
MA4J8 Commutative algebra II

Lectures 7–8. Completion

The material here is mostly taken from [A&M], Chapter 10, [Matsumura]
Section 8. Or see [Schlichting] Chapter 2

Informal discussion – why modules?

To study a ring A, we may need to do linear algebra inside A, but also in all
kinds of structures related to A: its ideals I, how the I are generated, the
quotients A/I, the relations between the generators of I, eventually tensor
products A⊗A, derivations and differentials, and much more. We might as
well go the whole hog and do linear algebra systematically in modules over
A.

Why completions? Let A be a ring and M an A-module. Suppose we
are told M = IM for an ideal I of A. Can we deduce that M = 0?

Take m ∈ M . Then m =
∑
aimi with ai ∈ I and mi ∈ M . On the

other hand, the same argument applies to each mi: if mi =
∑
bijmj then

m =
∑

i,j aibijmj , so that M = I2M , then M = I3M . This is getting
ridiculous! Surely continuing the argument gives M = 0? Not so. For
example, it may happen that I contains invertible elements, in which case
M = IM tells us nothing.

That’s not the right way to go. I remind you of a basic result.

Lemma 3.1 (Nakayama’s lemma) Suppose M is finite (that is, finitely
generated as A-module) and M = IM . Then there exists a ∈ A with a−1 ∈ I
such that aM = 0

Proof (the “determinant trick”) Choose generators m1, . . . ,mn such
that

M =
∑

Ami. (3.1)

Then each mi ∈ M , so mi ∈ IM . Hence there exists elements aij ∈ I with
mi =

∑
aijmj . Rewrite this as∑

(δij − aij)mj = 0 where δ is the Kronecker delta. (3.2)

Write N for the n×n matrix N = {deij−aij}. Recall the standard linear
algebra formula N † · N = (detN) Idn, where N † is the adjugate matrix of
N (made up of (n− 1)× (n− 1) cofactors).
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Multiply (3.2) by N †jk and sum over j to get (detN)mj = 0 for all j,
hence (detN) ·M = 0. This is what we wanted:

a = detN has aM = 0 and a ≡ 1 mod I. (3.3)

Another failed argument: Let A ⊂ B be a finite extension ring. Required
to prove that b ∈ B is integral over A. The argument you used in Galois
theory was easy: since B is finite over A there is a linear dependence relation
between the powers {1, b, b2, . . . , bn}, and you can divide through by the
leading coefficient to make it monic. That doesn’t work with A an integral
domain, because you may not be able to divide through. But it goes through
in a straightforward way if you apply the determinant trick.

Completion

The idea of completion is to work with formal power series in place of poly-
nomials. For example, k[[x1, . . . , xn]] as a substitute for k[x1, . . . , xn] or
p-adics Zp in place of the subring Z(p) ⊂ Q. The word “formal” reflects that
we allow all infinite power series, ignoring convergence – this is the same
idea as replacing a differentiable function by its Taylor series to all orders.
These formal rings are bigger (usually uncountably so), but much simpler in
structure. Any nonsingular point P ∈ X of any algebraic variety or complex
analytic space (independently of X, or P ∈ X) has a small neighbourhood
isomorphic to a ball around 0 ∈ Cn, and formal functions on it make up the
completed ring C[[x1, . . . , xn]]. Completion is thus a much more drastic form
of localisation.

As an algebraic process, completion passes from a filtration such as the
I-adic filtration M ⊃ IM ⊃ · · · ⊃ InM to the inverse limit proj limM/InM
or lim←−M/InM I run through the theory in the following lecture. For now, I
want to discuss the finished product and the advantages of working with it.

Definition 3.2 (first attempt) Let A be a ring and I an ideal. We say
that A is I-adically complete to mean that

A = lim←−
n

A/In. (3.4)

This means

(I) an element f ∈ A is uniquely determined by its class in A/In for every
n;
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(II) if {fn ∈ A/In}n∈N is a compatible sequence of elements mod In then
there is f ∈ A that maps to fn for every n.

Here compatible means that for m > n, the element fm ∈ A/Im reduces
modulo In to fn ∈ A/In. An alternative way of stating (II) is as a sequence
{Fn} of elements of A with the Cauchy sequence property:

for every N > 0, there exists n0 such that
for all n,m ≥ n0 the difference Fn − Fm ∈ IN .

This puts I-adic completion on a footing that is similar in overall logic to
completion in a metric space.

The real motivation for completion is to solve problems in A[[b]] by term-
by-term calculations. Thus for example, if a0 is invertible in A, you can find
the inverse of a0 + a1t + · · · by calculating successive coefficients. Or if a0

is a perfect square in A (and the n! are invertible), then you can take the
square root of a0 +a1 ∗ t+ · · · using the binomial theorem and term-by-term
approximation.

The highpoint is Hensel’s Lemma: this says that, under appropriate
conditions, if you can solve a polynomial equations modulo m (so over the
residue field k = A/m), you can solve it over A.

Theorem 3.3 (Hensel’s lemma) Let (A,m, k) be a local ring, and as-
sume that A is m-adically complete.

Let F (x) ∈ A[x] be a monic polynomial, and set F = f ∈ k[x]. (That is,
reduce the coefficients of F ∈ A[x] modulo m.) Suppose f factors as f = gh
with g, h ∈ k[x] monic and coprime.

Then F has a factorisation F = GH where G,H ∈ A[x] are such that

G = g and H = h. (3.5)

Applying this with a linear factor g(x) = x− r gives the corollary that if
the reduction of f(x) ∈ k[x] has a simple root r ∈ k (a root such that x− r
is coprime to f(x)/(x−r)), then F (x) ∈ A[x] has a root R ∈ A that reduces
to r mod m.

For example, if a polynomial f ∈ Z[x] has a simple solution when viewed
as a congruence modulo p, it has a root in the ring Zp of p-adic integers.
This version of Hensel’s lemma is popular with algebraic number theorists.
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Preliminary step in proof First, suppose deg g = n and deg h = m.
Then g, h coprime in k[x] means I can choose polynomials a, b with

deg a ≤ m− 1 and deg b ≤ n− 1 such that ag + bh = 1. (3.6)

In fact polynomials of degree≤ n+m−1 form a vector space of dimension
(n+m) over k, and

(1, x, . . . , xm−1)g, (1, x, . . . , xn−1)h (3.7)

are n+m elements in it that are linearly independent, hence a basis.

Setting up the induction step Start from the assumption f = gh, and
choose G1, H1 ∈ A[x] that reduce modulo m to g, h ∈ k[x] and are still
monic of the same degree. Then reducing mod m gives

F −G1H1 ∈ mA[x], that is, F −G1H1 =
∑

miUi (3.8)

with mi ∈ m, and Ui ∈ k[x] polynomials with degUi < degF .
I show how to modify G1, H1 to G2, H2 by adding corrections in m to

achieve
F −G2H2 ∈ m2A[x]. (3.9)

This is elementary algebra in k[x]: for each i, write ui ∈ k[x] for the
reduction of Ui mod m, and use the a, b provided by (3.6) to give ag+bh = 1,
so

gaui + hbui = ui. (3.10)

The sum is obviously unaffected by subtracting a multiple of h from aui and
adding the same multiple of g to bui:

gvi + hwi = ui, where vi = aui − ch and wi = bui + cg. (3.11)

I choose c to reduce aui to

vi = aui − ch with deg vi < deg h. (3.12)

Then since ui and gvi both have degree < deg f , the same goes for hwi.
Now choose lifts Vi,Wi ∈ A[x] of the vi, wi of (3.11), of the same degrees,

and modify G1, H1 by setting:

G2 = G1 +
∑

miWi and H2 = H1 +
∑

miVi (3.13)
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using the same coefficients mi as in (3.8). Then comparing with (3.8) gives

F−G2H2 = F−G1G2−
∑

mi(G1V1+H1W1)−m2
iV1W1 ∈ m2A[x]. (3.14)

In each term of the sum, I have subtracted off a term that modulo m2 cancels
the miUi of (3.8) in view of (3.11), and the final cross term m2

i is in m2A[x].
The inductive step from Gn, Hn satisfying F − GnFn ∈ mnA[x] to

Gn+1, Hn+1 repeats the above argument point by point.
Each step only modifies Gn and Hn by terms in mnA[x], so that both

sequences are Cauchy sequences for the m-adic topology. Q.E.D.

Lectures 9-10. The Artin–Rees lemma: More on
completions

I discussed completion in general terms last time, and described Hensel’s
lemma as a major consequence. Now I treat it more formally.

A directed set Λ is a partially ordered set so that any two λ, µ ∈ Λ have
a bound ν ∈ Λ, with λ, µ ≤ ν. The case Λ = N would be perfectly adequate
and in practice is the main one.

Let A be a ring and M an A-module. The starting point is a set {Mλ}λ∈Λ

of submodules of M indexed by a directed set Λ, with Mµ < Mλ for every
µ > la. (Finer and finer as µ gets bigger.)

Lemma 3.4 (1) There is a topology on M (the linear topology corre-
sponding to {Mλ}) determined by

(a) the {Mλ} form a basis for the neighbourhoods of 0, and

(b) the module operations are continuous.

(2) If we give the quotients M/Mλ the discrete topology, the quotient maps
M →M/Mλ are continuous.

(3) The topology is separated (Hausdorff) if and only if the intersection of
the Mλ is zero

⋂
λ∈ΛMλ = 0.

Proof (1) Requiring addition by x ∈ M to be continuous ensures that
every x ∈M has a basis of neighbourhoods given by the cosets {x+Mλ}.

The “directed” property of Λ gives that the intersectionMλ∩Mµ contains
Mν , so is still a neighbourhood of 0.

5



(2) For any of the quotient maps M →M/Mλ, the inverse image of any
subset of the quotient is a union of cosets x+Mλ, so open.

(3) The topology separates x, y ∈ M if and only if there exists Mλ not
containing x− y. �

Construction of completion The {Mλ} correspond to the inverse sys-
tem

M/Mµ →M/Mλ that takes x mod Mµ to x mod Mλ. (3.15)

The completion of M w.r.t. the topology {Mλ} is defined as the inverse limit

M̂ = lim←−M/Mλ. This consists of compatible sequences of elements

{xλ ∈M/Mλ}λ∈Λ such that xµ 7→ xλ for every µ > λ. (3.16)

There is a homomorphism M → M̂ that takes x ∈ M to the constant
sequence x mod Mλ for all λ. This has kernel the intersection

⋂
λ∈ΛMλ. In

any argument, if we assume
⋂
Mλ = 0, we can work with M as a submodule

M ⊂ M̂ . Otherwise, we have to divide M by the kernel
⋂
Mλ to get its

image in M̂ .
By construction, M̂ has a surjective homomorphism to each M/Mλ. The

kernel of M̂ → M/Mλ is the completion (Mλ)̂ of the submodule Mλ ⊂ M
w.r.t. to the subspace topology. These kernels in turn induces a topology on
M̂ with M̂/(Mλ)̂= M/Mλ. The inverse limit of this sequence of quotients

is of course M̂ itself, which shows that M̂ is complete w.r.t. its induced
topology.

The particular case M = A starts from a filtration of A by ideals Iλ and
leads to the completion Â = lim←−A/Iλ, which is a ring having a surjective

map Â→ A/Iλ to each of the quotient rings A/Iλ.

3.1 Philosophy

This type of completion in terms of inverse limit appears in all areas of math.
For example, consider all the rational roots of unity in C×. This is the union
(= direct limit) of the µn (the cyclic group of nth roots of 1, generated by
exp 2πi

n ) with inclusions µn ↪→ µmn: the roots of zmn = 1 include the roots
of zn = 1 as a subgroup. Since the µn form a direct system, their character
groups

Z/n = Hom(µn,C×) (3.17)
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form an inverse system Z/nm→ Z/n (the homomorphisms take an integer
x mod nm to mx mod n), whose inverse limit lim←−Z/n = Ẑ is the profinite
completion of Z. This is an uncountable group, equal to the direct product
over all p of the p-adic integers Zp.

You know that the real line R is the universal cover of the unit circle,
with R→ S1 ⊂ C× given by exp(2πiθ), having the kernel Z+ = π1S

1. The
exponential function is not algebraic. But in algebra I can define the usual
n-fold cover z 7→ zn as a map Ctimes → Ctimes or S1 → S1, with the
advantage that these are algebraic varieties and morphisms, and correspond
to the inverse system Ctimes/µmn → Ctimes/µn for all n.

This idea replaces the exponential cover C+ → C× or R+ → S1 ⊂ C×
familiar in analysis or topology by the algebraic inverse limit lim←−C×/mun
which is “much bigger”. For example, the inverse image of the identity 1 ∈ C
(corresponding to 0 ∈ R) is uncountable: it contains the profinite completion
of the µn, a group that is isomorphic to Ẑ (the argument depend the axiom
of choice), but with a nontrivial structure of Galois module (“Tate module”).

As you know, a finite Galois field extension K ⊂ L has a finite Galois
group Gal(L/K). Now an infinite Galois extension K ⊂ L is the union (=
direct limit) of normal finite subfields Li: in fact each individual element
x ∈ L is algebraic, so belongs to a finite extension, and to the corresponding
normal subfield (the splitting field of the minimal polynomial of x). The
Galois group Gal(L/K) takes each normal finite subfields Li to itself, so has
a surjective map Gal(L/K) → Gal(Li/K) to the finite Galois group of the
extension Li, and this makes Gal(L/K) = lim←−Gal(Li/K), which is therefore
a profinite group: Everything to do with the group is determined by its finite
quotients, but these get bigger and bigger, and there are infinitely many of
them – the inverse limit is uncountable, because an element of it make a
choices of element of each of the infinitely many finite groups Gal(Li/K).

The group Gal(Q/Q) is a central object of study in algebraic number the-
ory. For example, Wiles’ 1994 proof of Fermat’s Last Theorem depended on
work on the representation theory of Gal(QQbar/QQ), in particular Serre’s
conjecture that its algebraic representations are “modular”. (The progress
since Wiles’ work has only solved a small fraction of this conjecture.)

3.2 Exactness properties of completion

The next issue is the following question on exactness: suppose

0→ N ↪→M �M/N → 0 (3.18)
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is a short exact sequence (s.e.s.) of A-modules. This means N ⊂ M with
quotient module M/N . Suppose we take the completion of N,M,M/N
(with respect to some topology specified later). Under what circumstances
can we prove that

0→ N̂ ↪→ M̂ � (M/N)̂→ 0 (3.19)

is again a short exact sequence?
Let me give a formal argument first, and understand what exactly it

proves later. We know the Snake Lemma: for a commutative diagram

0 → P → Q → R → 0

cP
y cQ

y cR
y

0 → P ′ → Q′ → R′ → 0

(3.20)

with the two horizontal rows short exact sequence, the kernels and cokernels
of the down maps give a long exact sequence

0→ ker cP → ker cQ → ker cR
δ−−→

→ coker cP → coker cQ → coker cR → 0.
(3.21)

For this you have to think through how the boundary map

δ : ker cR → coker cP (3.22)

is defined: lift an element of ker cR ⊂ R to Q anyhow, map it down by cQ
to an element of Q′ that goes to 0 ∈ R′, so belongs to P ′, then check the
result is independent of the choice, and that the resulting sequence is exact.

The argument of [A&M] applies this to an exact sequence of inverse
systems. Define an inverse system to be a system of A-modules Pi with
homomorphisms πi+1 : Pi+1 → Pi, initially with no further assumptions. Its
inverse limit P̂ = lim←−Pi is defined as the set of compatible sequences

{xi ∈ Pi} with πi+1(xi+1) = xi for every i. (3.23)

Fact By definition, the inverse limit P̂ = lim←−Pi is the set of compatible
sequences of elements of Pi, which is the same thing as the kernel of the
homomorphism

cP :
∏
i

Pi →
∏
i

Pi (3.24)

of direct products, where cP takes

a sequence {xi} 7→ new sequence {πi+1(xi+1)− xi}. (3.25)
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To unwrap this, at the end of the sequence,

the image of {. . . , x2, x1} is {. . . , π(x3)− x2, π(x2)− x1}. (3.26)

Taking ker cP imposes on the sequence {xi} the conditions that π(x2) = x1,
then π(xi+1) = xi for each i, which means exactly that the sequence is
compatible.

Note this refers specifically to the direct product of the Pi: any elements
xi are allowed at each i (including infinitely many different choices), as
opposed to the usual direct sum of algebra, that assumes only finitely many
xi are nonzero.

A homomorphism P → Q between inverse systems P and Q is a system
of homomorphisms fi : Pi → Qi for each i that form commutative squares

Pi+1 → Qi+i

↓ ↓
Pi → Qi

(3.27)

with the down maps πi. It is clear that this induces a homomorphism P̂ → Q̂
of the respective inverse limits.

A short exact sequence of inverse systems 0→ P → Q→ R→ 0 is given
by a pair of homomorphisms f : P ↪→ Q and g : Q � R of inverse systems
such that for each i the homomorphisms fi and gi give short exact sequences

0→ Pi → Qi → Ri → 0. (3.28)

This means of course simply that fi : Pi ↪→ Qi is injective, and gi is the
corresponding quotient homomorphism gi : Qi � Ri = Qi/fi(Pi). The fact
just discussed, together with the snake lemma implies the following result:

Proposition 3.5 (Exactness I) (1) A s.e.s. of inverse systems

0→ P → Q→ R→ 0 (3.29)

induces an exact sequence

0→ P̂ → Q̂→ R̂ (3.30)

between their completions.

(2) If moreover the morphisms πi+1 : Pi+1 → Pi in the inverse system P
are all surjective, then

0→ P̂ → Q̂→ R̂→ 0 (3.31)

is again a short exact sequence.
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(1) comes directly from the snake lemma. For (2), we just need to deduce
that cP is surjective from the given assumption that all πi+1 : Pi+1 → Pi are
surjective. That is, given a sequence {ai ∈ Pi}, we require to find a sequence
of elements {xi ∈ Pi} with cP (xi) = ai.

This is straightforward given the surjectivity of the πi. For choose x1 = 0,
then x2 ∈ P2 with α2(x2) = a1. At each successive step, we have the target
ai ∈ Pi, and the current choice of xi ∈ Pi (that we used to cover ai−1). So
choose

xi+1 ∈ Pi+1 such that αi+1(xi+1) = ai + xi. (3.32)

Then of course cP applied to the sequence . . . , xi+1, xi, . . . , x1 has the i entry
αi+1(xi+1) − xi = ai. This constructs by induction a sequence {xi ∈ Pi}
such that cp(xi) = ai. Q.E.D.

3.3 The Artin–Rees lemma

Compare [Matsumura, p. 59].
There is still a gap in applying the Exactness Proposition 3.5 to I-adic

completions: the assumptions of the Proposition is that we have three inverse
systems P,Q,R with short exact sequences 0→ Pi → Qi → Ri → 0 for each
i. Unfortunately however, what we have in applications is not quite this.
We start from a submodule,

N ⊂M and the quotient M/N, (3.33)

take the I-adic filtrations of the three modulse

InN, InM and In(M/N), (3.34)

and the inverse systems corresponding to the quotients. It is not true that
these filtrations form short exact sequences for each n.

The Artin–Rees lemma bridges this gap: under the standard finiteness
assumptions of commutative algebra, it gives a compatibility between the
I-adic filtration {InN} of the submodule N and the restriction to N of the
I-adic filtration {InM} of the module M .

Theorem 3.6 (Artin–Rees lemma) Assume A is Noetherian and I an
ideal of A. Let M be a finite module and N ⊂M a submodule.

Then there exists c > 0 such that

InM ∩N = In−c(IcM ∩N) for every n > c. (3.35)
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Proof The inclusion ⊃ is clear.
The coefficients f1, . . . , fs of an element

∑
j fj(a)mj ∈ InM make up an

s-tuple in the Noetherian module Bs. To use the Noetherian machinery, as
in the proof of the Hilbert basis theorem, define the submodule Jn ⊂ Bs for
each n by

Jn =

{
(f1, . . . , fs) ∈ Bs

∣∣∣∣ the fj are homogeneous of
degree n, and

∑
fj(a)mj ∈ N

}
. (3.36)

We see by construction that
∑
fj(a)mj ∈ N , and is also in InM .

Take the union U =
⋃
n Jn over all n and the ideal C generated by U .

[The key point:] Since Bs is a Noetherian B-module, the ideal C is
finitely generated: there are finitely many elements u1, . . . , ut ∈ U such that

C = Bu1 + · · ·+But (3.37)

with each uj an s-tuple of homogeneous elements of B of some degree nj ,
say uj = (uj1 , . . . ujs) ∈ Jnj .

Setting c = maxnj gives us the c in the statement. It only remains to
wrap up the conclusion. Suppose given y ∈ InM ∩ N . We can certainly
write y =

∑
fi(a)mi with fi ∈ B homogeneous of degree n, and hence the

s-tuple (f1, . . . fs) ∈ Jnn (by definition of Jn). But Jn is in the B-module
C, so is a B-linear combination of the generators uj . That is,

(f1, . . . fs) =
∑

pj(x)uj (3.38)

for some polynomials pj ∈ B = A[x1, . . . , xr]. Now replacing each pj by its
homogeneous part of degree n− nj does not change the equality. (Because
the fi are all homogeneous of degree n and the uj homogeneous of degree
nj – once we’ve matched the terms of deg n, all the rest cancels, so we can
throw it away.) Now complicated formula gives

y ∈ In−c(IcM ∩N). (3.39)

Complicated formula is [Matsumura, p. 59, line -8]:

y =
∑
i

fi(a)mi =
∑
j

pj(a)
∑
i

uji(a)mi (3.40)

where the first sum consists of elements of In−nj and the second sum of
elements of Inj ∩N . QED

Corollary 3.7 The I-adic topology on M and induces a subspace topology
on N ⊂ M . Under the current assumptions that A is Noetherian and M
finite over A, the induced topology on N coincides with the I-adic topology
on N .
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3.4 Exactness of I-adic completion

The point of the Artin–Rees lemma is that it allows us to use the argument
of Proposition 3.5 under a slightly weaker assumption: rather than insisting
that all Pi+1 → Pi are surjective, we only require the weaker “surjective in
the limit” given by the Artin–Rees lemma, that Pi is in Ic times the image
of Pi+c for some fixed c.

====

I should have treated tensor product and flatness in the

earlier prerequite sections. Under Noetherian and finite

assumptions (so that Artin-Rees is applicable), the

completion Mhat coincides with Ahat tensor M, and

M -> Mhat is an exact functor on modules, so that Ahat is

a flat A-module.

Exactness, I-adic completion is an exact functor,

the I-adic completion A^ of A is a flat A-algebra

M_n = M/(I^n*M). In particular, working with I-adic

completions, we know that if L in M is a submodule then

L^ in \Mhat is a submodule, and (L^)/(\Mhat) = (L/M)^.

Let A be a ring and I an ideal of A. We have just seen

that I-adic completion gives an exact functor on

A-modules. At the same time, it is clear that the I-adic

completion \Mhat is a module over A^, and is the same

thing as M tensor A^.

The exactness result just proved for I-adic localisations

implies that A^ is a flat A-algebra.

====

Comparison with exactness statements for S^-1 and flatness of

S^-1A.

For A a ring and S a multiplicative sequence, we know how to

construct the partial ring of fractions S^-1A. We can make

essentially the same construction for an A-module M, obtaining

an A-module S^-1M. It consists of expressions {m/s} modulo the

same kind of equivalence relation, and the construction gives
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that S^-1M is an A-module on which every s in S acts

bijectively. This means that S^-1M is also an S^-1A-module,

and in fact one sees that S^-1M = S^-1A tensor_A M.

Proposition. Let S be a multiplicative set in A and suppose

that morphisms al: L -> M and be: M -> N give a sequence L ->

M -> N that is exact (only in the middle, im(al) = ker(be)).

Then al, be induce an exact sequence S^-1L -> S^-1M -> S^-1N

of localised modules (with morphisms al’ and be’).

In particular, working with localisation, we know that if L in

M is a submodule then S^-1L in S^-1M is a submodule, and

(S^-1L)/(S^-1M) = S^-1(L/M).

Proof from [UCA], 6.6. Suppose m/s in S^-1M. Then

be’(m/s) = 0 <=> exists u in S such that u*be(m) = 0

<=> exists u in S such that be(u*m) = 0.

Now since im(al) = ker(be) in L -> M -> N, this happens

<=> exists u in S and exists n in L s.t. u*m = al(n)

<=> m/s = al’(n/u*s). Q.E.D.

Localisation S^-1 applied to M can be thought of as

S^-1M = S^-1A tensor M, and the exactness statement just

proved can be stated as S^-1A is a flat A-algebra.
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