
MA4L7 Algebraic curves. First example sheet

The first week’s lectures talked around the prerequisites. (Many students
who did the course MA4A5 will find this too easy.)

Exercise in Nakayama’s lemma Let A be a local ring and M a fi-
nite A-module (the same assumptions as in Lemma 2.4), suppose that
m1, . . . ,mn ∈M generate M mod m (in other words, M = mM +

∑
Ami).

Then m1, . . . ,mn generate M .

Integrally closed is a local condition If A ⊂ L is an integral domain
contained in a bigger field L (that is L is an extension field of K = Frac(A)),
show that A is integrally closed in L implies that A[1g ] is also integrally closed
in L. If each of its localisation Ap at prime ideals is integrally closed in L
then so is A.

1. Affine varieties X ⊂ An

Reread UAG, Chap. 2 up to the proof of NSS. I mainly work with varieties
X that are 1-dimensional and irreducible. For these, the Zariski topology is
the cofinite topology if X, which is one less thing to worry about.

2. Affine coordinate ring and function field

The coordinate ring is defined as k[X] = k[x1...n]/IX [UAG, Chap. 4]. For
irreducible X, the ideal IX is prime, so that k[X] is an integral domain, and
k(X) = Frac k[X] is ints field of fractions.

Exercise 1.1 Use the NSS to establish the bijections{
maximal ideals of k[X]

}
←→

{
maximal ideal of k[x1...n] containing IX

}
←→

{
mP = (xi − ai

∣∣ i ∈ [1..n]), where P = (a1...n) ∈ X
}
.

and{
prime ideals of k[X]

}
←→

{
{prime ideal of k[x1...n] containing IX}

}
←→

{
IY with Y ⊂ X irreducible subvariety.

}
These have the flavour “the ring k[X] knowns everying about X”, and will
justify writing X = SpecX (with a small abuse of terminology concerning
the single prime ideal 0 ⊂ k[X]).
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Exercise 1.2 X affine irreducible with affine coordinate ring k[X] and func-
tion field k(X). Prove that if f ∈ k(X)] is regular at every P ∈ X, then
f ∈ k[X]. That is, rational plus everywhere regular implies polynomial.

Moreover for 0 6= g ∈ k[X], if f ∈ k(X)] is regular at every P ∈ X with
g(P ) 6= 0 then f ∈ k[X][1g ].

In either case, you need to use NSS. This will be used later as a step in
going from birational (geometry up to birational equivalence) to biregular
(geometry up to isomorphism).

3. DVR

Recall the definition of DVR from lectures or one of the textbooks.

Exercise 1.3 Prove that P ∈ X is a nonsingular point of a curve if and
only if the local ring OX,P is a DVR.

This is more or less the definition, but you have to get all the words right.

4. Integral closure.

Exercise 1.4 Show that Z is integrally closed in Q. More generally, if A is a
UFD, prove that A is integrally closed. (That is, any element of K = FracA
that satisfies a monic polynomial equation over A is actually in A.)

Deduce that a DVR is integrally closed.

I proved above that a 1-dimensional Noetherian local ring A that is
integrally closed in its field of fractions K = FracA is a DVR.

Exercise 1.5 Prove the following lemma: consider A ⊂ A[x]/f where A is
a ring and f ∈ A[x] a monic polynomial. Then

A is a field ⇐⇒ A[x]/f is a field.

5. Rational functions on P1 and the “baby case”’ of RR.

Let u, v be homogeneous coordinates on P1, and write x = v/u for the affine
coordinate on A1 ⊂ P1, and write P = (1 : 0) and Q = (0 : 1) ∈ P1. The
vector space k[x]≤d has dimension 1 + d (with a basis you can easily guess).
If we view it as the space of rational fuctions with pole ≤ dQ, it is the ideal
first case of RR space L(P1, dQ). The equality l(P1, dQ) = 1 − g + d (with
g = 0) holds for all d ≥ −1, and fails by 1 for d = −2.
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By considering (x − a)/(x − b), show that k(P1) contains a function
with div f = P1 − P2 for any P1, P2 ∈ P1. More generally, if

∑
miPi and∑

njQj have
∑

mi =
∑

nj , then there exists f ∈ k(P1) with div f =∑
miPi −

∑
njQj .

Prove that l(P1, D) = 1 − g + degD for any D =
∑

miPi of degree
d =

∑
mi.
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