
Alg curves, Lecture 1 (Jan 2020)¬
¬
I start with a colloquial description of where we are going. The¬
contents of the course can be described as very simple, but¬
depending on sophisticated and in places quite difficult¬
prerequisites and foundational development.¬
¬
I treat nonsingular projective curves C in PP^N, assumed¬
irreducible. Over the complex field CC, this is a Riemann¬
surface or 1-dimensional complex manifold. At P in C there is a¬
local analytic coordinate z_P or z so that an analytic¬
neighbourhood P in U in C is isomorphic to |z| < 1 in CC.¬
¬
C has a field of rational functions k(C). A rational function h¬
is the quotient h = f/g of two polynomial functions, with¬
denominator g not identically zero. A polynomial function is a¬
regular (or holomorphic, analytic, etc.) function on the Riemann¬
surface of C, and a rational function is a globally defined¬
meromorphic function.¬
¬
For P in C, a rational function h in k(C) can have a pole at P¬
(so its value is undefined or infinity), or can be regular and¬
nonzero (that is, a unit near P), or regular and have a zero at¬
P. The divisor of h is the formal sum¬
  div h = zeros of h - poles of h = sum ni*Pi¬
with Pi in C finitely many points, and ni in ZZ.¬
¬
In terms of a local parameter z = z_P at P,¬
  h = z^n * unit  with n in ZZ,¬
and h has a zero or order n if n > 0, or a pole of order m = -n¬
if n < 0. If h has a pole of order m then it has a Laurent¬
expansion¬
  h = am z^-m + .. + a1 z^-1 + regular¬
with m coefficients {a1,..am} making up the principal part.¬
Allowing h to have a pole of order m thus gives it the freedom¬
of an m-dimensional vector space of principal parts to choose¬
from (modulo the regular functions at P).¬
¬
You easily take for granted that h does not have zeros and poles¬
at the same point P in C, because we are used to cancelling¬
common factors top and bottom. But that fails in dimension¬
>= 2 (consider the rational function y/x at (0,0) in AA^2), or¬
if C is singular (consider the rational function y/x on the¬
nodal curve y^2 = x^2*(x+1)).¬
¬
After the foundational work of establishing nonsingular¬
projective curves as a sensible object of study, the course¬
revolves around the Riemann-Roch theorem (its statement, proof¬
and many applications). RR addresses the question: how many¬
rational functions are there on C?¬
¬



0. If you don't allow any poles, you don't get any functions¬
beyond the constants (Liouville's theorem).¬
¬
1. If you allow any number of poles, you get the whole of k(C),¬
which is of course infinite dimensional, so not what you want.¬
¬
2. If you allow only a finite set of poles of given degree, you¬
get a finite dimensional space of rational functions.¬
¬
3. The dimension of the space of rational functions with poles¬
at most D = sum ni*Pi grows linearly with deg D = sum ni.¬
¬
More precisely, introduce the notion of divisor and RR space.¬
Divisor¬
  D = sum ni*Pi a finite sum with Pi in C and ni in ZZ.¬
A divisor is effective, or D >= 0 if all its coefficients¬
ni >= 0.¬
¬
Given D, its RR space is¬
  L(C, D) = { h in k(C) | div h + D >= 0 }.¬
The definition intends that L(C, D) is a k-vector subspace of¬
k(C), so by convention, I add the function 0 to L(C, D). The¬
condition div h + D >= 0 is a clever way of combining two¬
statements "poles at most D^+" where D is effective, and "zeros¬
at least D^-" where D has some negative part.¬
¬
Write l(C, D) = dim L(C, D). The first part of RR says that¬
  l(C, D) <= 1 + deg D   and¬
  l(C, D) >= 1 - g + deg D.         (*)¬
Here g = g(C) is some constant depending on C, its genus. It has¬
several different definitions, and untangling them is one of the¬
main purpose of the course. The RR formula (*) is equality for¬
deg D >> 0.¬
¬
Finally, the complete RR concerns the difference in (*). The¬
result is that there exists a divisor K = KC such that¬
  l(C, D) - l(C, K-D) = 1 - g + deg D.  (*)¬
There are several different treatments of KC in topology and¬
complex analysis, and this is also a main part of the course.¬
¬
In applications, RR gives all kinds of implications for the¬
geometry of curves C and their maps to PP^n. Riemann's initial¬
motivation was to show that a compact Riemann surface embeds¬
into PP^n, by constructing a suitable n+1 dimensional space of¬
global meromorphic functions with pole at most D.¬


