
MA4J8 Commutative algebra II

Week 3 – Completion and the Artin–Rees lemma

The material here mostly comes from [A&M, Chapter 10] or [Matsumura,
Section 8].

3.1 Introductory discussion

The idea of completion is to work with formal power series in place of poly-
nomials. For example, k[[x1, . . . , xn]] as a substitute for k[x1, . . . , xn] or
p-adics Zp in place of the subring Z(p) ⊂ Q. The word “formal” reflects
that we allow all infinite power series, ignoring convergence – this is the
same idea as replacing a differentiable function by its Taylor series to all
orders. These formal rings are bigger (usually uncountably so), but much
simpler in structure. Any nonsingular point P ∈ X of any algebraic variety
or complex analytic space (independently of X, or P ∈ X) has a small
neighbourhood isomorphic to a ball around 0 ∈ Cn, and formal functions on
it make up the completed ring C[[x1, . . . , xn]]. The same idea applies to the
formal neighbourhood of a point on a singular variety. Completion is thus
a drastic form of localisation.

As an algebraic process, completion passes from a filtration such as the
I-adic filtration (that is, the descending chain of submodules M ⊃ IM ⊃
· · · ⊃ InM ⊃ · · · ) to the inverse limit

lim←−M/InM also written proj limM/InM. (3.1)

(In LaTeX, the first is \varprojlim, the second is \projlim, for projective
limit.) I run through the construction below. For now, I want to discuss the
finished product and the advantages of working with it.

Definition 3.1 (first attempt) Let A be a ring and I an ideal. We say
that A is I-adically complete to mean that

A = lim←−
n

A/In. (3.2)

This means

(I) an element f ∈ A is uniquely determined by its class in A/In for every
n; in other words,

⋂
n I

n = 0.
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(II) If {fn ∈ A/In}n∈N is a compatible sequence of elements mod In then
there is f ∈ A that maps to fn for every n.

Here compatible means that for m > n, the element fm ∈ A/Im reduces
modulo In to fn ∈ A/In. An equivalent statement of (II) is as a sequence
{fn} of elements of A with the formal Cauchy sequence property:

for every N > 0, there exists n0 such that
for all n,m ≥ n0 the difference fn − fm ∈ IN .

In overall logic, this puts I-adic completion on a similar footing to comple-
tion in a metric space.

The real motivation for completion is to solve problems in A[[t]] using
term-by-term calculations. Thus for example, if a0 is invertible in A, you can
find the inverse of a0 + a1t+ · · · by calculating successive coefficients. Or if
a0 is a perfect square in A (and the n! are invertible), then you can take the
square root of a0 + a1t+ · · · using the binomial theorem and term-by-term
approximation.

3.2 Application: Hensel’s Lemma

The highpoint is Hensel’s Lemma: under appropriate conditions, if you can
solve a polynomial equations modulo m (so over the residue field k = A/m),
you can solve it over A.

Theorem 3.2 (Hensel’s lemma) Let (A,m, k) be a local ring, and sup-
pose that A is m-adically complete.

Let F (x) ∈ A[x] be a monic polynomial, and set F = f ∈ k[x]. (That is,
reduce the coefficients of F ∈ A[x] modulo m.) Suppose f factors as f = gh
with g, h ∈ k[x] monic and coprime.

Then F has a factorisation F = GH where G,H ∈ A[x] are still monic,
and satisfy

G = g and H = h. (3.3)

Applying this with a linear factor g(x) = x− r of F gives the corollary
that if the reduction f(x) ∈ k[x] of F (x) ∈ A[x] has a simple root r ∈ k,
then F (x) ∈ A[x] has a root in A that reduces to r mod m. Here simple
root means a root of f(x) ∈ k[x] such that x− r is coprime to f(x)/(x− r),
or equivalently, the derivative f ′(x) 6= 0.

For example, if a polynomial f ∈ Z[x] has a simple root r when viewed
as a congruence modulo p, this r lifts to a root in the ring Zp of p-adic
integers.1 This version of Hensel’s lemma is popular with number theorists.

1Do a few of the exercises, which are quite fun.
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Preliminary step in proof Write deg g = n and deg h = m. Then g, h
coprime in k[x] means I can choose polynomials a, b with

deg a ≤ m− 1 and deg b ≤ n− 1 such that ag + bh = 1. (3.4)

You know how to prove this by repeated division with remainder (the
Euclidean algorithm). A direct alternative argument: polynomials of degree
≤ n+m− 1 form a vector space of dimension n+m over k, and

(1, x, . . . , xm−1)g, (1, x, . . . , xn−1)h (3.5)

are n+m linearly independent elements in it: in fact, since k[x] is a UFD,
a relation αg + βh = 0 would give a common factor c = g

β = − j
α between

them. Hence they form a basis, and 1 is a linear combination of g, h.

The induction step Starting from f = gh, choose G1, H1 ∈ A[x] that
are monic of the same degree as g, h ∈ k[x] and reduce to them modulo m.
Reducing mod m gives

F −G1H1 ∈ mA[x], that is, F −G1H1 =
∑

miUi (3.6)

with mi ∈ m, and Ui ∈ k[x] polynomials with degUi < degF .
I show how to cancel each Ui mod m, modifying G1, H1 to G2, H2 by

adding corrections in m, to achieve

F −G2H2 ∈ m2A[x]. (3.7)

This is elementary algebra in k[x]: for each i, write ui ∈ k[x] for the
reduction of Ui mod m, and use the a, b with ag + bh = 1 provided by (3.4)
to obtain

gaui + hbui = ui. (3.8)

Division with remainder gives aui = hq+ vi, with quotient q and remainder
vi of degree < deg h. I then rewrite (3.8) as

g(vi + hq) + h(wi − gq) = ui where wi = bui − gq.
so that gvi + hwi = ui.

(3.9)

Here ui and gvi both have degree < deg f , so that also deg hwi < deg f .
Now choose lifts Vi,Wi ∈ A[x] of the vi, wi of (3.9), of the same degrees,

and modify G1, H1 by setting:

G2 = G1 +
∑

miWi and H2 = H1 +
∑

miVi (3.10)
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using the same coefficients mi as in (3.6). Comparing with (3.6) gives

F−G2H2 = F−G1H1−
∑

mi(G1V1+H1W1)−m2
iV1W1 ∈ m2A[x]. (3.11)

Each term of the sum subtracts off a term that cancels the miUi of (3.6)
modulo m2 by (3.9), and the final term m2

i is in m2A[x].
The inductive step from Gn, Hn satisfying F − GnFn ∈ mnA[x] to

Gn+1, Hn+1 repeats the above argument verbatim.
Each step only modifies Gn and Hn by terms in mnA[x], so that both

sequences are Cauchy sequences for the m-adic topology. Q.E.D.

3.3 General theory of completion

I introduced completion in simple-minded terms above, and described Hensel’s
lemma as a major consequence. Now I treat it more formally.

A directed set Λ is a partially ordered set so that any two λ, µ ∈ Λ have
a bound ν ∈ Λ, that is, λ, µ ≤ ν.

Let A be a ring and M an A-module. The starting point is a set {Mλ}λ∈Λ

of submodules of M indexed by a directed set Λ, with Mµ < Mλ for every
µ > λ. (Finer and finer as µ gets bigger, so that M/Mµ �M/Mλ.)

The case Λ = N would be perfectly adequate for most of our needs in
this chapter:2 the main case in practice is {InM} for n ∈ N and Im ⊂ In

or ImM ⊂ InM if m > n, so that M/ImM �M/InM .

Lemma 3.3 (1) There is a topology on M (the linear topology corre-
sponding to {Mλ}) determined by

(a) the {Mλ} form a basis for the neighbourhoods of 0, and

(b) the module operations are continuous.

(2) If we give the quotients M/Mλ the discrete topology, the quotient maps
M →M/Mλ are continuous.

(3) The topology is separated (Hausdorff) if and only if the intersection of
the Mλ is zero:

⋂
λ∈ΛMλ = 0.

2The more general idea of directed set comes into play for example in the filtration of
Z by ideals (n), with the integers n =

∏
pai
i ordered alphanumerically by the exponents

ai. The inverse limit lim←−Z/n taken over Z/m � Z/n for n | m is the profinite completion

Ẑ of Z. This is the direct product Ẑ =
∏

p Zp of the p-adic integers Zp taken over all p.
Compare the general philosophical discussion of 3.4.
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Proof (1) The “directed” property of Λ gives that the intersectionMλ∩Mµ

contains Mν , so is still a neighbourhood of 0. Requiring addition by x ∈M
to be continuous ensures that every x ∈ M has a basis of neighbourhoods
given by the cosets {x+Mλ}.

(2) For any of the quotient maps M →M/Mλ, the inverse image of any
subset of the quotient is a union of cosets x+Mλ, so open.

(3) The topology separates x, y ∈ M if and only if there exists Mλ not
containing x− y. �

Construction of completion The {Mλ} correspond to the inverse sys-
tem

M/Mµ →M/Mλ that takes x mod Mµ to x mod Mλ for µ > λ. (3.12)

The completion of M w.r.t. the topology {Mλ} is defined as the inverse limit

M̂ = lim←−M/Mλ. This consists of compatible sequences of elements

{xλ ∈M/Mλ}λ∈Λ such that xµ 7→ xλ for every µ > λ. (3.13)

There is a homomorphism M → M̂ that takes x ∈ M to the constant
sequence x mod Mλ for all λ. This has kernel the intersection

⋂
λ∈ΛMλ. In

any argument, if we assume
⋂
Mλ = 0, we can work with M as a submodule

M ⊂ M̂ . Otherwise, we have to divide M by the kernel
⋂
Mλ to get its

image in M̂ .
By construction, M̂ has a surjective homomorphism to each M/Mλ. The

kernel of M̂ → M/Mλ is the completion (Mλ)̂ of the submodule Mλ ⊂ M
w.r.t. to the subspace topology. These kernels in turn induces a topology on
M̂ with M̂/(Mλ)̂= M/Mλ. The inverse limit of this sequence of quotients

is of course M̂ itself, which shows that M̂ is complete w.r.t. its induced
topology.

The particular case M = A starts from a filtration of A by ideals Iλ and
leads to the completion Â = lim←−A/Iλ, which is a ring having a surjective

map Â→ A/Iλ to each of the quotient rings A/Iλ.

3.4 Rambling philosophy

This type of completion in terms of inverse limit appears in all areas of
math. For example, consider all the rational roots of unity in C×. This is
the union (= direct limit inj lim or lim−→) of the µn (the cyclic group of nth

roots of 1, generated by exp 2πi
n ) with inclusions µn ↪→ µmn: the roots of
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zmn = 1 include the roots of zn = 1 as a subgroup. Since the µn form a
direct system, their character groups

Z/n = Hom(µn,C×) (3.14)

form an inverse system Z/nm→ Z/n (the homomorphisms take an integer
x mod nm to mx mod n), whose inverse limit lim←−Z/n = Ẑ is the profinite
completion of Z. This is an uncountable group, equal to the direct product
over all p of the p-adic integers Zp.

You know that the real line R is the universal cover of the unit circle,
with R→ S1 ⊂ C× given by exp(2πiθ), having the kernel Z+ = π1S

1. The
exponential function is not algebraic. But in algebra I can define the usual
n-fold cover z 7→ zn as a map C× → C× or S1 → S1, with the advantage
that these are algebraic varieties and morphisms, and correspond to the
inverse system C×/µmn → C×/µn for all n.

This idea replaces the exponential cover C+ → C× or R+ → S1 ⊂ C×
familiar in analysis or topology by the algebraic inverse limit lim←−C×/µn
which is “much bigger”. For example, the inverse image of the identity
1 ∈ C (corresponding to 0 ∈ R) is uncountable: it contains the profinite
completion of the µn, a group that is isomorphic to Ẑ (the argument depend
on the axiom of choice), but with a nontrivial structure of Galois module
(“Tate module”).

As you know, a finite Galois field extension K ⊂ L has a finite Galois
group Gal(L/K). Now an infinite Galois extension K ⊂ L is the union (=
direct limit) of normal finite subfields Li: in fact each individual element
x ∈ L is algebraic, so belongs to a finite extension, and to the corresponding
normal subfield (the splitting field of the minimal polynomial of x). The
Galois group Gal(L/K) takes each finite normal subfields Li to itself, so has
a surjective map Gal(L/K) → Gal(Li/K) to the finite Galois group of the
extension Li, and this makes Gal(L/K) = lim←−Gal(Li/K), which is therefore
a profinite group: Everything to do with the group is determined by its finite
quotients, but these get bigger and bigger, and there are infinitely many of
them – the inverse limit is uncountable, because an element of it make a
choice of element of each of the infinitely many finite groups Gal(Li/K).

The group Gal(Q/Q) is a central object of study in algebraic number
theory. For example, Wiles’ 1994 proof of Fermat’s Last Theorem depends
on work on the representation theory of Gal(Q/Q), in particular Serre’s
conjecture that its algebraic representations are “modular”. (The progress
since Wiles’ work has only solved a small fraction of this conjecture.)
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3.5 Exactness properties of completion

The next issue is the following question on exactness: suppose

0→ N ↪→M �M/N → 0 (3.15)

is a short exact sequence (s.e.s.) of A-modules. This means N ⊂ M with
quotient module M/N . Suppose we take the completion of N,M,M/N
(with respect to some topology specified later). Under what circumstances
can we prove that

0→ N̂ ↪→ M̂ � (M/N)̂→ 0 (3.16)

is again a short exact sequence?
Let me give a formal argument first, and understand what exactly it

proves later. We know the Snake Lemma: for a commutative diagram

0 → P → Q → R → 0

cP
y cQ

y cR
y

0 → P ′ → Q′ → R′ → 0

(3.17)

with the two horizontal rows short exact sequence, the kernels and cokernels
of the down maps give a long exact sequence

0→ ker cP → ker cQ → ker cR
δ−−→

→ coker cP → coker cQ → coker cR → 0.
(3.18)

For this you have to think through how the boundary map

δ : ker cR → coker cP (3.19)

is defined: lift an element of ker cR ⊂ R to Q anyhow, map it down by cQ
to an element of Q′ that goes to 0 ∈ R′, so belongs to P ′, then check the
result is independent of the choice, and that the resulting sequence is exact.

The argument of [A&M] applies this to an exact sequence of inverse
systems. Define an inverse system to be a system of A-modules Pi with
homomorphisms πi+1 : Pi+1 → Pi, initially with no further assumptions. Its
inverse limit P̂ = lim←−Pi is defined as the set of compatible sequences

{xi ∈ Pi} with πi+1(xi+1) = xi for every i. (3.20)
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Fact By definition, the inverse limit P̂ = lim←−Pi is the set of compatible
sequences of elements of Pi, which is the same thing as the kernel of the
homomorphism

cP :
∏
i

Pi →
∏
i

Pi (3.21)

of direct products, where cP takes

a sequence {xi} 7→ new sequence {πi+1(xi+1)− xi}. (3.22)

To unwrap this, at the end of the sequence,

the image of {. . . , x2, x1} is {. . . , π(x3)− x2, π(x2)− x1}. (3.23)

Taking ker cP imposes on the sequence {xi} the conditions that π(x2) = x1,
then π(xi+1) = xi for each i, which means exactly that the sequence is
compatible.

Note this refers specifically to the direct product of the Pi: any elements
xi are allowed at each i (including infinitely many different choices), as
opposed to the usual direct sum of algebra, that assumes only finitely many
xi are nonzero.

A homomorphism P → Q between inverse systems P and Q is a system
of homomorphisms fi : Pi → Qi for each i that form commutative squares

Pi+1 → Qi+i

↓ ↓
Pi → Qi

(3.24)

with the down maps πi. It is clear that this induces a homomorphism P̂ → Q̂
of the respective inverse limits.

A short exact sequence of inverse systems 0→ P → Q→ R→ 0 is given
by a pair of homomorphisms f : P ↪→ Q and g : Q � R of inverse systems
such that for each i the homomorphisms fi and gi give short exact sequences

0→ Pi → Qi → Ri → 0. (3.25)

This means of course simply that fi : Pi ↪→ Qi is injective, and gi is the
corresponding quotient homomorphism gi : Qi � Ri = Qi/fi(Pi). The fact
just discussed, together with the snake lemma implies the following result:

Proposition 3.4 (Exactness I) (1) A s.e.s. of inverse systems

0→ P → Q→ R→ 0 (3.26)
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induces an exact sequence

0→ P̂ → Q̂→ R̂ (3.27)

between their completions.

(2) If moreover the morphisms πi+1 : Pi+1 → Pi in the inverse system P
are all surjective, then

0→ P̂ → Q̂→ R̂→ 0 (3.28)

is again a short exact sequence.
If you haven’t seen this kind of thing before, you should note the counter-

intuitive feature that establishing something about the end of the sequence
Q̂→ R̂ requires a surjectivity assumption on the P at the start. This offers
a glimpse of the world of homological algebra.

Proof (1) comes directly from the snake lemma. For (2), we just need to
deduce that cP is surjective from the assumption that all πi+1 : Pi+1 → Pi
are surjective. That is, given a sequence {ai ∈ Pi}, we require to find a
sequence of elements {xi ∈ Pi} with cP (xi) = ai.

This is straightforward given the surjectivity of all the πi. In fact, choose
x1 = 0, then x2 ∈ P2 with π2(x2) = a1. At each successive step, we have
the target ai ∈ Pi, and the current choice of xi ∈ Pi (that covers ai−1). So
choose

xi+1 ∈ Pi+1 such that πi+1(xi+1) = ai + xi. (3.29)

Then, of course, cP applied to the sequence . . . , xi+1, xi, . . . , x1 has the ith
entry πi+1(xi+1)−xi = ai. This constructs by induction a sequence {xi ∈ Pi}
such that cp(xi) = ai. Q.E.D.

3.6 The Artin–Rees lemma

Compare [Matsumura, p. 59].
There is still a gap in applying the Exactness Proposition 3.4 to I-adic

completions: the assumptions of the Proposition is that we have three inverse
systems P,Q,R with short exact sequences 0→ Pi → Qi → Ri → 0 for each
i. Unfortunately however, what we have in applications is not quite this.
We start from a submodule,

N ⊂M and the quotient M/N, (3.30)
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take the I-adic filtrations of the three modulse

InN, InM and In(M/N), (3.31)

and the inverse systems corresponding to the quotients. It is not true that
these filtrations form short exact sequences for each n.

The Artin–Rees lemma bridges this gap: under the standard finiteness
assumptions of commutative algebra, it gives a compatibility between the
I-adic filtration {InN} of the submodule N and the restriction to N of the
I-adic filtration {InM} of the module M .

Theorem 3.5 (Artin–Rees lemma) Assume A is Noetherian and I an
ideal of A. Let M be a finite module and N ⊂M a submodule.

Then there exists c > 0 such that

InM ∩N = In−c(IcM ∩N) for every n > c. (3.32)

Discussion The left-hand side defines the subspace topology of the I-adic
topology of M restricted to N . The right-hand side is the I-adic topology
on a submodule of N . In particular the subspace topology is itself the I-adic
topology on some module.

Set-up for the proof Write I = (a1, . . . , ar) for generators. Then In is
of course generated as A-module by the monomials

Sn(a1, . . . , ar) = {an1 , an−1
1 a2, . . . , a

n
r }. (3.33)

Exercise: It will be useful for you to know that there are
(
n−1+r
n

)
of these.

We distinguish the monomials in In and their coefficients by introducing
the bigger A-algebra B = A[x1, . . . , xr] with the A-algebra homomorphism
B → A taking xi 7→ ai.

Write m1, . . . ,ms ∈ M for generators, giving a surjective A-module
homomorphism As �M . Extend this to π : Bs →M that does

{fj(x1, . . . , xr)} ∈ Bs 7→
s∑
j=1

fj(a1, . . . , ar)mj ∈M. (3.34)

Now we are ready to start on the proof.
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Proof of Theorem 3.5 The inclusion ⊃ is clear.
The image of an s-tuple {fj} ∈ Bs is in M , and it is in InM if all the

fj belong to (x1, . . . , xr)
n, that is, have all terms of degree ≥ n in the xi.

Imposing in addition the condition that π({fj}) ∈ N , we define the
following B-submodule of Bs:

Jn =

{
{f1, . . . , fs} ∈ Bs

∣∣∣∣ each fj ∈ B is homogeneous of
degree = n, and

∑
fj(a)mj ∈ N

}
. (3.35)

Set C =
∑

n≥0 Jn for the B-submodule of Bs generated by all the Jn.
Since B is Noetherian, this is generated by finitely many s-tuples

C =
∑

Buj , with each uj = (uj1 , . . . , ujs) ∈ Jdj . (3.36)

We set c = max{dj}.
An element y ∈ InM ∩ N is a sum y =

∑
fi(a)mi with s-tuple of

coefficients in Jn, so that

(f1, . . . , fs) =
∑

pj(x1, . . . , xr)uj for some pj ∈ B. (3.37)

By definition of Jn, each term on the left is homogeneous of degree n in
(x1, . . . , xr). Therefore all terms on the r-hs. of homogeneous degree 6=
n must all cancel out. Since the uj consist of terms of degree dj , only
polynomials pj that are homogeneous of degree n − dj contribute to the
sum.

Thus when n ≥ c = max{dj} we get y as a sum of terms each of which
has s-tuple of coefficients that are homogeneous of degree

n− dj = (n− c) + (c− dj). (3.38)

Now In−cIc−dj , and hence y ∈ In−c(IcM ∩N) as required. Q.E.D.

Corollary 3.6 The I-adic topology on M and induces a subspace topology
on N ⊂ M . Under the current assumptions that A is Noetherian and M
finite over A, the induced topology on N coincides with the I-adic topology
on N .

3.7 Exactness of I-adic completion

The point of the Artin–Rees lemma is that it allows us to use the argument
of Proposition 3.4 under a slightly weaker assumption: rather than insisting
that all Pi+1 → Pi are surjective, we only require the weaker “surjective in
the limit” given by the Artin–Rees lemma, that Pi is in Ic times the image
of Pi+c for some fixed c.
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Addendum

I should have treated tensor product and flatness in the earlier prerequisite
sections. Under Noetherian and finite assumptions (so that Artin–Rees is

applicable), the completion M̂ coincides with Â ⊗M , and M → M̂ is an
exact functor on modules, so that Â is a flat A-module.

Exactness of completion I-adic completion is an exact functor. Equiv-
alently, the I-adic completion Â of A is a flat A-algebra.

In particular, working with I-adic completions, we know that if L ⊂ M
is a submodule then L̂ ⊂ M̂ is a submodule, and L̂/M̂ = (L/M )̂ .

Let A be a ring and I an ideal of A. We have just seen that I-adic
completion gives an exact functor on A-modules. At the same time, it is
clear that the I-adic completion M̂ is a module over Â, and is the same
thing as M ⊗A Â.

The exactness result just proved for I-adic localisations means exactly
that Â is a flat A-algebra.

Comparison with exactness of localisation We saw before the exact-
ness statements for S−1 and flatness of S−1A (these are much more straight-
forward to prove).

For A a ring and S a multiplicative sequence in A, we know how to
construct the partial ring of fractions S−1A. We can make essentially the
same construction for an A-module M, obtaining an A-module S−1M . It
consists of expressions {m/s} modulo the same kind of equivalence relation,
and the construction gives that S−1M is an A-module on which every s ∈ S
acts bijectively. This means that S−1M is also an S−1A-module, and in fact
one sees that S−1M = S−1A⊗AM .

Proposition 3.7 Let S be a multiplicative set in A and suppose that mor-
phisms α : L → M and β : M → N of A-modules give an exact sequence
L→M → N that is exact (only in the middle, imα = kerβ.

Then α, β induce an exact sequence S−1L→ S−1M → S−1N of localised
modules (with morphisms α′ and β′).

In particular, working with localisation, we know that if L ⊂ M is a
submodule then S−1L ⊂ S−1M is a submodule, and (S−1L)/(S−1M) =
S−1(L/M).
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Proof from [UCA, 6.6] Suppose m/s ∈ S−1M . Then

β′(m/s) = 0⇐⇒ ∃u ∈ S such that uβ(m) = 0

⇐⇒ ∃u ∈ S such that β(um) = 0.
(3.39)

Now since im(al) = ker(β) in the sequence L→M → N , this happens

⇐⇒ there exists u ∈ S and there exists n ∈ L s.t. u ∗m = α(n)

⇐⇒ m/s = α′(n/us).�
(3.40)

Localisation S−1 applied to M can be thought of as S−1M = S−1A⊗M ,
and the exactness statement just proved can be stated as S−1A is a flat A-
algebra.

Informal discussion – why modules?

To study a ring A, we may need to do linear algebra inside A, but also in all
kinds of structures related to A: its ideals I, how the I are generated, the
quotients A/I, the relations between the generators of I, eventually tensor
products A⊗A, derivations and differentials, and much more. We might as
well go the whole hog and do linear algebra systematically in modules over
A.

Why completions? Let A be a ring and M an A-module. Suppose we
are told M = IM for an ideal I of A. Can we deduce that M = 0?

Take m ∈ M . Then m =
∑
aimi with ai ∈ I and mi ∈ M . On the

other hand, the same argument applies to each mi: if mi =
∑
bijmj then

m =
∑

i,j aibijmj , so that M = I2M , then M = I3M . This is getting
ridiculous! Surely continuing the argument gives M = 0? Not so. For
example, it may happen that I contains invertible elements, in which case
M = IM tells us nothing.

That’s not the right way to go. I remind you of a basic result.

Lemma 3.8 (Nakayama’s lemma) Suppose M is finite (finitely gener-
ated as A-module), and M = IM . Then there exists a ∈ A with a − 1 ∈ I
such that aM = 0

Proof This is called the determinant trick or the Cayley–Hamilton theo-
rem.

Choose generators m1, . . . ,mn such that

M =
∑

Ami. (3.41)
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Then each mi ∈ M , so mi ∈ IM . Hence there exists elements aij ∈ I with
mi =

∑
aijmj . Rewrite this as∑

(δij − aij)mj = 0 where δ is the Kronecker delta. (3.42)

Write N for the n×n matrix N = {δij−aij}. Recall the standard linear
algebra formula N † · N = (detN) Idn, where N † is the adjugate matrix of
N (made up of (n− 1)× (n− 1) cofactors).

Multiply (3.42) by N †jk and sum over j to get (detN)mj = 0 for all j,
hence (detN) ·M = 0. This is what we wanted:

a = detN has aM = 0 and a ≡ 1 mod I. (3.43)

Corollary 3.9 If A ⊂ B be a finite extension ring, every b ∈ B is integral
over A.

This looks like the easy result from Galois theory that a finite extension
of fields is algebraic: since B is finite over A there is a linear dependence
relation between the powers {1, b, b2, . . . , bn}, and you can divide through
by the leading coefficient to make it monic.

That doesn’t work if A is only assumed to be a field, because you may
not be able to divide through. Instead, consider the multiplication map
B → B by b and apply the determinant trick in a straightforward way.
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