MA4L7 Algebraic curves. Assessed worksheet 1

Deadline: Wed 22nd Jan 12:00 noon

The course assumes the material of [UAG, Chaps. 3–4], or the equivalent sections of Christian Boehning's lecture course MA4A5. In particular, I write $X \subset \mathbb{A}^n$ for an irreducible affine variety in \mathbb{A}^n (over an algebraically closed field k, with coordinates x_1, \ldots, x_n) defined by the prime ideal I_X , and write $k[X] = k[x_1, \ldots, x_n]/I_X$ for its coordinate ring. Alternatively, A = k[X] is a finitely generated k-algebra that is an integral domain, and X = Spec A.

Anyone not familiar with this, please reread Chaps. 3–4 [UAG] or equivalent treatments. The course works with curves. This leads to some simplifications: dim X = 1 can be taken to mean that X is irreducible and every strict subvariety of X is a finite set. The coordinate ring k[X] has prime ideal 0 (because it is an integral domain), and every other prime ideal is maximal – this is practically the definition of dim X = 1. So we don't need to worry too much about the Zariski topology or the difference between Spec and Specm. A Zariski open is just the complement of a finite set, just as number theorists say "except for finitely many primes".

Exercise 1.1 (Reminders about affine varieties and NSS.) Use the NSS to establish the bijections

$$\left\{ \max' \text{l ideals of } k[X] \right\} \longleftrightarrow \left\{ \max' \text{l ideals of } k[x_{1...n}] \text{ containing } I_X \right\}$$
$$\longleftrightarrow \left\{ m_P = (x_i - a_i) \mid i \in [1..n]), \text{ where } P = (a_{1...n}) \in X \right\}.$$

and

$$\left\{ \text{prime ideals of } k[X] \right\} \longleftrightarrow \left\{ \text{prime ideal of } k[x_{1...n}] \text{ containing } I_X \right\}$$
$$\longleftrightarrow \left\{ I_Y \text{ with } Y \subset X \text{ irreducible subvariety.} \right\}$$

Exercise 1.2 (Reminder about rational versus regular functions.) X affine irreducible with affine coordinate ring k[X] and function field k(X). Use the NSS to prove that for $f \in k(X)$, regular at every $P \in X$ implies $f \in k[X]$. That is rational plus everywhere regular implies polynomial.

Moreover for $0 \neq g \in k[X]$, if $f \in k(X)$ is regular at every $P \in X$ with $g(P) \neq 0$ then $f \in k[X][\frac{1}{a}]$.

Exercise 1.3 (Reminder about nonsingular points $P \in C$ curves and DVRs.) Recall the definition of DVR from lectures or one of the textbooks. Recall the definition of tangent space $T_{X,P}$ to an affine variety, and the definition of $P \in X$ nonsingular.

Prove that $P \in X$ is a nonsingular point of a curve if and only if the local ring $\mathcal{O}_{X,P}$ is a DVR.

Exercise 1.4 (Reminder about normal rings.) Show that \mathbb{Z} is integrally closed in \mathbb{Q} . More generally, if A is a UFD, prove that A is integrally closed in its fraction field K = Frac A. Deduce that a DVR is integrally closed.

Exercise 1.5 Prove the following lemma: let A be a ring, $f \in A[x]$ a monic polynomial and write (f) for the principal ideal generated by f. Then

A is a field $\iff A[x]/(f)$ is a field.

Exercise 1.6 (The "baby case" of RR: rational functions on \mathbb{P}^1 , or global meromorphic functions on the Riemann sphere $\mathbb{C} \cup \{\infty\}$.)

Let u, v be homogeneous coordinates on \mathbb{P}^1 , and write x = v/u for the affine coordinate on $\mathbb{A}^1 \subset \mathbb{P}^1$. Set P = (1:0) and $Q = (0:1) \in \mathbb{P}^1$.

The vector space $k[x]_{\leq d}$ has dimension 1 + d (with a basis you know). View it as the space of rational fuctions with pole $\leq dQ$. This is the first case of RR space $\mathcal{L}(\mathbb{P}^1, dQ)$. The equality $l(\mathbb{P}^1, dQ) = 1 - g + d$ (with g = 0) holds for all $d \geq -1$, and fails by 1 when d = -2.

Exercise 1.7 Use (x - a)/(x - b) to show that for $P_1, P_2 \in \mathbb{P}^1$ there is a rational function $f \in k(\mathbb{P}^1)$ with div $f = P_1 - P_2$. More generally, if $D_1 = \sum m_i P_i$ and $D_2 = \sum n_j Q_j$ are effective divisors of the same degree $d = \sum m_i = \sum n_j$ then there exists $f \in k(\mathbb{P}^1)$ with div $f = D_1 - D_2$.

Exercise 1.8 Show that a divisor $D = \sum m_i P_i$ of degree $d = \sum m_i \ge -1$ has $\mathcal{L}(\mathbb{P}^1, D)$ of dimension $l(\mathbb{P}^1, D) = 1 + \deg D$.

Exercise 1.9 Let $A \subset B_1 \subset B_2$ be integral domains. If B_1 is finite as A-module and B_2 is finite as B_1 -module prove that B_2 is finite as A-module.

Given the determinant trick [UCA, 2.7], modify the argument to prove the same statement for integral extensions.

Exercise 1.10 If X is an affine algebraic variety with coordinate ring k[X] and $g \in k[X]$, the subvariety $X_g = \{P \in X \mid g(P) \neq 0\}$ is also affine, and has coordinate ring $k[X_g] = k[X][\frac{1}{g}]$ (see Ex. 1.2). The X_g , called *standard open sets*, form a basis of the Zariski topology of X.

Prove that $k[X_g]$ is a finite k[X]-module if and only if 1/g is integral over k[X]. [Hint: You may need to reread the treatment of finite versus integral. You need to use the determinant trick for one of the implications.]

If k[X] is already normal (integrally closed in k(X)), this happens only if g is a unit of k[X], so that $X_g = X$. Thus the inclusion $X_g \subset X$ is usually not a finite morphism.

Exercise 1.11 The nodal cubic $C \subset \mathbb{A}^2$ given by $y^2 = x^2(x+1)$ has the usual parametrisation $f \colon \mathbb{A}^1 \to C \subset \mathbb{A}^2$ given by $x = t^2 - 1$, $y = t(t^2 - 1)$. Show that f is finite, that is, $k[\mathbb{A}^1]$ is a finite k[C]-module. [Hint: $k[C] \cdot 1_{k[t]}$ contains x, y; what more do you need to get $k[\mathbb{A}^1]$? You might start by finding a basis of the vector space k[t]/k[x, y].]

Now replace \mathbb{A}^1 by the hyperbola $H: s(t-1) = 1 \subset \mathbb{A}^2_{\langle t,s \rangle}$ and consider the polynomial map $f: H \to C$ given by $x = t^2 - 1$, $y = t(t^2 - 1)$. Show that f is a bijective map. Show that it is not finite (that is, k[H] is not a finite k[C]-module).

Exercise 1.12 The cuspidal cubic $\Gamma : y^2 = x^3$ has parametrisation $x = t^2$, $y = t^3$. Show that it is finite. On the other hand $H = \mathbb{A}^1 \setminus 0$ defined by st = 1 is a nonsingular curve, and $x = t^2$, $y = t^3$ maps H isomorphically to $\Gamma \setminus (0,0)$. Show that $H \to \Gamma$ is not finite. (It misses the singular point, so we don't allow it as a resolution of singularities.)

Exercise 1.13 A popular exercise in algebraic number theory. Let d be an integer, not a perfect square. Determine the ring of integers of the number field $\mathbb{Q}[\sqrt{d}]$. [Hint: Write $A = \mathbb{Z}[\sqrt{d}]$ inside its field of fractions $\mathbb{Q}[\sqrt{d}]$. The question is to determine (for $a, b \in \mathbb{Q}$) when $a + b\sqrt{d}$ is the root of a monic equation over \mathbb{Z} . The solution involves first getting rid of any square factor in d, then dividing into cases according to $d \equiv 1, 2$ or 3 modulo 4.

Exercise 1.14 Let A be a UFD with field of fractions K = Frac A, and assume $1/2 \in A$. For square-free $a \in A$, consider the quadratic field $K(\alpha)/K$ where $\alpha = \sqrt{a}$. Show that $A[\alpha] \subset K(\alpha)$ is integrally closed. [Hint: find the minimal polynomial of $c + d\alpha$ and show $d \in A$.]

Exercise 1.15 Let k be an algebraically closed field of characteristic $\neq 2$, and write A = k[x]. For $d(x) \in k[x]$ a polynomial, determine the normalisation of $A[\sqrt{d}]$. [Hint: As above, the question is when $a + b\sqrt{d}$ in $k(x)[\sqrt{d}]$ is the root of a monic polynomial. The main issue is to get rid of any square factor in d.]

Exercise 1.16 Let A be a UFD with K = Frac A, and assume $1/3 \in A$. Let $a, b \in A$ be square-free coprime elements. Consider the cubic extension field $L = K(\sqrt[3]{a^2b})$ generated by y with minimal polynomial $y^3 = a^2b$. Prove that y and $z = y^2/a$ are integral over A, and find relations expressing the quadratic expressions y^2, yz, z^2 as lower degree quantities.

Prove that these 3 relations generate the ideal of all relations holding between y, z is generated by. [Hint: $y^3 = a^2b$ must be a linear combination of them.]

Exercise 1.17 Continuing the preceding exercise. It is given that $X = e+cy+dz \in L$ has minimal polynomial $(X-e)^3-3abcd(X-e)-ab(ac^3+bd^3)$, deduce that A[y, z] is the integral closure of A in L.

Compared to the quadratic case, these computations are remarkable tricky, even assuming the cubic extension is cyclic.

Exercise 1.18 If a = (x - 1)(x - 2) and b = x(x + 1), determine the normalisation of the affine plane curve $y^3 = ab^2$.

Exercise 1.19 Following on from the cuspidal cubic $y^2 = x^3$, determine the normalisation of $k[x, y]/(y^2 - x^5)$. Same question for $k[x, y]/(y^3 - x^7)$.

Exercise 1.20 More generally, if a, b are coprime, find the normalisation of $x^a = y^b$. [Hint: If you want to write $x = t^a$ and $y = t^b$, you are on the right track. However, for this to be a normalisation, you still have to establish that $t \in \operatorname{Frac}(A)$ where $A = k[x, y]/(x^a - y^b)$. In other words, express t in terms of x and y.]

Exercise 1.21 Let $K \subset L$ be a finite field extension. Recall from Galois theory that any $y \in L$ has a *minimal polynomial*, an irreducible polynomial

$$p(T) = T^{d} + c_{d-1}T^{d-1} + \dots + c_{1}T + c_{0} \in K[T]$$

such that p(y) = 0, so that K[y] = K[T]/(p(T)); it follows that K[y] = K(y) is a field, since (p(T)) is a maximal ideal. We say that L/K is a *primitive* extension with generator y if L = K(y).

Consider the multiplication map $\mu_y \colon L \to L$ consisting of multiplication by y. If L/K is a primitive extension, write out the matrix of μ_y in the basis $1, y, \ldots, y^{d-1}$, and deduce that its trace is $\operatorname{Tr}_{L/K} \mu_y = -c_{d-1}$.

In general, prove that the trace of μ_y equals $-c_{d-1} \times [L:K(y)]$. [Hint: let b_j for $j = 1, \ldots, [L:K(y)]$ be any basis of L/K(y), and calculate the trace of μ_y in the basis $y^i b_j$ of L/K.