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Chapter 2. Divisors and RR spaces – RR theorem
assuming Main Propositions I–III

5 Introduction

Chapter 1 set out the main object of study, a nonsingular projective algebraic
curve C. For C to be nonsingular at a point P ∈ C is the condition that
the local ring OC,P is a discrete valuation ring (DVR). Alternatively, an
affine curve C ⊂ An is nonsingular if and only its coordinate ring k[C] is
normal (that is, integrally closed). A basic initial circle of ideas is called
resolution of singularities: this replaces any irreducible algebraic curve Γ
with a nonsingular projective curve C having a morphism C → Γ that is
finite and birational, and establishes that the nonsingular projective model
C is unique up to isomorphism. Over C, these curves can also be identified
with compact Riemann surfaces.

Chapter 2 assumes the notion of nonsingular projective curve C ⊂ Pn
(over an algebraically closed field k), and its field of rational functions k(C).
Nonsingular means the local ring OC,P at every point P ∈ C is a DVR. For
f ∈ k(C)× and P ∈ C, the valuation vP (f) describes the zeros or poles of
f .

The Riemann–Roch theorem controls the vector space L(C,D) of mero-
morphic functions with specified poles on a compact Riemann surface or a
nonsingular projective algebraic curve – if you allow more poles, you get
more functions. Chapter 2 discusses the statement of the Riemann-Roch
theorem:

dimL(C,D) ≥ 1− g + degD (5.1)

(together with accompanying reasonable conditions that guarantee equal-
ity). Here the divisor D is a formal sum D =

∑
diPi of points Pi ∈ C

with multiplicity di. The Riemann–Roch space L(C,D) is the vector space
of rational or global meromorphic functions on C having only poles at Pi of
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order ≤ di (I assume here for simplicity that di > 0, the main case). The
number g = g(C) is the genus, the most important numerical invariant of
C. It can be described intuitively as the “number of holes” in topology,
but it has many quite different characterisations in analysis and in algebraic
geometry, and can be calculated in many different ways.

The proof of RR in algebraic geometry is deduced here from three Main
Propositions I–III that I state below, but only prove in Chapter 4.

5.1 Preliminary explanations

The introductory sections have set the scene, and you probably already know
a lot of what I am going to say about RR spaces. Let me discuss a small
point of language that is very convenient and used throughout. Let P ∈ C
be a nonsingular point of a projective curve, with local parameter z = zP .
For d ∈ Z, consider the condition

vP (f) + d ≥ 0. (5.2)

This is equivalent to any of the following:

(I) f ∈ OC,P · 1
zd
⊂ k(C), that is, f = 1

zd
f0 for some f0 ∈ OC,P .

(II) Divided into cases: If d ≥ 0 then f has a pole of order ≤ d; if d ≤ 0
then f has a zero of order ≥ d.

(III) div f + dP ≥ 0 at P (see below for div f).

(IV) f ∈ OC,P (dP ) at P .

All of (I–IV) are popular expressions appearing throughout the literature,
but the expression (5.2) is concise, and gets around the longwinded case
division of (II), and the frequent tedious errors and confusion associated
with inequalities involving negative numbers.

The substantive point is that for d ≥ 0 a function f with pole of order
up to d is allowed a principal part

f = a−d
1

zd
+ · · ·+ a−1

1

z
+ regular function at P (5.3)

that depends on d paramenters a−d, . . . , a−1.

Example 5.1 (Weierstrass elliptic curve) In complex analysis, a curve
of genus g = 1 is the complex manifold E = C/Λ, where Λ = Z+Z · τ (here
1, τ ∈ C form an R-basis of C, conventionally with im τ ≥ 0).
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The Weierstrass P-function ℘(z) is a global meromorphic function of
z that is doubly periodic. This means it is invariant under translation by
Λ. It is given as the sum ℘(z) =

∑
c∈Λ

1
(z−c)2 , modulo a little issue of

convergence.1 The formula shows that ℘ is invariant under Λ, so defines a
global meromorphic function on E = C/Λ. It is an even function of z, and
has pole of order 2 at 0. Its derivative ℘′ is an odd function of z with pole
of order 3 at 0.

It is known that dimL(E, dO) = d for every d > 0. (Compare Ex. 5.13;
here I write O for the image of 0 ∈ C). For d = 3 the space L(E, 3O)
is based by the functions 1, ℘, ℘′. The map z 7→ (1, ℘(z), ℘′(z)) defines an
embedding of E = C/Λ into P2

C. Its image is the plane cubic curve given by
the famous Weierstrass equation (℘′)2 = (℘)3 + a℘+ b.

5.2 Divisors D on C and the RR space L(C,D)

I work over an algebraically closed field k. A nonsingular projective curve is
an irreducible variety C ⊂ PN such that the local ring OC,P at each P ∈ C is
a DVR. This means OC,P ⊂ k(C) is a subring of the function field of C, with
maximal ideal mP = (zP ) the principal ideal generated by a local parameter
zP . Every nonzero function f ∈ k(C)× is then of the form f = zvP · f0 with
f0 ∈ O×C,P a unit at P . Here v = vP (f) is the valuation of f at P . We say
f has zero of order vP (f) if it is positive, or pole of order −vP (f) if it is
negative.

Definitions A divisor on C is a finite sum

D =
∑

diPi with Pi ∈ C and di ∈ Z. (5.4)

We also write D =
∑

P∈C dPP , where the expression assumes dP = 0 for all
but finitely many P . A divisor D =

∑
dPP is effective (written D ≥ 0) if

dP ≥ 0 for every P . The degree of D is
∑

P∈C dP .
The divisor of a rational function f ∈ k(C)× on C is

div f =
∑

vP (f)P = zeros of f − poles of f. (5.5)

Here both f and f−1 are regular outside a finite set, so (5.5) is a finite sum.
The RR space of D on C is defined as the vector subspace

L(C,D) =
{
f ∈ k(C)

∣∣ div f +D ≥ 0
}
⊂ k(C). (5.6)

1The series does not converge absolutely, but Weierstrass specifies a sensible order of
summation that makes it converge for z /∈ Λ – see the literature or the Wikipedia page.
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The condition div f + D ≥ 0 applies separately at each point P , and as
discussed in 5.1, where dP ≥ 0, it allows f to have poles of order ≤ dP
(adding the positive part of D cancels its poles), and imposes P as a zero
of order −dP on f at points where dP < 0.

While not strictly necessary, it is informative to use the same condi-
tion to define the structure sheaf OC and the divisorial sheaf OC(D). The
constant sheaf k(C) has the fixed pool k(C) of rational functions on every
nonempty Zariski open set of C. Inside k(C), the regular functions at P are
characterised as OC,P = {f ∈ k(C)

∣∣ vP (f) ≥ 0}. At each P , the divisorial
sheaf condition for OC(D) replaces this with div(f) + dP ≥ 0; this means
that OC(D) is generated locally at P by z−dPP , or OC(D)P = OC,P · 1

z
dP
P

. (If

you know the ideas of algebraic number theory, this is essentially the same
as a fractional ideal.)

Then OC(D) is the subsheaf of the constant sheaf k(C) obtained by
imposing the condition div f +D ≥ 0 over each Zariski open subset U ⊂ C.
In other words the sections of OC(D) over U are

OC(D)(U) = Γ(U,OC(D))

=
{
f ∈ k(C)

∣∣ vP (f) + dP ≥ 0 for all P ∈ U
}
⊂ k(C).

This definition is local near each P ∈ U , making the sheaf condition auto-
matic. The definitions make OC(D) a locally free sheaf of OC-modules of
rank 1, based by z−dPP in a Zariski neighbourhood of P . The global sections
Γ(C,OC(D)) is the same thing as the RR space L(C,D).

If D ≥ 0 then OC ⊂ OC(D). Also, OC(−D) = ID ⊂ OC is the sheaf of
ideals of D (regular functions with zeros on D).

5.3 Principal divisors and linear equivalence

A divisor of the form div f for f ∈ k(C)× is principal. The term arises from
principal ideals in the ring of integers of a number field. Two divisors D1

and D2 are linearly equivalent (written D1
lin∼ D2) if they differ by a principal

divisor, that is, D1 −D2 = div g for some g ∈ k(C)×.

Remark 5.2 On P1, any two points are linearly equivalent: the rational
function z−a

z−b has divisor Pa − Pb. This property characterises P1 or curves
of genus 0. It is comprehensively false for any curve of genus g ≥ 1.

If D1 and D2 are effective and disjoint, D1
lin∼ D2 means there is a

morphism g : C → P1 such that D1 = g∗(0) and D2 = g∗(∞). Linear
equivalence thus works as a kind of algebraically defined homology between
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the two divisors. (But beware that algebraic geometry introduces many
other kinds of equivalence.)

It is interesting to rework the group law on a nonsingular plane cubic
curve [UAG, Chap. 2] in terms of the linear equivalences corresponding to
div(L1/L2) with L1, L2 lines of P2. See Ex. 5.13

5.4 Standard tricks

The following points come directly from the definitions. They recur time
and again as standard computational devices in the proof and applications
of RR.

Proposition 5.3 (a) For D a divisor and P ∈ C a point, consider the
inclusion L(C,D−P ) ⊂ L(C,D). Then any f ∈ L(D)\L(D−P ) is a
complementary basis element. In other words, we have the dichotomy:

(i) either L(D) = L(D − P );

(ii) or L(D) = k · f ⊕ L(D − P ) for some f ∈ L(D) \ L(D − P ).

More crudely, L(D − P ) ⊂ L(D) has codimension 0 or 1.

(b) Moreover, if L(D) 6= 0, case (i) holds for at most finitely many P ∈ C.

(c) div(f1f2) = div f1 + div f2 for all f1, f2 ∈ k(C)×.

(d) Suppose divisors D1, D2 are linearly equivalent, so D1 − D2 = div g
for g ∈ k(C)×. Then for f ∈ k(C)×,

f ∈ L(D1) ⇐⇒ fg ∈ L(D2). (5.7)

That is, multiplication by g in k(C) is a change of basis k(C)
∼−→ k(C),

and it takes the subspace L(D1) to L(D2). In particular l(D1) = l(D2).

(e) For divisors A and B and some point P ∈ C, suppose both inclusions

L(A− P ) ( L(A) and L(B − P ) ( L(B) (5.8)

are strict. Then also L(A+B − P ) ( L(A+B).

The proofs are formal.
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(a) Let zP be a local parameter at P and write dP ∈ Z for the multiplicity
of P in D. The condition div f +D ≥ 0 at P is equivalent to zdPP f regular

at P , so zdPP f ∈ OC,P . For f ∈ L(D), if zdPP f is a unit at P , subtracting a
multiple of f cancels the leading term of any g ∈ L(D), so that g − λf ∈
L(D − P ), proving (ii).

The alternative is that zdPP f vanishes at P , so that zdP−1
P f is also regular

at P , and f ∈ L(D − P ). If this holds for every f ∈ L(D) then (i) holds.
Assertion (a) reflects the fact that the powers of the maximal ideal of

a DVR are principal md = (zd), with successive quotients md−1/md iso-
morphic to the residue field k = A/m.

(b) For any nonzero f ∈ L(D), the effective divisor div f + D =
∑
nPP

has support a finite set, and (ii) holds for any P not in this.

(c) This follows from the basic property v(fg) = v(f) + v(g) of a discrete
valuation: at any P ∈ C, suppose f1 = zd1P · u1 and f2 = zd2P · u2, with units

u1, u2 ∈ O×C,P and vP (fi) = di. Then f1f2 = zd1+d2
P u1u2 with u1u2 a unit,

so that vP (f1f2) = d1 + d2.

(d) This holds because div(fg) = div f + div g = div f + D1 −D2. Thus
div f ≥ −D1 if and only if div(fg) ≥ −D2.

According to (d), linear equivalence thus concerns the minor matter of
the choice of basis in the 1-dimensional vector space k(C). This means
that one can usually replace D by a linearly equivalent divisor. Algebraic
geometers frequently do this without saying so, using divisor and divisor
class interchangeably by abuse of terminology.

(e) This follows from (c): f ∈ L(A)\L(A−P ) and g ∈ L(B)\L(B−P ) give
fg ∈ L(A+B) and vP (fg) = aP + bP , where aP and bP are the coefficients
of A and B at P , so fg /∈ L(A+B − P ). Q.E.D.

5.5 Main Proposition I

My proof of RR is based on the following Main Propositions I–III. The
first two can be treated fairly easily in various ways. However, rather than
knocking them off piecemeal, I prove all three by a single comprehensive
argument in Chapter 4. Here is Proposition I.
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A principal divisor has degree 0: deg(div f) = 0 for f ∈ k(C)×. Since
we interpret the divisor of f as div f = zeros of f −poles of f , this says any
rational function has the same number of zeros and poles.

Corollary 5.4 (1) If degD < 0 then L(C,D) = 0.

(2) For any divisor l(D) = dimL(C,D) ≤ 1 + degD.

Proof If 0 6= f ∈ L(C,D) then div f + D is an effective divisor, so has
degree ≥ 0, hence degD ≥ 0. This proves (1).

(2) follows from (1) by induction on degD and Trick (a). Suppose
degD ≥ 0 and let P ∈ C be any point. Then deg(D − P ) = degD − 1
so by induction l(D − P ) ≤ degD, and (a) gives l(D) ≤ 1 + degD. �

Corollary 5.5 If A =
∑
Pi is an effective divisor (where I allow repeated

points) then l(D −A) ≥ l(D)− degA.

This follows by repeated use of Trick (a): in passing from D to D − A,
the dimension of L(D−P1− · · · −Pi) either decreases by 1 or is unchanged
at each step. Q.E.D.

Motivation for (I) On a compact Riemann surface, we can prove Main
Proposition I by contour integration and the Cauchy integral theorem. In
fact, let f be a global meromorphic function and write

d log f =
df

f
or locally

df/dz

f
dz

for its logarithmic derivative. This has pole of order 1 with residue vP (f)
at every zero or pole of f : for where f = zn · f0 with f0 a unit, we get
d log f = n

z + regular. (Check that this works in all three cases n > 0, n = 0
and n < 0.) The integral 1

2πi

∮
d log f around a contour thus counts the

zeros and poles in the interior of the contour.
Take a countour Γ that divides the surface up into an interior containing

all the zeros and poles and an exterior containining no zeros and poles. Then
1

2πi

∮
d log f = deg(div f) if we view Γ as surrouning its interior, and = 0 if

we view it as surrounding its exterior. Equating the two gives deg(div f) = 0.
On a compact Riemann surface, Corollary 5.4, (1) includes the statement

that a global holomorphic function is constant. In complex analysis, this
follows from the Maximum Modulus principle: the modulus |f | of a global
holomorphic function f would be a continuous function, and on a compact
space this takes a maximum value at some point P . But then the modulus
would be constant, and hence also f is constant.
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5.6 Main Proposition II

There exist a family Dn of divisors on C for which degDn → ∞ while the
difference 1+degDn− l(Dn) remains bounded, say 1+degDn− l(Dn) ≤ N .

Corollary 5.6 Assume this. Then the same bound 1 + degD − l(D) ≤ N
holds for every divisor D on C.

Proof The first step is to show that for every D, there is some n such that
L(Dn −D) 6= 0. In fact if D = A − B with A, B effective divisors, choose
n such that l(Dn) > degA. Corollary 5.5 implies that L(Dn −A) 6= 0.

Thus replacing Dn −D = Dn − A + B by a linearly equivalent divisor,
I can assume it is effective, say Dn −D ∼ ∆ > 0; I can turn that around to
D ∼ Dn −∆. Now Corollary 5.5 again implies that l(D) ≥ l(Dn)− deg ∆,
so that

1 + degD − l(D) ≤ 1 + degD + deg ∆− l(Dn)

≤ 1 + degDn − l(Dn) ≤ N. �

5.7 Discussion of II

In complex analysis, this is the hard part of Riemann–Roch, that requires
partial differential equations to prove the existence of harmonic functions
(satisfying the Laplace equation ∆f = 0, with singularities at the poles
interpreted in terms of boundary value problems), and then the Cauchy–
Riemann equations to link harmonic functions and holomorphic functions.
Riemann’s own motivation for the statement (that he never proved correctly)
involved the ideas of electrostatics: a point electric charge must defines a
harmonic potential “for physical reasons”.

In algebraic geometry, II is straightforward. A projective curve is bira-
tional to a plane curve, say via a morphism f : C → Ca ⊂ P2, where Ca
is a plane curve of degree a (usually singular) defined by Fa(x, y, z) = 0.
Choose coordinates x, y, z so that the line z = 0 meets C only transversally
at nonsingular points, and set H = div z for the divisor “at infinity”. It is
the effective divisor defined by z/x away from the line x = 0 and by z/y
away from y = 0, and it has degree a because the homogeneous polynomial
Fa cuts out a points with multiplicity 1 on the line z = 0.

Now any homogeneous form Gn(x, y, z) of degree n defines a rational
function Gn/z

n on C with poles at most nH. It is an exercise to see that
this restriction provides a subspace of L(C, nH) of dimension 1−

(
a−1

2

)
+an.
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If f : C → Ca is not an isomorphism, there are more functions of C than
on Ca, so that this does not give the whole of L(nH), but it is enough to
prove II.

5.8 Definition of genus g(C) and immediate consequences

In view of Corollary 5.6, it makes sense to define

g(C) = maxD{1 + degD − l(D)}

taken over every divisor D on C. It then follows by definition that

l(D) ≥ 1− g + degD for every D, (5.9)

and equality holds for some D.
Say that D is regular if l(D) = 1 − g + degD. Otherwise, define the

irregularity of D as the difference l(D) − (1 − g + degD) is. The full form
of RR in 5.11 includes a formula for the irregularity of D.

This definition is the most appropriate for the logical purpose of proving
the RR theorem. I use it in the following sections, and in algebraic geometric
applications. It relates to several other definitions in algebraic geometry,
topology, analysis, and different flavours of homology or cohomology, as
discussed later

Proposition 5.7 (a) Every divisor D of degree ≥ g has L(D) 6= 0.

(b) There exists a divisor D0 with degD0 = g − 1 and L(D0) = 0.

(c) Equality holds in (5.9) for every D with degD ≥ 2g − 1.

Proof (a) is clear. I prove (b) by induction on l(D). Equality holds in (5.9)
for some divisor D. If L(D) = 0 and equality holds, then degD = g − 1, as
required. However, if L(D) 6= 0, Trick (b) applies: for all but finitely many
points, l(D−P ) = l(D)− 1. Since degree and dimension both drop by 1, it
follows that D − P also has equality in (5.9), with l(D − P ) < l(D). Now
induction on l(D) takes us down to L(D) = 0 with equality still holding in
(5.9), and this proves (b).

Now for (c), suppose that degD ≥ 2g− 1 and choose some D0 as in (b).
Then deg(D −D0) ≥ g and so L(D −D0) 6= 0 by (a). That is, D −D0 is
linearly equivalent to an effective divisor A with degA = deg(D − D0) =
1− g + degD. Turn this around to D0 ∼ D −A. Then Corollary 5.5 gives

l(D) ≤ l(D0) + degA = 1− g + degD. (5.10)

This is the opposite inequality to (5.9), and proves (c). Q.E.D.
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5.9 The critical range [0, 2g − 2]

The treatment so far determines the value of l(D) in the cases

• degD < 0: Then Corollary 5.4 gives L(D) = 0.

• degD > 2g− 2: Then Proposition 5.7, (c) gives l(D) = 1− g+ degD.

In the range [0, 2g−2] however, we shouldn’t expect a definite answer: l(D)
really depends on the individual divisor D.

The cases g = 0 and g = 1 are rather simple, and separate from the
main development. I treat them as worked exercises.2

For g ≥ 2, a notable point is that there are 2g steps between −1 and
2g−1. If D−1 is a divisor of degree −1, and D2g−1 a divisor of degree 2g−1,

• the difference in degrees is

degD2g−1 − degD−1 = 2g − 1− (−1) = 2g, (5.11)

• whereas the difference in the dimension of their RR spaces is

l(D2g−1)− l(D−1) = g − 0 = g (5.12)

The next section works with chains of 2g steps

D−1 < D0 < · · · < Di−1 < Di < · · · < D2g−2 < D2g−1, (5.13)

with degDi = i. Each adds one point Pi. By Trick (a), each step has
l(Di+1)− l(Di) = 0 or 1s. Hence, exactly g steps must go up, and g remain
unchanged.

5.10 Main Proposition III

With g defined as above, there exists a divisor K on C with degK = 2g− 2
and l(K) = g. The key point in numerology is that

l(K) = g > 1− g + degK, (5.14)

so that K is irregular.

2For g = 0, the range is empty, and l(D) = 1+degD for every divisor with degD ≥ −1.

For g = 1, the range is [0, 0]. For a divisor D of degree 0, either D
lin∼ 0 and l(D) = 1; or

not, and then l(D) = 0. The linear equivalence classes of degree 0 on a curve C of genus
g = 1 are closely related to the group law on an elliptic curve (see Ex. 5.13 for a first
introduction).
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This proposition is considerably more subtle than I–II, and it is the
crucial point that will occupy us in the final stages of the proof.

This K = KC is called a canonical divisor of C. We see that it is unique
up to linear equivalence, and its divisor class is the canonical class of C. It is
irregular, the biggest irregular divisor, and contains every irregular divisor
class. I prove in the next section that it control the irregularity of every
divisor, via the following property.

Lemma 5.8 L(C,KC) = L(C,KC + P ) for every P ∈ C.

Proof Main Proposition III says that l(K) = g. However, KC + P has
degree 2g − 1, so it is in the regular range of Proposition 5.7, (c), so that
l(K + P ) = 1− g + 2g − 1 = g. In passing from KC to KC + P , the degree
goes up by 1, but the irregularity of KC highlighted in (5.14) is lost.

5.11 The RR theorem assuming Main Propositions I–III

Theorem 5.9 Let C, g = g(C) and KC be as above. For every divisor D
on C

l(D)− l(K −D) = 1− g + degD (5.15)

Proof, Step 1 Equality holds in (5.15) if degD ≥ 2g−1 or degD < 0. In
the first case, K −D has degree < 0 so l(K −D) = 0 by Corollary 5.4, and
l(D) = 1− g+ degD by Proposition 5.7, (c). In the same way, if degD < 0
then l(D) = 0 and l(K−D) = 1− g+ deg(K−D) = g−1−degD so (5.15)
also holds.

Thus there is nothing to prove unless degD is in the range [0, . . . , 2g−2].
For the cases g = 0 and g = 1, see 5.13.

Step 2 Consider any increasing chain of divisors D−1 < · · · < D2g−1 as in
(5.13) with degDi = i for i = −1, . . . , 2g−1. Each of the 2g step Di−1 < Di

adds one point: Di = Di−1 + Pi. Then Trick (a) gives

either l(Di) = l(Di−1) or l(Di) = l(Di−1) + 1. (5.16)

The chain starts at D−1 with l(D−1) = 0 and ends at D2g−1 with l(D2g−1) =
g. Thus in the dichotomy of Trick (a), exactly g steps go up by 1, and g
steps remain unchanged.
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Step 3 The same conclusion applies to the increasing chain KC − Di as
i decreases from 2g − 1 down to −1. This also has 2g steps, starting from
degree −1 and going up to degree 2g − 1; each step

KC −Di+1 = KC −Di − Pi < KC −Di

adds the point Pi. By the same argument as in Step 2, exactly g steps go
up by 1, and g steps remain unchanged.

Now not both inclusions

L(Di) ⊂ L(Di+1) and L(K −Di+1) ⊂ L(K −Di) (5.17)

can be strict. In fact Di+1 = Di + Pi, so if both inclusions were strict,
Trick (e) of Proposition 5.3 would imply that L(K) ( L(K + Pi) is strict,
which would contradict Lemma 5.8.

Step 4 For every D with 0 ≤ degD ≤ 2g − 1 and every P ∈ C, the pair
D − P < D is contained in a chain as in Step 2 (in many ways). In fact,
subtract off any degD points from D − P to get down to degree −1, and
add any 2g − 1− degD points to D to get up to degree 2g − 1.

By Step 3 only one of the inclusions L(D−P ) ⊂ L(D) and L(K−D) ⊂
L(K −D + P ) can be strict at each step. However, the two chains up and
down each have 2g steps, of which g go up and g remain unchanged. It
follows that exactly one of the inclusions is strict. That is,

either l(D)− l(D − P ) = 1 and l(K −D + P )− l(K −D) = 0,

or l(D)− l(D − P ) = 0 and l(K −D + P )− l(K −D) = 1.
(5.18)

Step 5 Theorem 5.9 now follows by induction, starting from degD = −1.
In fact, if (5.15) holds for D − P , it follows for D by (5.18). Q.E.D.

5.12 Motivation for III

On a compact Riemann surface S, the canonical class corresponds to the
space of holomorphic 1-forms Ω1

S . A holomorphic 1-form is locally of the
form s = g(z)dz with g a holomorphic function. We also have meromorphic
1-forms obtained by allowing g(z) to be a meromorphic function, and K =
div s is formed from the zeros and poles of the g(z).

Now Lemma 5.8 is the statement that a meromorphic 1-form s on a
Riemann surface cannot have a simple pole at P as its only pole. In fact,
the integral of s on a contour around P gives 1

2πi

∮
s = residue of S of P ,
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but the same contour can be viewed as bounding the exterior of S on which
s is holomorphic. Therefore the residue would be zero, so that s does not
actually have a pole.

In analysis, a meromorphic function f with pole of order d at P has the
local form

f(z) =
ad
zd

+
ad−1

zd−1
+ · · ·+ a1

z
+ regular

with the principal part having d free parameters a1, . . . , ad. Corollary 5.4
corresponds to the idea that allowing poles on an effective divisor D allows
principal parts depending on a vector space of dimension degD =

∑
dP .

Corresponding to the g-dimensional RR space L(C,KC) of Main Propo-
sition (III), an analytic definition of the genus g(S) is as the dimension of
the space of global holomorphic 1-forms. Now given any global holomorphic
1-form s, contour integration provides a linear relation on the possible prin-
cipal parts of f . Indeed, if we take a contour going around all the poles of
f then 1

2πi

∮
fs equals the sum of the residues of fs. Viewing the contour

as going around its exterior, we see the integral is zero. In other words,
the g holomorphic 1-form of S provide g linear conditions on the possible
principal parts, which explains the right-hand side 1− g + degD of the RR
formula. The irregularity of D covers the possibility that these conditions
are not linearly independent, and this also explains the formula l(K − D)
for the irregularity of D.

5.13 Curves of genus 0 and 1

The results Proposition I–II–III all hold for g = 0 and g = 1 (as does, of
course, the RR theorem itself). For example, the critical range of degrees
[0, 2g−2] is empty for g = 0, or is just the single value [0] for g = 1. However,
worrying about the initial cases may be a bit of a distraction in studying
the main body of theory, so I state everything here for you to think over
separately as exercises.

For g = 0, I prove in the next section that C ∼= P1. Let t1, t2 be
homogeneous coordinates, and set x = t2/t1 for an affine parameter. Write
P for the point t1 = 0, corresponding to x = ∞; any other point Q ∈ P1 is
linearly equivalent to P so would do equally well. For n ≥ 0 the RR space
L(nP ) corresponds to polynomials of degree ≤ n in x, which is a vector
space of dimension n+1, or to the space Sn(t1, t2) of degree n homogeneous
polynomials.

The formula dimL(nP ) = n+ 1 continues to hold for n = 0 (giving the
constant functions as polynomials of degree 0). It also holds when n = −1,
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giving the vector space 0. The canonical divisor is given by KC − 2P . It is
irregular because it has degree −2 compared to 1 + 0 + −2 = −1 You can
check that it satisfies all that is required of it in the above.

The case g = 1 over the complex numbers was discussed in Example 5.1
as the quotient E of C by the lattice Λ = Z + Zτ . As there, write O
for the image of 0 in E. In this case, the methods of complex analysis
give alternative methods: the holomorphic differential dz is invariant under
translation by Λ, and for a meromorphic function f , the contour integration∮
fdz around the unit parallelogram gives the single linear relation on the

principle part of f at its poles, and proves l(nP ) ≤ n. The Weierstrass
P-function and its derivative provide functions x = ℘ and y = ℘′ with
respective poles of order 2 and 3 at O.

Exercise 5.10 Show that the functions

1, x, . . . , xm, y, xy, . . . , xm−2y ∈ L(2mO),

respectively 1, x, . . . , xm, y, xy, . . . , xm−1y ∈ L((2m+ 1)O) (5.19)

base the RR spaces. Show also that y2 ∈ L(6O) satisfies the Weierstrass
equation y2 = x3 + ax+ b with a, b ∈ C. [Hint: Argue on their leading term
at O.]

Since Λ ⊂ C is a subgroup of the additive group C+, the quotient E =
C/Λ is itself a group with O ∈ E the additive unit and the quotient map
C→ E a group homomorphism.

Exercise 5.11 Take the logarithmic form d log f = df
f and its contour inte-

gration around the unit parallelogram. This proves that for a meromorphic
function f ∈ E the divisor div f has degree 0.

Moreover, if div f =
∑
niPi with Pi the image of zi = ai ∈ C, then also∑

niai ∈ Λ, so that div f adds to 0 in the group law of E = C/Λ. To prove

this take the contour integral of zf ′

f dz. You first calculate its residues. Next
(since the integrand is not invariant under translation by Λ) you verify that
the integrals along opposite sides of the unit parallelogram cancels modulo
integer multiplies of Λ.
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