MA4J8 Commutative algebra II

Lectures 7–8. Completion

The material here is mostly taken from [A&M], Chapter 10, [Matsumura] Section 8. Or see [Schlichting] Chapter 2

Informal discussion – why modules?

To study a ring A, we may need to do linear algebra inside A, but also in all kinds of structures related to A: its ideals I, how the I are generated, the quotients A/I, the relations between the generators of I, eventually tensor products $A \otimes A$, derivations and differentials, and much more. We might as well go the whole hog and do linear algebra systematically in modules over A.

Why completions? Let A be a ring and M an A-module. Suppose we are told M = IM for an ideal I of A. Can we deduce that M = 0?

Take $m \in M$. Then $m = \sum a_i m_i$ with $a_i \in I$ and $m_i \in M$. On the other hand, the same argument applies to each m_i : if $m_i = \sum b_{ij} m_j$ then $m = \sum_{i,j} a_i b_{ij} m_j$, so that $M = I^2 M$, then $M = I^3 M$. This is getting ridiculous! Surely continuing the argument gives M = 0? Not so. For example, it may happen that I contains invertible elements, in which case M = IM tells us nothing.

That's not the right way to go. I remind you of a basic result.

Lemma 3.1 (Nakayama's lemma) Suppose M is finite (that is, finitely generated as A-module) and M = IM. Then there exists $a \in A$ with $a-1 \in I$ such that aM = 0

Proof (the "determinant trick") Choose generators m_1, \ldots, m_n such that

$$M = \sum Am_i. (3.1)$$

Then each $m_i \in M$, so $m_i \in IM$. Hence there exists elements $a_{ij} \in I$ with $m_i = \sum a_{ij}m_j$. Rewrite this as

$$\sum (\delta_{ij} - a_{ij}) m_j = 0 \quad \text{where } \delta \text{ is the Kronecker delta.}$$
 (3.2)

Write N for the $n \times n$ matrix $N = \{de_{ij} - a_{ij}\}$. Recall the standard linear algebra formula $N^{\dagger} \cdot N = (\det N) \operatorname{Id}_n$, where N^{\dagger} is the adjugate matrix of N (made up of $(n-1) \times (n-1)$ cofactors).

Multiply (3.2) by N_{jk}^{\dagger} and sum over j to get $(\det N)m_j=0$ for all j, hence $(\det N)\cdot M=0$. This is what we wanted:

$$a = \det N \quad \text{has} \quad aM = 0 \text{ and } a \equiv 1 \mod I.$$
 (3.3)

Another failed argument: Let $A \subset B$ be a finite extension ring. Required to prove that $b \in B$ is integral over A. The argument you used in Galois theory was easy: since B is finite over A there is a linear dependence relation between the powers $\{1, b, b^2, \ldots, b^n\}$, and you can divide through by the leading coefficient to make it monic. That doesn't work with A an integral domain, because you may not be able to divide through. But it goes through in a straightforward way if you apply the determinant trick.

Completion

The idea of completion is to work with formal power series in place of polynomials. For example, $k[x_1, \ldots, x_n]$ as a substitute for $k[x_1, \ldots, x_n]$ or p-adics \mathbb{Z}_p in place of the subring $\mathbb{Z}_{(p)} \subset \mathbb{Q}$. The word "formal" reflects that we allow all infinite power series, ignoring convergence – this is the same idea as replacing a differentiable function by its Taylor series to all orders. These formal rings are bigger (usually uncountably so), but much simpler in structure. Any nonsingular point $P \in X$ of any algebraic variety or complex analytic space (independently of X, or $P \in X$) has a small neighbourhood isomorphic to a ball around $0 \in \mathbb{C}^n$, and formal functions on it make up the completed ring $\mathbb{C}[[x_1, \ldots, x_n]]$. Completion is thus a much more drastic form of localisation.

As an algebraic process, completion passes from a filtration such as the I-adic filtration $M \supset IM \supset \cdots \supset I^nM$ to the inverse limit proj $\lim M/I^nM$ or $\varprojlim M/I^nM$ I run through the theory in the following lecture. For now, I want to discuss the finished product and the advantages of working with it.

Definition 3.2 (first attempt) Let A be a ring and I an ideal. We say that A is I-adically complete to mean that

$$A = \varprojlim_{n} A/I^{n}. \tag{3.4}$$

This means

(I) an element $f \in A$ is uniquely determined by its class in A/I^n for every n;

(II) if $\{f_n \in A/I^n\}_{n \in \mathbb{N}}$ is a compatible sequence of elements mod I^n then there is $f \in A$ that maps to f_n for every n.

Here compatible means that for m > n, the element $f_m \in A/I^m$ reduces modulo I^n to $f_n \in A/I^n$. An alternative way of stating (II) is as a sequence $\{F_n\}$ of elements of A with the Cauchy sequence property:

for every N > 0, there exists n_0 such that for all $n, m \ge n_0$ the difference $F_n - F_m \in I^N$.

This puts I-adic completion on a footing that is similar in overall logic to completion in a metric space.

The real motivation for completion is to solve problems in A[b] by term-by-term calculations. Thus for example, if a_0 is invertible in A, you can find the inverse of $a_0 + a_1t + \cdots$ by calculating successive coefficients. Or if a_0 is a perfect square in A (and the n! are invertible), then you can take the square root of $a_0 + a_1 * t + \cdots$ using the binomial theorem and term-by-term approximation.

The highpoint is Hensel's Lemma: this says that, under appropriate conditions, if you can solve a polynomial equations modulo m (so over the residue field k = A/m), you can solve it over A.

Theorem 3.3 (Hensel's lemma) Let (A, m, k) be a local ring, and assume that A is m-adically complete.

Let $F(x) \in A[x]$ be a monic polynomial, and set $\overline{F} = f \in k[x]$. (That is, reduce the coefficients of $F \in A[x]$ modulo m.) Suppose f factors as f = gh with $g, h \in k[x]$ monic and coprime.

Then F has a factorisation F = GH where $G, H \in A[x]$ are such that

$$\overline{G} = g \quad and \quad \overline{H} = h.$$
 (3.5)

Applying this with a linear factor g(x) = x - r gives the corollary that if the reduction of $f(x) \in k[x]$ has a simple root $r \in k$ (a root such that x - r is coprime to f(x)/(x-r)), then $F(x) \in A[x]$ has a root $R \in A$ that reduces to $r \mod m$.

For example, if a polynomial $f \in \mathbb{Z}[x]$ has a simple solution when viewed as a congruence modulo p, it has a root in the ring \mathbb{Z}_p of p-adic integers. This version of Hensel's lemma is popular with algebraic number theorists.

Preliminary step in proof First, suppose $\deg g = n$ and $\deg h = m$. Then g, h coprime in k[x] means I can choose polynomials a, b with

$$\deg a \le m-1 \text{ and } \deg b \le n-1 \text{ such that } ag+bh=1.$$
 (3.6)

In fact polynomials of degree $\leq n+m-1$ form a vector space of dimension (n+m) over k, and

$$(1, x, \dots, x^{m-1})g, \quad (1, x, \dots, x^{n-1})h$$
 (3.7)

are n+m elements in it that are linearly independent, hence a basis.

Setting up the induction step Start from the assumption f = gh, and choose $G_1, H_1 \in A[x]$ that reduce modulo m to $g, h \in k[x]$ and are still monic of the same degree. Then reducing mod m gives

$$F - G_1 H_1 \in mA[x]$$
, that is, $F - G_1 H_1 = \sum m_i U_i$ (3.8)

with $m_i \in m$, and $U_i \in k[x]$ polynomials with deg $U_i < \deg F$.

I show how to modify G_1, H_1 to G_2, H_2 by adding corrections in m to achieve

$$F - G_2 H_2 \in m^2 A[x]. (3.9)$$

This is elementary algebra in k[x]: for each i, write $u_i \in k[x]$ for the reduction of $U_i \mod m$, and use the a, b provided by (3.6) to give ag + bh = 1,

$$gau_i + hbu_i = u_i. (3.10)$$

The sum is obviously unaffected by subtracting a multiple of h from au_i and adding the same multiple of g to bu_i :

$$gv_i + hw_i = u_i$$
, where $v_i = au_i - ch$ and $w_i = bu_i + cg$. (3.11)

I choose c to reduce au_i to

$$v_i = au_i - ch$$
 with $\deg v_i < \deg h$. (3.12)

Then since u_i and gv_i both have degree $< \deg f$, the same goes for hw_i .

Now choose lifts $V_i, W_i \in A[x]$ of the v_i, w_i of (3.11), of the same degrees, and modify G_1, H_1 by setting:

$$G_2 = G_1 + \sum m_i W_i$$
 and $H_2 = H_1 + \sum m_i V_i$ (3.13)

using the same coefficients m_i as in (3.8). Then comparing with (3.8) gives

$$F-G_2H_2=F-G_1G_2-\sum m_i(G_1V_1+H_1W_1)-m_i^2V_1W_1\in m^2A[x]. \eqno(3.14)$$

In each term of the sum, I have subtracted off a term that modulo m^2 cancels the m_iU_i of (3.8) in view of (3.11), and the final cross term m_i^2 is in $m^2A[x]$.

The inductive step from G_n, H_n satisfying $F - G_n F_n \in m^n A[x]$ to G_{n+1}, H_{n+1} repeats the above argument point by point.

Each step only modifies G_n and H_n by terms in $m^n A[x]$, so that both sequences are Cauchy sequences for the m-adic topology. Q.E.D.

Lectures 9-10. The Artin–Rees lemma: More on completions

I discussed completion in general terms last time, and described Hensel's lemma as a major consequence. Now I treat it more formally.

A directed set Λ is a partially ordered set so that any two $\lambda, \mu \in \Lambda$ have a bound $\nu \in \Lambda$, with $\lambda, \mu \leq \nu$. The case $\Lambda = \mathbb{N}$ would be perfectly adequate and in practice is the main one.

Let A be a ring and M an A-module. The starting point is a set $\{M_{\lambda}\}_{{\lambda} \in \Lambda}$ of submodules of M indexed by a directed set Λ , with $M_{\mu} < M_{\lambda}$ for every $\mu > la$. (Finer and finer as μ gets bigger.)

- **Lemma 3.4** (1) There is a topology on M (the linear topology corresponding to $\{M_{\lambda}\}$) determined by
 - (a) the $\{M_{\lambda}\}\$ form a basis for the neighbourhoods of 0, and
 - (b) the module operations are continuous.
 - (2) If we give the quotients M/M_{λ} the discrete topology, the quotient maps $M \to M/M_{\lambda}$ are continuous.
 - (3) The topology is separated (Hausdorff) if and only if the intersection of the M_{λ} is zero $\bigcap_{\lambda \in \Lambda} M_{\lambda} = 0$.

Proof (1) Requiring addition by $x \in M$ to be continuous ensures that every $x \in M$ has a basis of neighbourhoods given by the cosets $\{x + M_{\lambda}\}$.

The "directed" property of Λ gives that the intersection $M_{\lambda} \cap M_{\mu}$ contains M_{ν} , so is still a neighbourhood of 0.

- (2) For any of the quotient maps $M \to M/M_{\lambda}$, the inverse image of any subset of the quotient is a union of cosets $x + M_{\lambda}$, so open.
- (3) The topology separates $x, y \in M$ if and only if there exists M_{λ} not containing x y. \square

Construction of completion The $\{M_{\lambda}\}$ correspond to the inverse system

$$M/M_{\mu} \to M/M_{\lambda}$$
 that takes $x \mod M_{\mu}$ to $x \mod M_{\lambda}$. (3.15)

The completion of M w.r.t. the topology $\{M_{\lambda}\}$ is defined as the inverse limit $\widehat{M} = \lim_{\lambda \to \infty} M/M_{\lambda}$. This consists of compatible sequences of elements

$$\{x_{\lambda} \in M/M_{\lambda}\}_{{\lambda} \in \Lambda}$$
 such that $x_{\mu} \mapsto x_{\lambda}$ for every ${\mu} > {\lambda}$. (3.16)

There is a homomorphism $M \to \widehat{M}$ that takes $x \in M$ to the constant sequence $x \mod M_{\lambda}$ for all λ . This has kernel the intersection $\bigcap_{\lambda \in \Lambda} M_{\lambda}$. In any argument, if we assume $\bigcap M_{\lambda} = 0$, we can work with M as a submodule $M \subset \widehat{M}$. Otherwise, we have to divide M by the kernel $\bigcap M_{\lambda}$ to get its image in \widehat{M} .

By construction, \widehat{M} has a surjective homomorphism to each M/M_{λ} . The kernel of $\widehat{M} \to M/M_{\lambda}$ is the completion $(M_{\lambda})^{\hat{}}$ of the submodule $M_{\lambda} \subset M$ w.r.t. to the subspace topology. These kernels in turn induces a topology on \widehat{M} with $\widehat{M}/(M_{\lambda})^{\hat{}} = M/M_{\lambda}$. The inverse limit of this sequence of quotients is of course \widehat{M} itself, which shows that \widehat{M} is complete w.r.t. its induced topology.

The particular case M=A starts from a filtration of A by ideals I_{λ} and leads to the completion $\widehat{A}=\varprojlim A/I_{\lambda}$, which is a ring having a surjective map $\widehat{A}\to A/I_{\lambda}$ to each of the quotient rings A/I_{λ} .

3.1 Philosophy

This type of completion in terms of inverse limit appears in all areas of math. For example, consider all the rational roots of unity in \mathbb{C}^{\times} . This is the union (= direct limit) of the μ_n (the cyclic group of nth roots of 1, generated by $\exp \frac{2\pi i}{n}$) with inclusions $\mu_n \hookrightarrow \mu_{mn}$: the roots of $z^{mn} = 1$ include the roots of $z^n = 1$ as a subgroup. Since the μ_n form a direct system, their character groups

$$\mathbb{Z}/n = \operatorname{Hom}(\boldsymbol{\mu}_n, \mathbb{C}^{\times}) \tag{3.17}$$

form an inverse system $\mathbb{Z}/nm \to \mathbb{Z}/n$ (the homomorphisms take an integer $x \mod nm$ to $mx \mod n$), whose inverse limit $\varprojlim \mathbb{Z}/n = \widehat{Z}$ is the *profinite completion* of \mathbb{Z} . This is an uncountable group, equal to the direct product over all p of the p-adic integers \mathbb{Z}_p .

You know that the real line \mathbb{R} is the universal cover of the unit circle, with $\mathbb{R} \to S^1 \subset \mathbb{C}^\times$ given by $exp(2\pi i\theta)$, having the kernel $\mathbb{Z}^+ = \pi_1 S^1$. The exponential function is not algebraic. But in algebra I can define the usual n-fold cover $z \mapsto z^n$ as a map $\mathbb{C}^t imes \to \mathbb{C}^t imes$ or $S^1 \to S^1$, with the advantage that these are algebraic varieties and morphisms, and correspond to the inverse system $\mathbb{C}^t imes/\mu_{mn} \to \mathbb{C}^t imes/\mu_n$ for all n.

This idea replaces the exponential cover $\mathbb{C}^+ \to \mathbb{C}^\times$ or $\mathbb{R}^+ \to S^1 \subset \mathbb{C}^\times$ familiar in analysis or topology by the algebraic inverse limit $\varprojlim \mathbb{C}^\times / mu_n$ which is "much bigger". For example, the inverse image of the identity $1 \in \mathbb{C}$ (corresponding to $0 \in \mathbb{R}$) is uncountable: it contains the profinite completion of the μ_n , a group that is isomorphic to \widehat{Z} (the argument depend the axiom of choice), but with a nontrivial structure of Galois module ("Tate module").

As you know, a finite Galois field extension $K \subset L$ has a finite Galois group $\operatorname{Gal}(L/K)$. Now an infinite Galois extension $K \subset L$ is the union (= direct limit) of normal finite subfields L_i : in fact each individual element $x \in L$ is algebraic, so belongs to a finite extension, and to the corresponding normal subfield (the splitting field of the minimal polynomial of x). The Galois group $\operatorname{Gal}(L/K)$ takes each normal finite subfields L_i to itself, so has a surjective map $\operatorname{Gal}(L/K) \to \operatorname{Gal}(L_i/K)$ to the finite Galois group of the extension L_i , and this makes $\operatorname{Gal}(L/K) = \varprojlim \operatorname{Gal}(L_i/K)$, which is therefore a profinite group: Everything to do with the group is determined by its finite quotients, but these get bigger and bigger, and there are infinitely many of them – the inverse limit is uncountable, because an element of it make a choices of element of each of the infinitely many finite groups $\operatorname{Gal}(L_i/K)$.

The group $\operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$ is a central object of study in algebraic number theory. For example, Wiles' 1994 proof of Fermat's Last Theorem depended on work on the representation theory of $\operatorname{Gal}(QQbar/QQ)$, in particular Serre's conjecture that its algebraic representations are "modular". (The progress since Wiles' work has only solved a small fraction of this conjecture.)

3.2 Exactness properties of completion

The next issue is the following question on exactness: suppose

$$0 \to N \hookrightarrow M \twoheadrightarrow M/N \to 0 \tag{3.18}$$

is a short exact sequence (s.e.s.) of A-modules. This means $N \subset M$ with quotient module M/N. Suppose we take the completion of N, M, M/N (with respect to some topology specified later). Under what circumstances can we prove that

$$0 \to \widehat{N} \hookrightarrow \widehat{M} \twoheadrightarrow (M/N)^{\widehat{}} \to 0 \tag{3.19}$$

is again a short exact sequence?

Let me give a formal argument first, and understand what exactly it proves later. We know the Snake Lemma: for a commutative diagram

$$0 \rightarrow P \rightarrow Q \rightarrow R \rightarrow 0$$

$$c_{P} \downarrow c_{Q} \downarrow c_{R} \downarrow$$

$$0 \rightarrow P' \rightarrow Q' \rightarrow R' \rightarrow 0$$

$$(3.20)$$

with the two horizontal rows short exact sequence, the kernels and cokernels of the down maps give a long exact sequence

$$0 \to \ker c_P \to \ker c_Q \to \ker c_R \xrightarrow{\delta}$$

$$\to \operatorname{coker} c_P \to \operatorname{coker} c_Q \to \operatorname{coker} c_R \to 0.$$
(3.21)

For this you have to think through how the boundary map

$$\delta \colon \ker c_R \to \operatorname{coker} c_P$$
 (3.22)

is defined: lift an element of $\ker c_R \subset R$ to Q anyhow, map it down by c_Q to an element of Q' that goes to $0 \in R'$, so belongs to P', then check the result is independent of the choice, and that the resulting sequence is exact.

The argument of [A&M] applies this to an exact sequence of inverse systems. Define an inverse system to be a system of A-modules P_i with homomorphisms $\pi_{i+1} : P_{i+1} \to P_i$, initially with no further assumptions. Its inverse limit $\widehat{P} = \lim_{i \to \infty} P_i$ is defined as the set of compatible sequences

$$\{x_i \in P_i\}$$
 with $\pi_{i+1}(x_{i+1}) = x_i$ for every i . (3.23)

Fact By definition, the inverse limit $\widehat{P} = \varprojlim P_i$ is the set of compatible sequences of elements of P_i , which is the same thing as the kernel of the homomorphism

$$c_P \colon \prod_i P_i \to \prod_i P_i \tag{3.24}$$

of direct products, where c_P takes

a sequence
$$\{x_i\} \mapsto \text{new sequence } \{\pi_{i+1}(x_{i+1}) - x_i\}.$$
 (3.25)

To unwrap this, at the end of the sequence,

the image of
$$\{\ldots, x_2, x_1\}$$
 is $\{\ldots, \pi(x_3) - x_2, \pi(x_2) - x_1\}$. (3.26)

Taking ker c_P imposes on the sequence $\{x_i\}$ the conditions that $\pi(x_2) = x_1$, then $\pi(x_{i+1}) = x_i$ for each i, which means exactly that the sequence is compatible.

Note this refers specifically to the direct product of the P_i : any elements x_i are allowed at each i (including infinitely many different choices), as opposed to the usual direct sum of algebra, that assumes only finitely many x_i are nonzero.

A homomorphism $P \to Q$ between inverse systems P and Q is a system of homomorphisms $f_i \colon P_i \to Q_i$ for each i that form commutative squares

$$P_{i+1} \rightarrow Q_{i+i}$$

$$\downarrow \qquad \downarrow$$

$$P_{i} \rightarrow Q_{i}$$

$$(3.27)$$

with the down maps π_i . It is clear that this induces a homomorphism $\widehat{P} \to \widehat{Q}$ of the respective inverse limits.

A short exact sequence of inverse systems $0 \to P \to Q \to R \to 0$ is given by a pair of homomorphisms $f: P \hookrightarrow Q$ and $g: Q \twoheadrightarrow R$ of inverse systems such that for each i the homomorphisms f_i and g_i give short exact sequences

$$0 \to P_i \to Q_i \to R_i \to 0. \tag{3.28}$$

This means of course simply that $f_i: P_i \hookrightarrow Q_i$ is injective, and g_i is the corresponding quotient homomorphism $g_i: Q_i \to R_i = Q_i/f_i(P_i)$. The fact just discussed, together with the snake lemma implies the following result:

Proposition 3.5 (Exactness I) (1) A s.e.s. of inverse systems

$$0 \to P \to Q \to R \to 0 \tag{3.29}$$

induces an exact sequence

$$0 \to \widehat{P} \to \widehat{Q} \to \widehat{R} \tag{3.30}$$

between their completions.

(2) If moreover the morphisms $\pi_{i+1} \colon P_{i+1} \to P_i$ in the inverse system P are all surjective, then

$$0 \to \widehat{P} \to \widehat{Q} \to \widehat{R} \to 0 \tag{3.31}$$

is again a short exact sequence.

(1) comes directly from the snake lemma. For (2), we just need to deduce that c_P is surjective from the given assumption that all $\pi_{i+1} : P_{i+1} \to P_i$ are surjective. That is, given a sequence $\{a_i \in P_i\}$, we require to find a sequence of elements $\{x_i \in P_i\}$ with $c_P(x_i) = a_i$.

This is straightforward given the surjectivity of the π_i . For choose $x_1 = 0$, then $x_2 \in P_2$ with $\alpha_2(x_2) = a_1$. At each successive step, we have the target $a_i \in P_i$, and the current choice of $x_i \in P_i$ (that we used to cover a_{i-1}). So choose

$$x_{i+1} \in P_{i+1}$$
 such that $\alpha_{i+1}(x_{i+1}) = a_i + x_i$. (3.32)

Then of course c_P applied to the sequence ..., $x_{i+1}, x_i, ..., x_1$ has the i entry $\alpha_{i+1}(x_{i+1}) - x_i = a_i$. This constructs by induction a sequence $\{x_i \in P_i\}$ such that $c_p(x_i) = a_i$. Q.E.D.

3.3 The Artin–Rees lemma

Compare [Matsumura, p. 59].

There is still a gap in applying the Exactness Proposition 3.5 to I-adic completions: the assumptions of the Proposition is that we have three inverse systems P, Q, R with short exact sequences $0 \to P_i \to Q_i \to R_i \to 0$ for each i. Unfortunately however, what we have in applications is not quite this. We start from a submodule,

$$N \subset M$$
 and the quotient M/N , (3.33)

take the I-adic filtrations of the three modulse

$$I^n N$$
, $I^n M$ and $I^n (M/N)$, (3.34)

and the inverse systems corresponding to the quotients. It is not true that these filtrations form short exact sequences for each n.

The Artin–Rees lemma bridges this gap: under the standard finiteness assumptions of commutative algebra, it gives a compatibility between the I-adic filtration $\{I^nN\}$ of the submodule N and the restriction to N of the I-adic filtration $\{I^nM\}$ of the module M.

Theorem 3.6 (Artin–Rees lemma) Assume A is Noetherian and I an ideal of A. Let M be a finite module and $N \subset M$ a submodule.

Then there exists c > 0 such that

$$I^n M \cap N = I^{n-c}(I^c M \cap N) \quad \text{for every } n > c.$$
 (3.35)

Proof The inclusion \supset is clear.

The coefficients f_1, \ldots, f_s of an element $\sum_j f_j(a) m_j \in I^n M$ make up an s-tuple in the Noetherian module B^s . To use the Noetherian machinery, as in the proof of the Hilbert basis theorem, define the submodule $J_n \subset B^s$ for each n by

$$J_n = \left\{ (f_1, \dots, f_s) \in B^s \,\middle| \, \begin{array}{c} \text{the } f_j \text{ are homogeneous of} \\ \text{degree } n, \text{ and } \sum f_j(a)m_j \in N \end{array} \right\}.$$
 (3.36)

We see by construction that $\sum f_j(a)m_j \in N$, and is also in I^nM .

Take the union $U = \bigcup_n J_n$ over all n and the ideal C generated by U.

[The key point:] Since B^s is a Noetherian B-module, the ideal C is finitely generated: there are finitely many elements $u_1, \ldots, u_t \in U$ such that

$$C = Bu_1 + \dots + Bu_t \tag{3.37}$$

with each u_j an s-tuple of homogeneous elements of B of some degree n_j , say $u_j = (u_{j_1}, \dots u_{j_s}) \in J_{n_j}$.

Setting $c = \max n_j$ gives us the c in the statement. It only remains to wrap up the conclusion. Suppose given $y \in I^n M \cap N$. We can certainly write $y = \sum f_i(a)m_i$ with $f_i \in B$ homogeneous of degree n, and hence the s-tuple $(f_1, \ldots f_s) \in J_n n$ (by definition of J_n). But J_n is in the B-module C, so is a B-linear combination of the generators u_j . That is,

$$(f_1, \dots f_s) = \sum p_j(x)u_j \tag{3.38}$$

for some polynomials $p_j \in B = A[x_1, \ldots, x_r]$. Now replacing each p_j by its homogeneous part of degree $n-n_j$ does not change the equality. (Because the f_i are all homogeneous of degree n and the u_j homogeneous of degree n_j – once we've matched the terms of deg n, all the rest cancels, so we can throw it away.) Now complicated formula gives

$$y \in I^{n-c}(I^c M \cap N). \tag{3.39}$$

Complicated formula is [Matsumura, p. 59, line -8]:

$$y = \sum_{i} f_{i}(a)m_{i} = \sum_{j} p_{j}(a) \sum_{i} u_{ji}(a)m_{i}$$
 (3.40)

where the first sum consists of elements of I^{n-n_j} and the second sum of elements of $I_j^n \cap N$. QED

Corollary 3.7 The I-adic topology on M and induces a subspace topology on $N \subset M$. Under the current assumptions that A is Noetherian and M finite over A, the induced topology on N coincides with the I-adic topology on N.

3.4 Exactness of *I*-adic completion

The point of the Artin–Rees lemma is that it allows us to use the argument of Proposition 3.5 under a slightly weaker assumption: rather than insisting that all $P_{i+1} \to P_i$ are surjective, we only require the weaker "surjective in the limit" given by the Artin–Rees lemma, that P_i is in I^c times the image of P_{i+c} for some fixed c.

====

I should have treated tensor product and flatness in the earlier prerequite sections. Under Noetherian and finite assumptions (so that Artin-Rees is applicable), the completion Mhat coincides with Ahat tensor M, and M \rightarrow Mhat is an exact functor on modules, so that Ahat is a flat A-module.

Exactness, I-adic completion is an exact functor, the I-adic completion ${\tt A} \hat{\ }$ of A is a flat A-algebra

Let A be a ring and I an ideal of A. We have just seen that I-adic completion gives an exact functor on A-modules. At the same time, it is clear that the I-adic completion \M hat is a module over A^, and is the same thing as M tensor A^.

The exactness result just proved for I-adic localisations implies that $\mbox{A}^{\hat{}}$ is a flat A-algebra.

====

Comparison with exactness statements for S^-1 and flatness of S^-1A.

For A a ring and S a multiplicative sequence, we know how to construct the partial ring of fractions $S^{-1}A$. We can make essentially the same construction for an A-module M, obtaining an A-module $S^{-1}M$. It consists of expressions $\{m/s\}$ modulo the same kind of equivalence relation, and the construction gives

that S^-1M is an A-module on which every s in S acts bijectively. This means that S^-1M is also an S^-1A -module, and in fact one sees that $S^-1M = S^-1A$ tensor_A M.

Proposition. Let S be a multiplicative set in A and suppose that morphisms al: L -> M and be: M -> N give a sequence L -> M -> N that is exact (only in the middle, im(al) = ker(be)). Then al, be induce an exact sequence $S^-1L -> S^-1M -> S^-1N$ of localised modules (with morphisms al' and be').

In particular, working with localisation, we know that if L in M is a submodule then S^-1L in S^-1M is a submodule, and $(S^-1L)/(S^-1M) = S^-1(L/M)$.

Proof from [UCA], 6.6. Suppose m/s in S^-1M. Then be'(m/s) = 0 <=> exists u in S such that u*be(m) = 0 <=> exists u in S such that be(u*m) = 0. Now since im(al) = ker(be) in L -> M -> N, this happens <=> exists u in S and exists n in L s.t. u*m = al(n) <=> m/s = al'(n/u*s). Q.E.D.

Localisation S^-1 applied to M can be thought of as $S^-1M = S^-1A$ tensor M, and the exactness statement just proved can be stated as S^-1A is a flat A-algebra.