod I. (3.3)

Another failed argument: Let A C B be a finite extension ring. Required
to prove that b € B is integral over A. The argument you used in Galois
theory was easy: since B is finite over A there is a linear dependence relation
between the powers {1,b,b%, ...,b"}, and you can divide through by the
leading coefficient to make it monic. That doesn’t work with A an integral
domain, because you may not be able to divide through. But it goes through
in a straightforward way if you apply the determinant trick.

Completion

The idea of completion is to work with formal power series in place of poly-
nomials. For example, k[z1,...,z,] as a substitute for k[zq,...,z,] or
p-adics Zj, in place of the subring Z,,) C Q. The word “formal” reflects that
we allow all infinite power series, ignoring convergence — this is the same
idea as replacing a differentiable function by its Taylor series to all orders.
These formal rings are bigger (usually uncountably so), but much simpler in
structure. Any nonsingular point P € X of any algebraic variety or complex
analytic space (independently of X, or P € X) has a small neighbourhood
isomorphic to a ball around 0 € C", and formal functions on it make up the
completed ring C[[x1, ..., x,]]. Completion is thus a much more drastic form
of localisation.

As an algebraic process, completion passes from a filtration such as the
I-adic filtration M D IM D --- D I""M to the inverse limit projlim M /I™ M
or @M /I"M I run through the theory in the following lecture. For now, I
want to discuss the finished product and the advantages of working with it.

Definition 3.2 (first attempt) Let A be a ring and [ an ideal. We say
that A is I-adically complete to mean that

A=1lim A/T". (3.4)

This means

(I) an element f € A is uniquely determined by its class in A/I™ for every
n;



(I) if {fn, € A/I"},en is a compatible sequence of elements mod I™ then
there is f € A that maps to f, for every n.

Here compatible means that for m > n, the element f,, € A/I™ reduces
modulo I" to f, € A/I™. An alternative way of stating (II) is as a sequence
{F,} of elements of A with the Cauchy sequence property:

for every N > 0, there exists ng such that
for all n,m > ng the difference F,, — F,,, € I'V.

This puts I-adic completion on a footing that is similar in overall logic to
completion in a metric space.

The real motivation for completion is to solve problems in A[b]] by term-
by-term calculations. Thus for example, if ag is invertible in A, you can find
the inverse of ag + a1t + - -- by calculating successive coeflicients. Or if ag
is a perfect square in A (and the n! are invertible), then you can take the
square root of ag+aq *xt—+--- using the binomial theorem and term-by-term
approximation.

The highpoint is Hensel’s Lemma: this says that, under appropriate
conditions, if you can solve a polynomial equations modulo m (so over the
residue field K = A/m), you can solve it over A.

Theorem 3.3 (Hensel’s lemma) Let (A,m,k) be a local ring, and as-
sume that A is m-adically complete.

Let F(x) € A[z] be a monic polynomial, and set F = f € klx]. (That is,
reduce the coefficients of F' € Alx] modulo m.) Suppose f factors as f = gh
with g, h € k[z] monic and coprime.

Then F has a factorisation F = GH where G, H € Alx] are such that

G=g and H=h. (3.5)

Applying this with a linear factor g(z) = x —r gives the corollary that if
the reduction of f(z) € k[x] has a simple root r € k (a root such that z —r
is coprime to f(z)/(x—r)), then F(x) € A[z] has a root R € A that reduces
to r mod m.

For example, if a polynomial f € Z[z] has a simple solution when viewed
as a congruence modulo p, it has a root in the ring Z, of p-adic integers.
This version of Hensel’s lemma is popular with algebraic number theorists.



Preliminary step in proof First, suppose degg = n and degh = m.
Then g, h coprime in k[z] means I can choose polynomials a, b with

dega <m —1and degb<n—1 such that ag+bh=1. (3.6)

In fact polynomials of degree < n+m—1 form a vector space of dimension
(n+m) over k, and

(Lz,...,2™ g, (1., 2" YA (3.7)

are n + m elements in it that are linearly independent, hence a basis.

Setting up the induction step Start from the assumption f = gh, and
choose G1,Hy € Alz| that reduce modulo m to g,h € k[z] and are still
monic of the same degree. Then reducing mod m gives

F—-GiH, € mA[x], that is, F — Gi1Hy = ZmZUZ (3.8)

with m; € m, and U; € k[x] polynomials with degU; < deg F'.
I show how to modify Gy, H; to G2, Hy by adding corrections in m to
achieve

F — GyHy € m?*Alz]. (3.9)

This is elementary algebra in k[x]: for each i, write u; € k[z]| for the
reduction of U; mod m, and use the a, b provided by (3.6) to give ag+bh = 1,
SO

gau; + hbu; = u;. (3.10)

The sum is obviously unaffected by subtracting a multiple of h from au; and
adding the same multiple of g to bu;:

gv; + hw; = u;, where v; =au; —ch and w; = bu; + cg. (3.11)
I choose ¢ to reduce au; to
v; = au; —ch with degwv; < degh. (3.12)

Then since u; and gv; both have degree < deg f, the same goes for hw;.
Now choose lifts V;, W; € Ax] of the v;, w; of (3.11), of the same degrees,
and modify Gy, H1 by setting:

Go=Gi+ Y mW; and Hy=H +» mV; (3.13)



using the same coefficients m; as in (3.8). Then comparing with (3.8) gives
F—GoHy = F_G1G2_Zmi(G1V1 +H1W1)—m22V1W1 € mQA[ac] (3.14)

In each term of the sum, I have subtracted off a term that modulo m? cancels
the m;U; of (3.8) in view of (3.11), and the final cross term m? is in m? A[z].
The inductive step from G, H, satisfying F' — G, F,, € m"A[x] to
Gp+1, Hp+1 repeats the above argument point by point.
Each step only modifies G, and H,, by terms in m"A[z], so that both

sequences are Cauchy sequences for the m-adic topology. Q.E.D.

Lectures 9-10. The Artin—Rees lemma: More on
completions

I discussed completion in general terms last time, and described Hensel’s
lemma as a major consequence. Now I treat it more formally.

A directed set A is a partially ordered set so that any two A, u € A have
a bound v € A, with A\, u < v. The case A = N would be perfectly adequate
and in practice is the main one.

Let A be aring and M an A-module. The starting point is a set { M)} xea
of submodules of M indexed by a directed set A, with M, < M, for every
g > la. (Finer and finer as p gets bigger.)

Lemma 3.4 (1) There is a topology on M (the linear topology corre-
sponding to {My}) determined by

(a) the {My\} form a basis for the neighbourhoods of 0, and

(b) the module operations are continuous.

(2) If we give the quotients M /My the discrete topology, the quotient maps
M — M/M) are continuous.

(3) The topology is separated (Hausdorff) if and only if the intersection of
the My is zero ((yep My = 0.

Proof (1) Requiring addition by z € M to be continuous ensures that
every x € M has a basis of neighbourhoods given by the cosets {x + M)}.

The “directed” property of A gives that the intersection MyNM),, contains
M, so is still a neighbourhood of 0.



(2) For any of the quotient maps M — M /M), the inverse image of any
subset of the quotient is a union of cosets z + M), so open.

(3) The topology separates z,y € M if and only if there exists M) not
containing x —y. U

Construction of completion The {M,} correspond to the inverse sys-
tem

M/M, — M/M), that takes x mod M, to x mod M. (3.15)

The completion of M w.r.t. the topology { M)} is defined as the inverse limit
M = l&nM /M. This consists of compatible sequences of elements

{xx € M/My} er such that x, — ) for every p > A. (3.16)

There is a homomorphism M — M that takes z € M to the constant
sequence x mod M)y for all X\. This has kernel the intersection [y, M. In
any argument, if we assume [ My = 0, we can work with M as a submodule
M C M. Otherwise, we have to divide M by the kernel [ M) to get its
image in M.

By construction, M has a surjective homomorphism to each M/M). The
kernel of M — M /M)y is the completion (M)~ of the submodule My ¢ M
w.r.t. to the subspace topology. These kernels in turn induces a topology on
M with M /(My)"= M/M,. The inverse limit of this sequence of quotients
is of course M itself, which shows that M is complete w.r.t. its induced
topology.

The particular case M = A starts from a filtration of A by ideals I, and
leads to the completion A= Y&nA/I \, which is a ring having a surjective

map A— A/I, to each of the quotient rings A/I,.

3.1 Philosophy

This type of completion in terms of inverse limit appears in all areas of math.
For example, consider all the rational roots of unity in C*. This is the union
(= direct limit) of the ,, (the cyclic group of nth roots of 1, generated by
exp %) with inclusions p,, < p,,,: the roots of z™” =1 include the roots
of 2" =1 as a subgroup. Since the p,, form a direct system, their character
groups

Z/n = Hom(p,,, C*) (3.17)



form an inverse system Z/nm — Z/n (the homomorphisms take an integer
2 mod nm to mz mod n), whose inverse limit limZ/n = Z is the profinite
completion of Z. This is an uncountable group, equal to the direct product
over all p of the p-adic integers Z,,.

You know that the real line R is the universal cover of the unit circle,
with R — S! c C* given by exp(2mif), having the kernel Z* = 71 S*. The
exponential function is not algebraic. But in algebra I can define the usual
n-fold cover z — 2" as a map Climes — Climes or S — S', with the
advantage that these are algebraic varieties and morphisms, and correspond
to the inverse system Climes/pu,,, — Climes/pu,, for all n.

This idea replaces the exponential cover Ct — C* or RT — S ¢ CX
familiar in analysis or topology by the algebraic inverse limit lim C* /mu,
which is “much bigger”. For example, the inverse image of the identity 1 € C
(corresponding to 0 € R) is uncountable: it contains the profinite completion
of the p,,, a group that is isomorphic to Z (the argument depend the axiom
of choice), but with a nontrivial structure of Galois module (“Tate module”).

As you know, a finite Galois field extension K C L has a finite Galois
group Gal(L/K). Now an infinite Galois extension K C L is the union (=
direct limit) of normal finite subfields L;: in fact each individual element
x € L is algebraic, so belongs to a finite extension, and to the corresponding
normal subfield (the splitting field of the minimal polynomial of z). The
Galois group Gal(L/K) takes each normal finite subfields L; to itself, so has
a surjective map Gal(L/K) — Gal(L;/K) to the finite Galois group of the
extension L;, and this makes Gal(L/K) = Jim Gal(L;/K), which is therefore
a profinite group: Everything to do with the group is determined by its finite
quotients, but these get bigger and bigger, and there are infinitely many of
them — the inverse limit is uncountable, because an element of it make a
choices of element of each of the infinitely many finite groups Gal(L;/K).

The group Gal(Q/Q) is a central object of study in algebraic number the-
ory. For example, Wiles’ 1994 proof of Fermat’s Last Theorem depended on
work on the representation theory of Gal(QQbar/QQ), in particular Serre’s
conjecture that its algebraic representations are “modular”. (The progress
since Wiles’ work has only solved a small fraction of this conjecture.)

3.2 Exactness properties of completion

The next issue is the following question on exactness: suppose

0= N < M-»M/N—=0 (3.18)



is a short exact sequence (s.e.s.) of A-modules. This means N C M with
quotient module M/N. Suppose we take the completion of N, M, M/N
(with respect to some topology specified later). Under what circumstances
can we prove that -

0— N < M — (M/N) =0 (3.19)

is again a short exact sequence?
Let me give a formal argument first, and understand what exactly it
proves later. We know the Snake Lemma: for a commutative diagram

0O - P - @Q - R — 0

cpl cql cr| (3.20)
0O - P - @ —- R —= 0

with the two horizontal rows short exact sequence, the kernels and cokernels
of the down maps give a long exact sequence

§
0 — kercp — kercg — kercgp —

(3.21)

— coker cp — coker cg — coker cg — 0.

For this you have to think through how the boundary map
0: kercrp — cokercp (3.22)

is defined: lift an element of kercg C R to () anyhow, map it down by cq
to an element of @’ that goes to 0 € R’, so belongs to P’, then check the
result is independent of the choice, and that the resulting sequence is exact.
The argument of [A&M] applies this to an exact sequence of inverse
systems. Define an inverse system to be a system of A-modules P; with
homomorphisms 7;41: Pj+1 — P, initially with no further assumptions. Its
inverse limit P = @Pi is defined as the set of compatible sequences

{z; € P} with mi1(x41) =x; for every i. (3.23)

Fact By definition, the inverse limit P = lim P, is the set of compatible
sequences of elements of P;, which is the same thing as the kernel of the

homomorphism
cr: [[2 =[] 2 (3.24)

of direct products, where cp takes

a sequence {x;} +— new sequence {m;1(xiy1) — ;}. (3.25)



To unwrap this, at the end of the sequence,
the image of {... ,xo,z1} is {...,7(x3) — w2, w(x2) — 21 }. (3.26)

Taking ker cp imposes on the sequence {x;} the conditions that 7(x2) = x1,
then m(xz;41) = z; for each i, which means exactly that the sequence is
compatible.

Note this refers specifically to the direct product of the P;: any elements
x; are allowed at each ¢ (including infinitely many different choices), as
opposed to the usual direct sum of algebra, that assumes only finitely many
T; are NONzero.

A homomorphism P — ) between inverse systems P and () is a system
of homomorphisms f;: P; — @); for each ¢ that form commutative squares

P — Qiyi
! ! (3.27)
P = Q;

with the down maps ;. It is clear that this induces a homomorphism P @
of the respective inverse limits.

A short exact sequence of inverse systems 0 - P — ) — R — 0 is given
by a pair of homomorphisms f: P — @ and g: @ — R of inverse systems
such that for each i the homomorphisms f; and g; give short exact sequences

0—-P —>Q;— R, —0. (3.28)

This means of course simply that f;: P, — @; is injective, and g; is the
corresponding quotient homomorphism g;: Q; - R; = Q;/fi(P;). The fact
just discussed, together with the snake lemma implies the following result:

Proposition 3.5 (Exactness I) (1) A s.e.s. of inverse systems
0—-P—-Q—R—0 (3.29)
induces an exact sequence
0P—>Q—R (3.30)
between their completions.

(2) If moreover the morphisms miy1: Pir1 — P; in the inverse system P
are all surjective, then

0-P—>Q—R—0 (3.31)

s again a short exact sequence.



(1) comes directly from the snake lemma. For (2), we just need to deduce
that cp is surjective from the given assumption that all m;y1: P41 — P; are
surjective. That is, given a sequence {a; € P;}, we require to find a sequence
of elements {x; € P;} with cp(z;) = a;.

This is straightforward given the surjectivity of the m;. For choose x; = 0,
then zo € Py with ag(z2) = aj. At each successive step, we have the target
a; € P;, and the current choice of x; € P; (that we used to cover a;—1). So
choose

ZTiy1 € P;41  such that Oéi+1(xi+1) =a; + x;. (3.32)

Then of course cp applied to the sequence ..., z;t1,Z;, ..., x1 has the i entry
aj+1(xiy1) — x; = a;. This constructs by induction a sequence {x; € P;}
such that ¢,(2;) =a;.  Q.E.D.

3.3 The Artin—Rees lemma

Compare [Matsumura, p. 59].

There is still a gap in applying the Exactness Proposition 3.5 to [-adic
completions: the assumptions of the Proposition is that we have three inverse
systems P, (), R with short exact sequences 0 — P; — Q; — R; — 0 for each
i. Unfortunately however, what we have in applications is not quite this.
We start from a submodule,

N C M and the quotient M/N, (3.33)
take the I-adic filtrations of the three modulse
I"N, I"M and I"(M/N), (3.34)

and the inverse systems corresponding to the quotients. It is not true that
these filtrations form short exact sequences for each n.

The Artin—Rees lemma bridges this gap: under the standard finiteness
assumptions of commutative algebra, it gives a compatibility between the
I-adic filtration {I" N} of the submodule N and the restriction to N of the
I-adic filtration {I" M} of the module M.

Theorem 3.6 (Artin—Rees lemma) Assume A is Noetherian and I an
ideal of A. Let M be a finite module and N C M a submodule.
Then there exists ¢ > 0 such that

I"MNN=I"¢(I°MNN) foreveryn > c. (3.35)
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Proof The inclusion D is clear.

The coefficients f1,..., fs of an element Zj fi(a)m; € I"M make up an
s-tuple in the Noetherian module B®. To use the Noetherian machinery, as
in the proof of the Hilbert basis theorem, define the submodule J,, C B® for
each n by

_ s | the f; are homogeneous of
In = {(fl’ o fo) € degree n, and > fj(a)m; € N

We see by construction that ) fj(a)m; € N, and is also in 1" M.
Take the union U = J,, J,, over all n and the ideal C' generated by U.
[The key point:] Since B*® is a Noetherian B-module, the ideal C' is
finitely generated: there are finitely many elements w1, ...,u; € U such that

C =Buj+ -+ Bu (3.37)

(3.36)

with each u; an s-tuple of homogeneous elements of B of some degree n;,
say u; = (ujy,...uj,) € Jn,.

Setting ¢ = maxn; gives us the c in the statement. It only remains to
wrap up the conclusion. Suppose given y € I"M N N. We can certainly
write y = > fi(a)m; with f; € B homogeneous of degree n, and hence the
s-tuple (fi,...fs) € Jyn (by definition of J,,). But J, is in the B-module
C, so is a B-linear combination of the generators u;. That is,

(fr, - fs) =D pi@)u (3.38)

for some polynomials p; € B = A[xy,...,x,]. Now replacing each p; by its
homogeneous part of degree n — n; does not change the equality. (Because
the f; are all homogeneous of degree n and the u; homogeneous of degree
n; — once we've matched the terms of degn, all the rest cancels, so we can
throw it away.) Now complicated formula gives

ye " “(I°MNN). (3.39)

Complicated formula is [Matsumura, p. 59, line -8]:
y=>_ filaymi=7) pjla) Y ujila)m; (3.40)
i j i

where the first sum consists of elements of 1™ ™ and the second sum of
elements of I’ N N.  QED

Corollary 3.7 The I-adic topology on M and induces a subspace topology
on N C M. Under the current assumptions that A is Noetherian and M

finite over A, the induced topology on N coincides with the I-adic topology
on N.
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3.4 Exactness of [-adic completion

The point of the Artin—Rees lemma is that it allows us to use the argument
of Proposition 3.5 under a slightly weaker assumption: rather than insisting
that all P;y; — P; are surjective, we only require the weaker “surjective in
the limit” given by the Artin—Rees lemma, that P; is in I¢ times the image
of Py, for some fixed c.

I should have treated tensor product and flatness in the
earlier prerequite sections. Under Noetherian and finite
assumptions (so that Artin-Rees is applicable), the
completion Mhat coincides with Ahat tensor M, and

M -> Mhat is an exact functor on modules, so that Ahat is
a flat A-module.

Exactness, I-adic completion is an exact functor,
the I-adic completion A” of A is a flat A-algebra

M_n = M/(I"n*M). In particular, working with I-adic
completions, we know that if L in M is a submodule then
L~ in \Mhat is a submodule, and (L~)/(\Mhat) = (L/M)".

Let A be a ring and I an ideal of A. We have just seen
that I-adic completion gives an exact functor on
A-modules. At the same time, it is clear that the I-adic
completion \Mhat is a module over A", and is the same
thing as M tensor A~.

The exactness result just proved for I-adic localisations
implies that A" is a flat A-algebra.

Comparison with exactness statements for S°-1 and flatness of
S™-1A.

For A a ring and S a multiplicative sequence, we know how to
construct the partial ring of fractions S"-1A. We can make
essentially the same construction for an A-module M, obtaining
an A-module S"-1M. It consists of expressions {m/s} modulo the
same kind of equivalence relation, and the construction gives
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that S°-1M is an A-module on which every s in S acts
bijectively. This means that S°-1M is also an S"-1A-module,
and in fact one sees that S™-1M = S”-1A tensor_A M.

Proposition. Let S be a multiplicative set in A and suppose
that morphisms al: L -> M and be: M -> N give a sequence L ->
M -> N that is exact (only in the middle, im(al) = ker(be)).
Then al, be induce an exact sequence S°-1L -> S™-1M -> S™-1N
of localised modules (with morphisms al’ and be’).

In particular, working with localisation, we know that if L in
M is a submodule then S°-1L in S°-1M is a submodule, and
(87-1L)/(8"-1M) = S~-1(L/M).

Proof from [UCA], 6.6. Suppose m/s in S"-1M. Then
be’(m/s) = 0 <=> exists u in S such that u*be(m) = 0
<=> exists u in S such that be(u*m) = O.
Now since im(al) = ker(be) in L -> M -> N, this happens
<=> exists u in S and exists n in L s.t. uxm = al(n)
<=>m/s = al’(n/u*s). Q.E.D.

Localisation S™-1 applied to M can be thought of as

S”-1M = 87-1A tensor M, and the exactness statement just
proved can be stated as S”-1A is a flat A-algebra.
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