
MA4L7 Algebraic curves. Assessed worksheet 1

Deadline: Wed 22nd Jan 12:00 noon

The course assumes the material of [UAG, Chaps. 3–4], or the equivalent
sections of Christian Boehning’s lecture course MA4A5. In particular, I
write X ⊂ An for an irreducible affine variety in An (over an algebraically
closed field k, with coordinates x1, . . . , xn) defined by the prime ideal IX ,
and write k[X] = k[x1, . . . , xn]/IX for its coordinate ring. Alternatively,
A = k[X] is a finitely generated k-algebra that is an integral domain, and
X = SpecA.

Anyone not familiar with this, please reread Chaps. 3–4 [UAG] or equi-
valent treatments. The course works with curves. This leads to some simpli-
fications: dimX = 1 can be taken to mean that X is irreducible and every
strict subvariety of X is a finite set. The coordinate ring k[X] has prime
ideal 0 (because it is an integral domain), and every other prime ideal is
maximal – this is practically the definition of dimX = 1. So we don’t need
to worry too much about the Zariski topology or the difference between Spec
and Specm. A Zariski open is just the complement of a finite set, just as
number theorists say “except for finitely many primes”.

Exercise 1.1 (Reminders about affine varieties and NSS.) Use the NSS to
establish the bijections{

max’l ideals of k[X]
}
←→

{
max’l ideals of k[x1...n] containing IX

}
←→

{
mP = (xi − ai)

∣∣ i ∈ [1..n]), where P = (a1...n) ∈ X
}
.

and{
prime ideals of k[X]

}
←→

{
prime ideal of k[x1...n] containing IX

}
←→

{
IY with Y ⊂ X irreducible subvariety.

}
Exercise 1.2 (Reminder about rational versus regular functions.) X affine
irreducible with affine coordinate ring k[X] and function field k(X). Use the
NSS to prove that for f ∈ k(X), regular at every P ∈ X implies f ∈ k[X].
That is rational plus everywhere regular implies polynomial.

Moreover for 0 6= g ∈ k[X], if f ∈ k(X)] is regular at every P ∈ X with
g(P ) 6= 0 then f ∈ k[X][1g ].

Exercise 1.3 (Reminder about nonsingular points P ∈ C curves and DVRs.)
Recall the definition of DVR from lectures or one of the textbooks.
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Recall the definition of tangent space TX,P to an affine variety, and the
definition of P ∈ X nonsingular.

Prove that P ∈ X is a nonsingular point of a curve if and only if the
local ring OX,P is a DVR.

Exercise 1.4 (Reminder about normal rings.) Show that Z is integrally
closed in Q. More generally, if A is a UFD, prove that A is integrally closed
in its fraction field K = FracA. Deduce that a DVR is integrally closed.

Exercise 1.5 Prove the following lemma: let A be a ring, f ∈ A[x] a monic
polynomial and write (f) for the principal ideal generated by f . Then

A is a field ⇐⇒ A[x]/(f) is a field.

Exercise 1.6 (The “baby case” of RR: rational functions on P1, or global
meromorphic functions on the Riemann sphere C ∪ {∞}.)

Let u, v be homogeneous coordinates on P1, and write x = v/u for the
affine coordinate on A1 ⊂ P1. Set P = (1 : 0) and Q = (0 : 1) ∈ P1.

The vector space k[x]≤d has dimension 1 + d (with a basis you know).
View it as the space of rational fuctions with pole ≤ dQ. This is the first
case of RR space L(P1, dQ). The equality l(P1, dQ) = 1−g+d (with g = 0)
holds for all d ≥ −1, and fails by 1 when d = −2.

Exercise 1.7 Use (x − a)/(x − b) to show that for P1, P2 ∈ P1 there is
a rational function f ∈ k(P1) with div f = P1 − P2. More generally, if
D1 =

∑
miPi and D2 =

∑
njQj are effective divisors of the same degree

d =
∑
mi =

∑
nj then there exists f ∈ k(P1) with div f = D1 −D2.

Exercise 1.8 Show that a divisor D =
∑
miPi of degree d =

∑
mi ≥ −1

has L(P1, D) of dimension l(P1, D) = 1 + degD.

Exercise 1.9 Let A ⊂ B1 ⊂ B2 be integral domains. If B1 is finite as A-
module and B2 is finite as B1-module prove that B2 is finite as A-module.

Given the determinant trick [UCA, 2.7], modify the argument to prove
the same statement for integral extensions.

Exercise 1.10 If X is an affine algebraic variety with coordinate ring k[X]
and g ∈ k[X], the subvariety Xg = {P ∈ X

∣∣ g(P ) 6= 0} is also affine, and
has coordinate ring k[Xg] = k[X][1g ] (see Ex. 1.2). The Xg, called standard
open sets, form a basis of the Zariski topology of X.
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Prove that k[Xg] is a finite k[X]-module if and only if 1/g is integral over
k[X]. [Hint: You may need to reread the treatment of finite versus integral.
You need to use the determinant trick for one of the implications.]

If k[X] is already normal (integrally closed in k(X)), this happens only
if g is a unit of k[X], so that Xg = X. Thus the inclusion Xg ⊂ X is usually
not a finite morphism.

Exercise 1.11 The nodal cubic C ⊂ A2 given by y2 = x2(x + 1) has the
usual parametrisation f : A1 → C ⊂ A2 given by x = t2 − 1, y = t(t2 − 1).
Show that f is finite, that is, k[A1] is a finite k[C]-module. [Hint: k[C] · 1k[t]
contains x, y; what more do you need to get k[A1]? You might start by
finding a basis of the vector space k[t]/k[x, y].]

Now replace A1 by the hyperbola H : s(t− 1) = 1 ⊂ A2
〈t,s〉 and consider

the polynomial map f : H → C given by x = t2 − 1, y = t(t2 − 1). Show
that f is a bijective map. Show that it is not finite (that is, k[H] is not a
finite k[C]-module).

Exercise 1.12 The cuspidal cubic Γ : y2 = x3 has parametrisation x = t2,
y = t3. Show that it is finite. On the other hand H = A1 \ 0 defined by
st = 1 is a nonsingular curve, and x = t2, y = t3 maps H isomorphically to
Γ \ (0, 0). Show that H → Γ is not finite. (It misses the singular point, so
we don’t allow it as a resolution of singularities.)

Exercise 1.13 A popular exercise in algebraic number theory. Let d be an
integer, not a perfect square. Determine the ring of integers of the number
field Q[

√
d]. [Hint: Write A = Z[

√
d] inside its field of fractions Q[

√
d]. The

question is to determine (for a, b ∈ Q) when a+ b
√
d is the root of a monic

equation over Z. The solution involves first getting rid of any square factor
in d, then dividing into cases according to d ≡ 1, 2 or 3 modulo 4. ]

Exercise 1.14 Let A be a UFD with field of fractions K = FracA, and
assume 1/2 ∈ A. For square-free a ∈ A, consider the quadratic field K(α)/K
where α =

√
a. Show that A[α] ⊂ K(α) is integrally closed. [Hint: find the

minimal polynomial of c+ dα and show d ∈ A.]

Exercise 1.15 Let k be an algebraically closed field of characteristic 6= 2,
and write A = k[x]. For d(x) ∈ k[x] a polynomial, determine the normalisa-
tion of A[

√
d]. [Hint: As above, the question is when a+ b

√
d in k(x)[

√
d] is

the root of a monic polynomial. The main issue is to get rid of any square
factor in d.]
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Exercise 1.16 Let A be a UFD with K = FracA, and assume 1/3 ∈ A.
Let a, b ∈ A be square-free coprime elements. Consider the cubic extension
field L = K(

3
√
a2b) generated by y with minimal polynomial y3 = a2b. Prove

that y and z = y2/a are integral over A, and find relations expressing the
quadratic expressions y2, yz, z2 as lower degree quantities.

Prove that these 3 relations generate the ideal of all relations holding
between y, z is generated by. [Hint: y3 = a2b must be a linear combination
of them.]

Exercise 1.17 Continuing the preceding exercise. It is given that X =
e+cy+dz ∈ L has minimal polynomial (X−e)3−3abcd(X−e)−ab(ac3+bd3),
deduce that A[y, z] is the integral closure of A in L.

Compared to the quadratic case, these computations are remarkable
tricky, even assuming the cubic extension is cyclic.

Exercise 1.18 If a = (x − 1)(x − 2) and b = x(x + 1), determine the
normalisation of the affine plane curve y3 = ab2.

Exercise 1.19 Following on from the cuspidal cubic y2 = x3, determine
the normalisation of k[x, y]/(y2 − x5). Same question for k[x, y]/(y3 − x7).

Exercise 1.20 More generally, if a, b are coprime, find the normalisation of
xa = yb. [Hint: If you want to write x = ta and y = tb, you are on the right
track. However, for this to be a normalisation, you still have to establish
that t ∈ Frac(A) where A = k[x, y]/(xa − yb). In other words, express t in
terms of x and y.]

Exercise 1.21 Let K ⊂ L be a finite field extension. Recall from Galois
theory that any y ∈ L has a minimal polynomial, an irreducible polynomial

p(T ) = T d + cd−1T
d−1 + · · ·+ c1T + c0 ∈ K[T ]

such that p(y) = 0, so that K[y] = K[T ]/(p(T )); it follows that K[y] = K(y)
is a field, since (p(T )) is a maximal ideal. We say that L/K is a primitive
extension with generator y if L = K(y).

Consider the multiplication map µy : L→ L consisting of multiplication
by y. If L/K is a primitive extension, write out the matrix of µy in the basis
1, y, . . . , yd−1, and deduce that its trace is TrL/K µy = −cd−1.

In general, prove that the trace of µy equals −cd−1 × [L : K(y)]. [Hint:
let bj for j = 1, . . . , [L : K(y)] be any basis of L/K(y), and calculate the
trace of µy in the basis yibj of L/K.
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