
MA4L7 Algebraic curves

Example Sheet 4. Deadline Wed 4th Mar at 12:00

Exercise 4.1 For distinct ai ∈ k, write

F =
∏

(x− ai) and Gi =
∏
j 6=i

(x− aj).

Prove that ∑
i

λiGi ≡ 1

where

λi =
∏
j 6=i

1

ai − aj

[Hint: Find zeroes of
∑
λiGi − 1.]

Exercise 4.2 Let Pi ∈ An be a finite set of distinct points. Prove that
there exists polynomials fi ∈ k[x1...n] for which

fi(Pj) = δij (Kronecker delta).

[Hint: Use a projection to A1 that separates the Pi, and apply Ex. 4.1.]
Deduce that there exists gi ∈ mN

Pj
⊂ k[x1...n] (where mpj is the maximal

ideal at Pj) with gi(Pi) = 1.

Exercise 4.3 For k an algebraically closed field and I ⊂ k[x1...n] an ideal
defining a finite set V (I) = {Pi} ⊂ An, prove that

k[x1...n]/I ∼=
⊕
Pi

OPi/I · OPi .

Use the coprime result of Ex. 4.3 together with the NSS to prove the natural
map is surjective and injective. For more details, compare [Fulton, Algebraic
curves, Section 9, Prop. 6].

Exercise 4.4 Let C = Ca ⊂ P2 be a nonsingular curve of degree a defined
by the homogeneous polynomial Fa. Assume that C meets the line z = 0
transversally in a points and set H for the divisor of z.

A rational function h ∈ k(C) can be written h = A/B with A,B homo-
geneous forms of the same degree d. If h = L(C, nH), prove that B is in
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the ideal (zn, Fa), so that f can also be written as A′/zn. This implies that
the map k[x, y, z]n → L(C, nH) discussed in Ex. 2.7 is surjective. [Hint:
The assumption h ∈ k(C) is that its poles on C are cancelled locally by
multiplication by zn.] (Sorry, I don’t have time to tidy this up. Ex. 4.3 only
deals with the affine case.)

Exercise 4.5 (Genus 1 curve as Q1 ∩Q2 ⊂ P3) Let E be a genus 1 curve
and P ∈ E. Assume known the treatment of R(E,P ) =

⊕
L(E,nP ) as

k[x, y, z]/(f6) with x, y, z of degree 1, 2, 3 and f6 the relation

z2 = y3 + ax4y + bx6.

Calculate the subring R(E, 4P ) ⊂ R(E,P ). [Hint: Give names to the
monomials of degree 4. Find two quadratic relations between these in L(8P ),
either as trivial coincidences between monomials, or involving multiples of
f6.]

Deduce that 4P is very ample and that the image of ϕ4P : E → P3 is an
intersection of two quadrics.

Exercise 4.6 (Curve of genus 3) Let C be a curve of g = 3. Write out
the dimensions l(nKC) for n = 0, n = 1 and n ≥ 2. The canonical ring of
C is

R(C,KC) =
⊕
n≥0
L(C, nKC).

Complete the calculations of R(C,KC) given in lectures:
If ϕKC

: C → P2 is an embedding, prove that the hypersurface ring
k[x0...2 ]/f4 has the right dimension in each degree. Then the graded homo-
morphism k[x0...2 ]→ R(C,KC) is surjective by Max Noether’s theorem, and
the kernel consists exactly of the multiples of f4.

If there is a quadratic relation q(x0...2) = 0, prove that there is only
one q. The space L(2KC) needs a further relation y. You have to figure
out the number of monomials in x0...2 , y in each degree, and the number of
monomials multiples of the relation q in each degree. You need to prove that
there is a relation F4 involving y2, and finally check that the dimension of
k[x0...2 , y]/(q2, F4) matches the dimension of L(nKC) in each degree n ≥ 4.

Exercise 4.7 (Half-canonical divisor) Let C be a curve of g = 3 and

P,Q ∈ C two points such that 2(P + Q)
lin∼ KC . Set A = P + Q, so that

KC = 2A. Assume that l(A) = 1 (the cases l(A) = 0 and l(A) = 2 are also
possible, and interesting, but left for another day).
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Consider the sections ring R(C,A) =
⊕

n≥0 L(C, nA). This clearly con-
tains the canonical ring R(C,KC) = R(C, 2A). The question is to determine
the possibilities for generators and relations for R(C,A), by analogy with
Ex. 4.5. Geometrically, there are two cases: if C = C4 ⊂ P2, the line joining
P,Q is a bitangent of C4. If C is hyperelliptic then P,Q are ramification
points of the double cover C → P1.

Write out the dimension of L(C, nA) for n = 0, 1, 2 and n ≥ 3.
Check that these dimensions coincide with those of the graded ring

k[x, y1, y2, z]/(f4, g6), where the generators have degrees 1, 2, 2, 3 and the
relations have the indicated degrees.

In the hyperelliptic case, there is an extra quadratic relation of the form
q(x2, y1, y2) = 0 (of weighted degree 4), and an extra generator t of degree
4, giving k[x, y1, y2, z, t]/(q4, f4, g6).

Exercise 4.8 (Past exam question) Part 1. The proof of RR used in
the course was based on three main propositions. The first two of these are:

(I) A principal divisor has degree zero: deg(div f) = 0 for all f ∈ k(C)×.

(II) There exists a sequence of divisors Dn of degree tending to +∞ such
that the difference degDn + 1− l(Dn) is bounded.

Use (I) and (II) together with the standard methods of argument to prove
the following results:

(i) The maximum g = maxD

{
degD+1−l(D)

}
taken over all divisors D is

well defined, so that the Riemann–Roch inequality l(D) ≥ 1−g+degD
is satisfied for every divisor D.

(ii) With g as in (i), every divisor D of degree ≥ g has l(D) > 0, so is
linearly equivalent to an effective divisor.

(iii) There exists a divisor D of degree g − 1 for which l(D) = 0, so that
the RR inequality is equality.

(iv) l(D) = 1− g + degD holds for every divisor D of degree ≥ 2g − 1.

Part 2. Suppose that g(C) = 2 and degD = 4. Prove that l(D −KC) 6=
0, and deduce that ϕD is not an embedding. Show that ϕD is either a
generically 2-to-1 map of C to a plain conic, or maps C birational to a
quartic curve C with a node or cusp as its only singularity. Explain which
divisorsD correspond to each case. [You may use the criteria on embeddings,
and standard properties of the canonical map of a genus 2 curve.]
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Status: Bookwork. The whole proof of RR is too long for an exam
question, but it is fair to state parts of it as given, and ask for the proof of
the next part. The rider Part 2 is too hard for an exam question, but was
set as an earlier question.

Exercise 4.9 (Harder question: g(C) = 3 and degD = 5 divisor) Let
C be a nonsingular curve of g = 3 and D a divisor of degree 5, with D not
linearly equivalent to KC + P . Prove that the linear system |D| defines a
birational map ϕD of C to a plane quintic C5 ⊂ P2. [Hint: Prove that |D|
is a free g25. Now, because 5 is a prime, the map ϕD cannot be a multiple
cover of another curve, so must be generically one-to-one.]

A nonsingular plane quintic would have g = 6, so that C5 must be
singular. Consider the two main cases: (i) C has distinct 3 nodes; and (ii)
C has an ordinary triple point.

If C is a plane quintic with nodes at the three coordinate points, show
that the standard quadratic transformation ψ : P2 99K P2 given by (x, y, z) 7→
( 1x : 1

y : 1
z ) = (yz : xz : xy) takes C to a nonsingular quartic, and the com-

posite ψ ◦ ϕD is the canonical embedding ϕKC
of a nonhyperelliptic C of

g = 3.
If C is a plane quintic with an ordinary triple point P , show that the

linear projection from P is a double cover, so that C is birational to a
hyperelliptic curve of g = 3.

Exercise 4.10 (Genus 6) Let C be a curve of g = 6, and assume it has no
g12, g13 or g25. If D is a g14, show that K −D has degree 6 and l(K −D) = 3.
Show that |K −D is a g26, so defines a morphism ϕK−D : C → P2.

Let Γ6 ⊂ P2 be a sextic having double points (nodes or cusps) at the 4
points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) of the standard projective frame of
reference. By considering the linear system of cubics of P2 passing through
the 4 points, show that the resolution C has a linear system of dimension
≥ 6 and degree ≤ 10.

Given that its resolution C → Γ6 is a curve of genus 6. Show that C has
5 g14s and complementary g26s. [Hint: Four of them are fairly obvious. The
fifth comes from the pencil of conics through the 4 points.]

It is a fact that any curve of genus 6 is given either by this construction,
or a different construction adapted to the case that C has a g12, g13 or g25,
or is a double cover of curve of g = 1. (The g25 case correspond to a plane
quintic C5 ⊂ P2.) Unfortunately, it would be something of a detour from
the main course to discuss this rigorously or comprehensibly.

4


