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Read carefully the instructions on the answer book and make sure that the particulars
required are entered on each answer book.

Calculators are not needed and are not permitted in this examination.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will
only be given credit for your 4 best answers.

The numbers in the margin indicate approximately how many marks are available for
each part of a question.

1. (i) Let A ⇢ K be a subring of a field. What does it mean to say that an element

y 2 K is integral over A? If this holds, prove that the subring A[y] ⇢ K is

finitely generated as A-module. Formulate, without proof, a generalisation to a

subring A[y1, . . . , yn] ⇢ K generated by finitely many integral elements. [4]

(ii) Give the definition of discrete valuation ring (DVR). If V ⇢ An is an irreducible

a�ne variety, prove that a point P 2 V is a nonsingular point of a curve if and

only if the local ring OV,P is a DVR. [4]

(iii) Prove that the coordinate ring k[C] of a nonsingular a�ne curve C ⇢ An is

normal (that is, integrally closed in its function field k(C)). [You may use that

an integral domain A is normal if and only if the local ring AP is normal for

every prime P .] [4]

(iv) If � ⇢ An is an irreducible a�ne curve, explain how to use normalisation (inte-

gral closure) of its a�ne coordinate ring k[�] to construct a nonsingular model

C ! � of �. [Please give brief statements without proofs of the results of

commutative algebra that you need.] [5]

(v) Describe the normalisation of C[�] for the plane curve � = V (y3 � x2(x � 1))

in A2
C, and the nonsingular model C ! �. [8]
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2. Let C be a nonsingular projective curve. Standard results on nonsingularity

and discrete valuation rings may be assumed.

(i) What is meant by a divisor D on C, and what is its degree degD? Give the

definition of principal divisor, linear equivalence of divisors, and state the main

results concerning their degrees. [No proofs are required.] [4]

(ii) Define the Riemann–Roch space L(C,D) of a divisor D. Prove that degD < 0

implies L(C,D) = 0, and deduce that dimL(C,D)  1 + degD for every D. [4]

Let P2 be the projective plane with coordinates x, y, z, and C ⇢ P2 a nonsingular

cubic curve.

(iii) By considering rational functions on C of the form Fn/zn with Fn homogeneous

of degree n, or otherwise, show that C has divisors Dn of arbitrarily large degree

for which dimL(C,Dn) � degDn. [4]

Deduce that dimL(C,D) = degD for every divisor of degree > 0. (You may

assume that C is not rational.) [5]

(iv) Now let O 2 C be a chosen point. Prove that for any P,Q 2 C, there is a

unique point R 2 C for which O +R is linearly equivalent to P +Q. [4]

Prove that the operation P,Q 7! R defines a group law on the set of points of

C, with neutral element O. [4]

3. (i) Let D1, D2 be e↵ective divisors on a nonsingular projective curve C. Prove that

multiplication in k(C) defines a k-bilinear map

m : L(C,D1)⇥ L(C,D2) ! L(C,D1 +D2),

and that m(s1, s2) 6= 0 for nonzero s1 2 L(C,D1) and s2 2 L(C,D2). [3]

(ii) Consider the subspace of L(C,D1+D2) spanned by the image of m. Prove that

it has dimension � l(D1) + l(D2) � 1. [Here l(Di) = dimL(C,Di). Assume [4]

as given that a projective subvariety X ⇢ Pn of dimension a has nonempty

intersection with every projective linear subspace of dimension n� a.]

(iii) For D a divisor on C and s1, s2 2 L(C,D), assume that the e↵ective divisors

D1 = D + div s1 and D2 = D + div s2 are supported on disjoint sets of points.

For any divisor A, determine the intersection

s1 · L(C,A) \ s2 · L(C,A) ⇢ L(C,A+D).

Deduce that s1 ·L(C,A)+s2 ·L(C,A) is a subspace of L(C,A+D) of dimension

equal to 2l(A)� l(A�D). [12]

(iv) Now assume in addition that degA� degD � 2g � 1. Prove that the image of

the multiplication map L(C,A)⇥L(C,D) ! L(C,A+D) spans L(C,A+D). [6]
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4. (i) For a divisor D on a nonsingular projective curve C, give the definition of the

linear system |D|, and say what it means for it to be free (or base-point free).

Define the notion of a very ample divisor D. [3]

(ii) If D is very ample, prove that the Riemann–Roch spaces satisfy [3]

dimL(C,D � P �Q) = dimL(C,D)� 2 for every P,Q 2 C. (4.1)

(iii) Conversely, prove that condition (4.1) implies D is very ample. (Standard

results on finiteness of normalisation and finite modules over a local ring may

be assumed without proof.) [6]

In what follows C is a nonsingular projective curve of genus g � 3 and C is

not hyperelliptic. The full statement of the Riemann–Roch theorem may be

assumed.

(iv) Prove that KC is very ample. [3]

(v) Let P1, P2, P3 2 C be distinct points. Explain what it means for |P1 + P2 + P3|

to be a g13, and state and prove the condition for this in terms of the geometry

of the canonical image 'KC (C). [4]

(vi) It is known that the canonical image C2g�2 is contained in
�
g�2
2

�
linearly inde-

pendent quadric hypersurfaces of Pg�1. If |P1 + P2 + P3| is a g13, deduce from

(v) that the intersection of all the quadrics through the canonical image of C

contains a surface ruled by straight lines. [3]

(vii) Prove that a nonhyperelliptic curve C of genus 4 has either one or two g13s, and

explain how the two cases are distinguished. [3]
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5. (i) Give the definition of graded ring used in the course. [2]

For a curve C and an e↵ective divisor D of degree d > 0 that gives a free linear

system as in Question 4, (i), give the definition of the graded ring R(C,D).

Discuss briefly its main properties (detailed proofs are not required). [3]

In what follows, you may use the full form of the Riemann–Roch theorem and

its corollaries such as Cli↵ord’s theorem degD � 2(l(D)� 1) for irregular D.

(ii) Let C be a hyperelliptic curve of genus g and D its g12. Choose a basis s1, s2 2

L(C,D) and write Sn(s1, s2) = {sn1 , s
n�1
1 s2, . . . , sn2} ⇢ L(C, nD) for the n + 1

monomials of degree n.

Prove that the Sn(s1, s2) are linearly independent in L(C, nD), and that they

form a basis of L(C, nD) for all n  g. [2]

Prove that L(C, (g + 1)D) contains an element z that is complementary to the

space spanned by Sg+1(s1, s2), and that the monomials

Sn(s1, s2) and Sn�g�1(s1, s2)z

then form a basis of L(C, nD) for every n � g + 1. [4]

(iii) Now suppose that C is not hyperelliptic, and let D be a divisor on C with

degD = 3, l(D) = 2 and K
lin
⇠ 2D. Prove that g = 4, and that the Riemann–

Roch space L(C, nD) have dimension given by [4]

l(nD) =

8
>>>>><

>>>>>:

1 if n = 0;

2 if n = 1;

4 if n = 2;

3n� 3 if n � 3.

Write s1, s2 for a basis of L(C,D) as before, and y 2 L(C, 2D) for a comple-

mentary basis element. Prove that the monomials

Sn(s1, s2), Sn�2(s1, s2) · y, Sn�4(s1, s2) · y
2

form a basis of L(C, nD) for every n � 0. [6]

(iv) Deduce that the graded ring R(C,L) has the form k[x1.x2, y]/(f6) where f6 is

a weighted polynomial of degree 6 in the variables x1, xx, y of degree (1, 1, 2). [4]

4 END


