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Miles Reid

Chapter 3. RR and the geometry of curves

7 Introduction

Part III discusses at some length what RR means and what it can do for
us, taking on trust the theorem and some of the characterisations of g. The
main overall application of RR is the following: ensuring that C has enough
global functions with given poles allows us to study the possible ways of
embedding C into projective space. In good cases, this allows us to go from
abstract notions such as a curve of genus g or a curve with a linear system grd
(see below) to a subvariety C ⇢ Pn embedded in a definite space and defined
by equations that can be studied in explicit ways. For example, a curve of
genus 1 is isomorphic to a plane cubic C3 ⇢ P3. Or a nonhyperelliptic curve
of genus 4 is embedded in P3 as a (2, 3) complete intersection C = Q2 \ F3.

A particularly important general use of RR in complex analysis is to
prove that every compact Riemann surface is actually a projective algebraic
curve, so an object of algebraic geometry. These ideas have many applica-
tions, and open up several branches of research.

7.1 Linear systems and projective embeddings

The RR spaces L(C,D) provide ways of mapping C to projective space:
a basis f1...l of L(C,D) gives the rational map 'D : C 99K Pl�1 that takes
P 7!

�
f1(P ) : · · · : fl(P )

�
. Here I study how to establish whether 'D is an

embedding (an isomorphism of C to its image), and if so, what the divisor
D has to do with the geometry of C ⇢ Pl�1.

First, some traditional terminology that goes back to antiquity. For C a
nonsingular projective curve and D =

P
dPP a divisor, write

|D| =
�
div f +D

�� f 2 L(C,D)
 

(7.1)

for the linear system of D (or linear series of D in the Italian tradition). By
construction, the divisors Df = div f +D for f 2 L(C,D) run through the
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e↵ective divisors linearly equivalent to D. The set |D| is parametrised by
Pl�1 =

�
L(C,D)\0

�
/k⇥, the projective space of 1-dimensional subspaces of

the vector space L(C,D) (with |D| = ; equivalent to L(D) = 0). We picture
the linear system |D| as a bunch of points running around C, parametrised
by the projective space Pl�1, in much the same way as the pencil of plane
conics �Q1+µQ2 = 0 is parametrised by P1

h�:µi. A common abuse of language

is to speak of D 2 |D| to mean a divisor Df 2 |D|.
It may happen that the e↵ective divisors Df 2 |D| all have a common

part A > 0. This means that each f 2 L(C,D) satisfies div f +D � A, or
in other words, L(C,D) = L(C,D�A). The biggest such A is the fixed part
of |D|. We write |D| = A+ |D �A|, where A is the fixed part and |D �A|

the free part.
I say that |D| is free (or fixed-point free) if it has no fixed part. Then for

every P 2 C, some f 2 L(C,D) has valuation vP (f) = �dP . In terms of the
sheafOC(D), this means that the global section f 2 �(C,OC(D)) = L(C,D)
is z�dP

P ⇥unit of OC,P , so that f is a local basis of OC(D) as an OC-module
near P . Thus |D| free is synonymous with OC(D) generated by its global
sections.

Remark 7.1 A free linear system |D| of degree d with dimL(C,D) = r+1
is traditionally called a grd, meaning that |D| consists of e↵ective divisors
of degree d moving in an r-dimensional family. For example, the 2-to-1
morphism C ! P1 from a hyperelliptic curve to P1 is given by a g12; the
hyperplane linear system |H| on a curve of degree Ca ⇢ P2 is a g2a.

Two traditional sources of confusion: first, r+1 = l(C,D) is the dimen-
sion of L(C,D) as a vector space, whereas r refers to its projectivisation
Pr =

�
L(C,D) \ 0

�
/k⇥, the parameter space of the linear system |D|.

Next, the points of Pr = |D| correspond to f 2 L(D) up to proportional-
ity, that is, to 1-dimensional subspaces of L(C,D), whereas the target space
of 'D : C ! Pl�1 has L(C,D) as its linear forms, so its points correspond
to codimension 1 subspaces of L(C,D). If |D| is a free linear system, its
divisors D 2 |D| correspond to the hyperplanes of Pr, which is the dual
projective space to |D|.

7.2 Strategy to prove embedding

How do I establish that 'D : C 99K Pl�1 is an isomorphism to its image
'(C) = � ⇢ Pn? An algebraic variety is a set of points X with locally
defined functions OX on it. Thus for ' : C ! � to be an isomorphism, we
need
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(1) that it is bijective as a map of point sets, and

(2) that pullback of functions on � provide all the functions on C.

Definition 7.2 A divisor D is very ample if 'D : C ! Pl�1 is an iso-
morphism to its image 'D(C) = � ⇢ Pl�1, and the hyperplanes of Pl�1

cut out the linear system |D| on C.

First of all, if |D| has a fixed part A then D and D�A define the same
morphism 'D = 'D�A : C 99K Pl�1. This follows as in the resolution of
indeterminacies of Proposition 4.1: for rational functions f1, . . . , fl, g 2 k(C)
the two expressions f1 : · · · : fl and gf1 : · · · : gfl define the same rational
map to Pl�1. Removing a removable singularity by cancelling a common
factor (z � c)f1/(z � c)f2 7! f1/f2 does nothing to a rational function (it is
just part of the equivalence relation defining it). However, the hyperplane
sections of 'D(C) see only the free part of D, and not the fixed part that is
removed.

The main result is the following theorem.

Theorem 7.3 Let D be a divisor on a nonsingular projective curve C. Then
D is very ample if and only if the RR spaces of D on C satisfy the conditions:

(1) l(D�P ) = l(D)�1 for every P 2 C; equivalently, L(D�P ) ( L(D).
That is, |D| is free.

(2) l(D�P �Q) = l(D)�2 for every pair of distinct point P,Q 2 C; that
is, L(D � P � Q) ( L(D � P ) ( L(D). We say that |D| is free and
separates points.

(3) l(D � 2P ) = l(D) � 2 for every P 2 C; equivalently, L(D � 2P ) (
L(D � P ) ( L(D). We say that D separates tangent directions or
separates infinitely near points in traditional language.

I start by relating the assumptions of the theorem to the above discus-
sion. (1) is the statement that |D| has no fixed part.

(2) is the condition that L(D � P � Q) ⇢ L(D) has codimension 2, so
that there is an f 2 L(D) that vanishes at P and not at Q. In other words,
there is a hyperplane of Pl�1 through 'D(P ) and not through 'D(Q). Thus
(2) gives directly that 'D is bijective on point sets.

To discuss (3), suppose that P 2 C appears in D with coe�cient dP ,
and that zP is a local parameter of the DVR OC,P . Then by (1) we know
that some f1 2 L(D) has valuation vP (f1) = �dP , so is a basis of OC(D) on
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an a�ne neighbourhood U of P . Assumption (3) asserts that there is some
f2 2 L(D) with vP (f2) = �(dP � 1). Then f2/f1 is a regular function on U ,
and is a regular parameter of the local ring OC,P .

In complex analysis, this would complete the proof – we have a injective
regular map, and functions on the image include a local analytic parameter
at each point P , so the map is an embedding by the implicit function the-
orem. Also, 'D(C) ⇢ Pl�1 is the image of a compact set in a metric space,
so that 'D is surjective onto its closure.

Proof of the theorem In algebraic geometry, write � ⇢ Pl�1 for the
Zariski closure of the image �0 = 'D(C). It is an irreducible subvariety,
and by (2), the morphism 'D : C ! � is injective on points. I have to prove
that 'D is surjective to �, and that pullback defines an isomorphism of local
rings '⇤

D : O�,Q
⇠= OC,P for every P 2 C, where Q = '(P ).

The proof consists of three steps: (1) Reduction to a finite morphism
'x : Cx ! �x on a�ne pieces Cx ⇢ C and �x ⇢ �, with the induced
homomorphism on the coordinate rings '⇤

x : k[�x] ⇢ k[Cx] making k[Cx]
into a finite module over k[�x]. (2) Reduction to local commutative algebra
with '⇤

Q : O�,Q
⇠= OC,P a finite morphism of local rings. (3) Conclusion of

the argument by Nakayama’s lemma.

Remark 7.4 My treatment fits 'D : C ! � into a diagram C ! � ! P1.
Then, as in the resolution of singularities of Chapter I, I reinpret C in terms
of the integral closure of the a�ne rings k[x] and k[x�1] of P1 in the field
extension k(P1) ⇢ k(C).

Reduction to a�ne Write �0 = 'D(C) ⇢ Pl�1 and let � ⇢ Pl�1 be
its Zariski closure. Then �0 = 'D(C) is an irreducible curve, and � adds
at most finitely many points Q 2 � (actually none, but that is still to
prove). The RR space L(C,D) gives the linear forms on Pl�1, so a choice
of homogeneous coordinates t1...l for Pl�1 gives a basis f1...l of L(C,D) and
vice-versa.

Since � is a curve, for general coordinates on Pl�1, it is disjoint from the
codimension 2 subspace t1 = t2 = 0. The first two elements f1, f2 of the
corresponding basis of L(C,D) give e↵ective divisors div fi+D with disjoint
support.

Write x = t1/t2 for an a�ne coordinate on P1.
Given t1, t2 chosen as above, for any Q 2 �, I can replace them with

appropriate linear combinations so that Q is in the hyperplane t1 = 0 and
not in t2 = 0, so that x = t1/t2 is regular and 0 at Q, that is x 2 O�,Q.

4



Or, for any given point P 2 C, I can replace the corresponding f1, f2 with
appropriate linear combinations so that f2 2 L(C,D) \ L(C,D � P ) and
f1 2 L(C,D � P ) and x = f1/f2 2 OC,P .

Now consider the commutative triangle

C
'D
��! �

&
?y

P1

with C ! P1 the morphism defined by the ratio (f1 : f2), and � ! P1 the
morphism induced by the linear projection Pl�1 99K P1

ht1,t2i.

I now reduce to the construction of Part 1. Set x = f1/f2 2 k(C). It is
a nonconstant rational function on C, so that k(x) ⇢ k(C) is a finite field
extension. As in Part 1, write Ax for the integral closure of k[x] in k(C)
and Cx = SpecAx for the corresponding a�ne curve. I can do the same for
y = x�1 = f2/f1, and identify C with the union Cx [ Cy.

Since � ⇢ Pl�1 is disjoint from t1 = t2 = 0, it is the union of two
standard a�ne pieces �t1 and �t2 (with ti 6= 0). The a�ne curve �t2 having
a finite morphism to A1

x with parameter x = t1/t2 (respectively �t1 to A1
y

with y = x�1 = t2/t1).
This gives a�ne varieties and morphisms Cx ! �x ! A1

x, with coor-
dinate rings k[x] ⇢ k[�x] ⇢ k[Cx]. What I gain is that k[Cx] is finite as a
module over k[x], so a fortiori over k[�x].

At this point it clarifies the argument to separate the commutative al-
gebra from the geometry.

Proposition 7.5 Let A ⇢ B be finitely generated k-algebras that are inte-
gral domains and m ⇢ A a maximal ideal. Assume the following:

(i) B is finite as A-module.

(ii) The ideal I = mB is contained in a unique maximal ideal n ⇢ B and
k = A/m = B/n.

(iii) m ! n/n2 is surjective.

Then on localising, the morphism of local rings Am ! Bn is surjective.

In the current case, A = k[�x] and B = k[Cx]. I have arranged that B
is finite over A. Next m = mQ is the maximal ideal of a point Q 2 �x. The
variety V (I) of the ideal I = mB consists of the points of Cx that map to Q.
This consists of at most one point of C by (2), with A/m = OC,P /mp = k.
It is nonempty by the following lemma.
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Lemma 7.6 mB 6= B, so mB is contained in a maximal ideal of B.

By contradiction, assume B = mB and suppose bi generate B. Then
bi =

P
aijbj with aij 2 m, and the usual determinant trick gives �B = 0

where � = det(�ij � aij). Then � = 0 because 1A 2 B, but � ⇠= 1 mod m,
which is a contradiction.

So Cx ! �x is surjective, and since 'D is injective then Q = 'D(P ) for
a unique P ; this implies (b). Finally, (c) holds since (3) implies that some
f 2 L(C,D � P ) has vP (f) = �(dP � 1) which gives vP (f/f2) = 1.

Reduction to local Replace A ⇢ B by their localisations Am ⇢ Bn. One
checks that the following still hold.

(i) Bn is still finite as Am module.

(ii) The ideal In = mBn is contained in nBn and we still have k = A/m =
Am/mAm, k = B/n = Bn/nBn.

(iii) nBn/n2Bn = n/n2, so that mAm ! nBn/n2Bn remains surjective.

Proof of the local statement We have In ⇢ n, and by (3), and the image
of In generates n/n2. This means that n = In + n2, so that Nakayama’s
lemma (applied to the B-module n) implies that In = n.

Now B is a finitely generated k-algebra and n a maximal ideal, it follows
by the weak NSS that B/n = k (the same k). Therefore 1 generates B/I =
B/mB, so that Nakayama’s lemma (appplied to the A-module B) implies
that 1 generates B.

8 Traditional applications of RR

8.1 Many characterisations of g = 0

I have already treated the statement of RR for C = P1 several times as
remarks or exercises. There is a lot to say about it, in much the same way
that there is a lot to say about the elements of the empty set.

Proposition 8.1 Let C be a curve. Equivalent conditions

(1) There exists a divisor D of degree � 1 such that l(D) = 1 + degD; or

(1a) the same for every divisor D of degree � 1.
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(2) There exist P 6= Q 2 C such that P
lin
⇠ Q; or

(2a) the same for every P,Q 2 C.

(3) g(C) = 0.

(4) C ⇠= P1.

This is all easy. If l(D) = 1+degD with degD > 1, the same continues
to hold for D � P , and by induction we get a divisor of degree 1 with
l(D) = 2. Then the linear system |D| contains every P 2 C as a divisor,
proving 2. The map 'D : C ! P1 is an isomorphism by Theorem 7.3.

8.2 Treatment of g = 1

The ideas around RR provides practically the whole of the geometric theory
and function theory of elliptic curves. First, to restate RR in the special
case g = 1, it says that l(D) = degD for every divisor D of degree � 1. For

D of degree 0, either D
lin
⇠ 0

lin
⇠ KC or l(D) = 0.

A curve of genus 1 is isomorphic to a plane cubic C ⇠= C3 ⇢ P2. Just
choose any divisor D of degree 3. The l(D) = 3, whereas l(D � P ) = 2 and
l(D�P �Q) = 1 for every P,Q 2 C, so that 'D : C ! P2 is an isomorphism
to its image by Theorem 7.3. The linear system of lines of P2 pull back to
the set |D| of e↵ective divisors linearly equivalent to D, so that the image
'D(C) is a nonsingular cubic curve.

Next, for the group law, the basic point is that a divisor D of degree 1
on C has l(D) = 1, so is linearly equivalent to a uniquely specified e↵ective
divisor of degree 1, necessarily a point P 2 C. This makes the set of points
of C into a coset of the group Pic0C of divisor classes of degree 0. We need
to specify a point O 2 C as the neutral element to get out of the coset and
into the subgroup.

This construction is important, so I spell it out: write DivC for the
group of all divisors of C (the free Abelian group generated by the points
{P 2 C}), and deg : DivC ! Z for the degree map. Its kernel is the group
Div0C of divisors of degree 0.

The principal divisors

PDivC = {div f
�� f 2 k(C)⇥} (8.1)

also form a group, isomorphic to k(C)⇥/k⇥. This is a subgroup of Div0C,
because by Main Proposition (I) a principal divisor has degree 0.
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Now define Pic0C as the quotient group

Pic0C = Div0C/PDivC = Div0C/
lin
⇠. (8.2)

The group law on this is just addition of divisors mod linear equivalence,
and the zero element is the class of the zero divisor.

Along with Pic0C, consider its coset Pic1C formed by divisors of de-
gree 1 up to linear equivalence. As we have seen, this is in bijection with
C itself. Now choosing any point O 2 C provides a bijective map Pic0C !

Pic1C ! C by [D] 7! [D+O]. That is, a divisor class D of degree 0 maps to
the divisor class D+O, which is linearly equivalent to a unique P 2 C; the
inverse bijection C ! Pic0C takes P to the class of P � O. In conclusion,
the group law on C is

(P,Q) 7! (P �O,Q�O) 7! (P +Q� 2O) 7! (P +C Q),

where the middle step is addition in Pic0, and P +CQ is the unique e↵ective
divisor linearly equivalent to P +Q�O.

There are a couple of exercises concerned with interpreting the tradi-
tional geometric P + Q + R form of the group law on a nonsingular plane
cubic curve (otherwise known as the secant-tangent construction) [UAG,
Chap. 2] within the current treatment.

8.3 g � 2: canonical embedding versus hyperelliptic

A curve C of genus g has a canonical divisor K with degK = 2g � 2 and
l(K) = g. In the main case g � 2, we have the following dichotomy.

Theorem 8.2 Write 'K : C ! Pg�1 for the canonical map of C, defined
by |KC |. Then either 'K is an isomorphism to its image C ⇢ Pg�1 and the
hyperplanes of Pg�1 cut out the canonical system |K| on C. Or C has a
linear system g12, and 'K is obtained as the composite of the double covering
C ! P1 given by the g12, followed by the embedding P1 ⇠= �g�1 ⇢ Pg�1 as the
rational normal curve of degree g � 1.

Every curve of genus g = 2 is hyperelliptic: the canonical system |KC |

is itself a g12.

Proof Equality L(K�P ) = L(K) holds only for g = 0 (when both spaces
are zero). For RR would give l(P ) � g = 1 � g + degP , that is, l(P ) = 2,
one of the characterisations of P1 of Proposition 8.1.
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Next if L(K � P � Q) = g � 2 for every P,Q 2 C then Theorem 7.3
guarantees that 'K is an embedding, which is one leg of the dichotomy. It
remains to analyse the other leg, when L(K � P � Q) = g � 1 for some
P +Q. In this case RR gives

l(P +Q)� (g � 1) = 1� g + 2, that is, l(P +Q) = 2. (8.3)

Thus D = P + Q has l(D) = 2, so that |D| is a g12. It forms a pencil |D|,
made up of moving pairs P + Q 2 |D| parametrised by P1, each of which
also has L(KC � P � Q) = g � 1. When P,Q are distinct, they go to the
same point under 'KC . When they coincide L(KC � 2P ) = L(KC � P ) so
that ever f 2 L(KC � P ) vanishes twice at P , so cannot provide a local
parameter at P . The g12 defines a 2-to-1 morphism 'D : C ! P1, so that C
is hyperelliptic. Q.E.D.

8.4 Hyperelliptic special linear systems

The hyperelliptic curves y2 = f2g+2(x1, x2) provide the valuable portfolio of
introductory examples discussed in introductory Lecture 3. They provide in
particular curves of every genus g, and the topological picture of a Riemann
surface of genus g. They also play a structural role in the theory of linear
systems, starting with their role as counterexamples to canonical embedding
as above, and at several points in what follows.

Every special linear system on a hyperelliptic curve C comes from its
special pencil |A| = g12. I discuss this in more detail: write t1, t2 for homo-
geneous coordinates on P1, corresponding to a basis f1, f2 2 L(A). For any
b � 1, the homogeneous forms of degree b in t1, t2 form a vector space of
dimension b+ 1 based by

Sb(t1, t2) =
�
tb1, t

b�1
1 t2, . . . , t

b
2

 
. (8.4)

These forms are linearly independent on P1, as are their pullbacks Sb(f1, f2)
in k(C) (because the ratio f1/f2 = t1/t2 is a nonconstant function on C,
and a transcendental generator of its function field k(C)). They base a
(b + 1)-dimensional vector subspace of L(bA). In the case b = g � 1, this
means that (g � 1)A has degree 2g � 2 and l((g � 1)A) = g, and therefore

(g � 1)A
lin
⇠ KC is a canonical divisor. It follows that Sb(f1, f2) base L(bA)

for b = 1, . . . , g � 1.
The divisor gA = KC + A has degree 2g, so is regular and has l(gA) =

g+1 by Proposition 5.7, (c). Thus Sg(f1, f2) also base the whole of L(gA),
so that the morphism 'KC+A is also composed of C ! P1. You have to go
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Figure 8.1: Geometric Riemann–Roch: the hyperplanes of Pg�1 through the
linear span hDi of D cut out the complete linear system |KC � D|, and
vice-versa. In particular, for d  g � 1, a divisor D = P1 + · · · + Pd moves
in a linear system grd if and only if the points of D in C ⇢ Pg�1 span a
projective linear subspace of dimension d� r � 1.

to (g+1)A before you find a function y on C that is not a rational function
of f1/f2, so is capable of distinguishing the pairs of conjugate points of |A|

and generating k(C) as a quadratic extension of k(P1).
Recall that a special linear system |D| on a curve C is one for which

l(D) > 1�g+degD, so that |KC�D| 6= ;. The moving part of |D| is a linear
subsystem of |KC |. For a hyperelliptic curve |KC | = |(g�1)A| = (g�1)|A|.
It follows that every special linear system on C has a multiple of g12 as its
moving part.

8.5 Geometric form of RR

A main feature of the RR formula

l(D)� l(KC �D) = 1� g + degD (8.5)

is that, for a given C and given degree degD in the range [0, . . . , 2g � 2], if
L(D) is bigger than expected, then so is L(KC �D). A geometer feels the
desire to draw this as the picture of Figure 8.5. If linearly independent, a
set of d points in projective space would span a linear subspace Pd�1. Linear
dependences between the points of D correspond to the dimension of the
linear system grd = |D|. For example, three points map to collinear point of
'K(C) ⇢ Pg�1 if and only if D = |P1 + P2 + P3| moves in a g13.

9 Cli↵ord’s theorem and the free pencil trick

9.1 Multiplying RR spaces and the linear-bilinear problem

So far, I have discussed RR spaces mainly as k-vector subspaces of the func-
tion field k(C). This section adds the multiplication in k(C), that defines
a bilinear map L(D1) ⇥ L(D2) ! L(D1 +D2) for any two divisors D1, D2.
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Lemma 9.4 and Proposition 9.5 give a first introduction to the linear-bilinear
problem: if a bilinear map V1 ⇥ V2 ! W is nondegenerate in some sense,
does that imply a lower bound on the rank of the associated linear map
V1 ⌦ V2 ! W?

The following argument is quite elementary, but plays a significant role
at several points in what follows. I say that two e↵ective divisors A,B on
C are coprime if they have no points in common. That is A =

P
aPP and

B =
P

bPP have aP , bP � 0, but no P is in the support of both. Coprime
means that vanishing at A and B are independent conditions, so vanishing
at both A and B is equivalent to vanishing at A + B. This implies the
following result.

Proposition 9.1 (coprime divisors) Let A,B be e↵ective divisors that
are coprime, and D any divisor. Then the vector subspaces L(D � A) and
L(D �B) of L(D) intersect in L(D �A�B).

Write iA : L(D � A) ,! L(D) for the inclusion map, and similarly for
B. These are just inclusion maps (the identity of k(C)). Then the sequence

0 ! L(D �A�B)

�
�iB ,iA

�
������! L(D �A)� L(D �B)

⇣
iA
iB

⌘

����! L(D). (9.1)

is exact. Therefore l(D) � l(D �A) + l(D �B)� l(D �A�B). ⇤
(9.1) is formally the same shape as a codimension 2 Koszul complex.

9.2 Cli↵ord’s theorem

The divisors D with degree in the range (0, 2g � 2) may be irregular. In
this range, the maximum value of l(D) is given by the hyperelliptic linear
systems |rA| = r|A| discussed in 8.4.

Theorem 9.2 (Cli↵ord’s theorem) Let D be a divisor having degree

d = degD in the range 0 < d < 2g � 2, and l(D) = r + 1. (9.2)

Then d � 2r. Moreover equality holds only for |D| = |rA| where A is a g12
on a hyperelliptic curve, as in 8.4

Addendum 9.3 The inequality d � 2r holds in the range �2  d  2g,
and strict inequality holds except for the following cases:

(1) C is hyperelliptic with A = g12, and D = rA for r = 1, . . . , g � 2, so
that d = 2r and l(D) = r + 1.
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(2) D
lin
⇠ 0 and r = d = 0, or D

lin
⇠ KC and r = g � 1, d = 2g � 2.

(3) d = �2 and r = �1, or d = 2g and l(D) = g + 1, so r = g.

Only case (1) has any content, and is specific to hyperelliptic curves. The
rest is formal tidying up. Strict inequality holds for every divisor D of degree
�1 (when l(D) = 0, so r = �1) or 2g � 1 (when l(D) = g, so r = g � 1).

Proof Consider the multiplication map L(D)⇥L(KC�D) ! L(KC). The
two RR spaces L(D) and L(KC�D) are k-vector subspaces of k(C) and the
map is multiplication in k(C). It is clearly bilinear over k and nondegenerate
(this means that f 6= 0, g 6= 0 implies that fg 6= 0).

Lemma 9.4 If V1 ⇥ V2 ! W is a nondegenerate bilinear map, the induced
linear map

 : V1 ⌦ V2 ! W (9.3)

has rank � dimV1 + dimV2 � 1.

Proof of Lemma Write n = dimV1 and m = dimV2. Recall that V1⌦V2

contains primitive tensors v1 ⌦ v2 for v1 2 V1 and v2 2 V2. If we write
V1 ⌦ V2 as the space Mat(n ⇥m) of n ⇥m matrices, the primitive tensors
are the tensors of rank 1. These form the a�ne subvariety defined by the
2⇥ 2 minors of a matrix. This variety clearly has dimension n+m� 1.

The kernel of  in (9.3) is a vector subspace V1 ⌦ V2 intersecting the
primitive tensors only in 0. It follows that its codimension in V1 ⌦ V2 is at
least n+m� 1.

An algebraic geometer considers it clearer to express the same argument
in projective space: P(ker ) is a linear subspace in the projective space
PN = P(V1⌦V2), and is disjoint from the Segre embedding of P(V1)⇥P(V2).
This is the projectivisation of the above subvariety of Mat(n⇥m) of matrices
of rank 1. It is a projective subvariety of dimension dimV1 + dimV2 � 2,
and a projective linear subspace of smaller codimension must intersect it.
Therefore our kernel must have codimension � dimV1 + dimV2 � 1. This
gives rank � dimV1 + dimV2 � 1 as required. ⇤

For the proof of Cli↵ord’s theorem, the map  of the lemma has rank
� l(D)+l(KC�D)�1 and maps to the g-dimensional space L(KC). Putting
this together with the RR formula give

l(D) + l(KC �D)� 1  g (9.4)

l(D)� l(KC �D) = 1� g + d. (9.5)
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Adding the two gives 2l(D)  d + 2, that is, d � 2r. This proves the
inequality.

I turn now to the case of equality. Suppose that C has genus g, and that
D is a divisor of degree 2r with l(D) = r + 1. Write E = KC �D, so that
the RR formula says that degE = 2g � 2 � 2r and l(E) = g � r. The two
divisors D and E appear symmetrically with r $ g�1�r. There is nothing
to prove if r  1 or r � g� 2: if r = 1 then |D| is a g12, whereas if r = g� 2
then |E| is a g12, so that C is hyperelliptic and |D| = |(g � 2)E|.

In the contrary case, both |D| and |E| are linear systems of (projective)
dimension � 2. For a point P 2 C, both |D � P | and |E � P | are still
positive dimensional linear systems, so there are D 2 |D| and E 2 |E| with
at least the point P in common, but neither contained in the other (they
move indepently in nontrivial linear systems); fix such a D and E.

Write D0 = gcd(D,E) for the greatest common divisor of D and E.
By this I mean the greatest divisor that is  both D and E. The two
divisors A = D � D0 and B = E � D0 are e↵ective and coprime, and
D00 = D0 +A+B = D +E �D0 = lcm(D,E) is the least divisor � both D
and E.

Now D0 +D00 = D +E
lin
⇠ KC . Proposition 9.1 on coprime pairs applies

to A and B and L(D00), and (9.1) gives

l(D0) + l(D00) � l(D) + l(E). (9.6)

Now by assumption D and E = KC �D are linear systems gr2r and gs2s (for
s = g � 1 � r), with the biggest possible RR spaces for their degree. The
same must apply to l(D0) and l(D00).

To spell this out, D+E = KC , and l(D)+ l(E) = g+1. Also D0+D00 =

D + E
lin
⇠ KC , and as just proved,

l(D0) + l(D00) � l(D) + l(E). (9.7)

Now the Cli↵ord inequality applied to D0 and D00 gives

degD0
� 2(l(D0)� 1), and degD00

� 2(l(D00)� 1), (9.8)

hence

2g � 2 = degD0 + degD00
� 2(l(D0) + l(D00))� 4

� 2(l(D) + l(E))� 4 = 2g � 2,

which does not leave much room for argument.
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This proves that D0 also has the equality degD0 = 2(l(D0) � 1), so is a
gr

0
2r0 but with r0 < r. By induction on r, it follows that C is hyperelliptic.
By the discussion of 8.4, all the divisors in the argument are multiples of
A = g12. Q.E.D.

9.3 The Castelnuovo free pencil trick

The Castelnuovo free pencil trick applies Proposition 9.1 on coprime divisors
to give a lower bound on the rank of multiplication maps

L(E1)⌦ L(E2) ! L(E1 + E2) (9.9)

when we can find a suitable free pencil D inside |E1|.
Let D be a divisor and U ⇢ L(C,D) a 2-dimensional vector subspace

such that the linear subsystem P1
U ⇢ |D|, made up of the e↵ective divisors

div s+D = Ds for s 2 U , (9.10)

is a free pencil. This just means that a basis s1, s2 of U gives divisors
D1 = div s1 + D and D2 = div s2 + D that are coprime in the sense of
Proposition 9.1. This is usually a free g1d (see Remark 7.1), but the logic of
the argument allows U ⇢ L(C,D) to be a strict subspace.

Proposition 9.5 Let D and U be as above, and E any divisor. Consider
the multiplication map µU : U ⌦ L(E) ! L(D + E). Then

rankµ = dim(U ⌦ L(E))� l(D � E) = 2l(E)� l(D � E). (9.11)

Proof The assertion is a particular case of Proposition 9.1. In fact under
µU , the two summands of

U ⌦ L(E) = s1 ⌦ L(E)� s2 ⌦ L(E) (9.12)

map to
s1 · L(E) and s2 · L(E) ⇢ L(D + E), (9.13)

which intersect in L(E �D1 �D2).
One traditionally expresses this as an exact sequence

0 ! L(E �D) ! L(E)�2
! L(D + E). (9.14)

The argument for (9.14) can also be written intrinsically (with a small
additional headache).

Many of the interesting consequences of the Castelnuovo free pencil trick
related to special divisors. However, if all the divisors in (9.14) are in the
regular range (that is, deg(E �D) � 2g � 1), an easy calculation with the
RR formula shows that the final map is surjective.
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9.4 Max Noether’s theorem

This is the typical application of the Castelnuovo free pencil trick. Let C
be a nonhyperelliptic curve of genus g. Recall from Theorem 8.2 that KC is
very ample, and identify C with its canonical image C = 'KC (C) ⇢ Pg�1.

Theorem 9.6 (Max Noether’s theorem) For d � 1, the forms of degree
d on Pg�1 map surjectively to L(C, dKC).

By construction, saying that C = 'KC (C) ⇢ Pg�1 means that the linear
forms on Pg�1 are the RR space L(C,KC). In other words, the hyperplanes
of Pg�1 cut out the complete canonical system |KC |. The theorem states
that, in the same way, the hypersurfaces of Pg�1 of degree d cut out the
complete linear system |dKC |.

The basic case to work with is d = 2. The product sisj 2 L(C, 2KC)
because div(sisj) = div s1+div s2. It is required to prove that the products
sisj include 3g � 3 elements that are linearly independent in L(C, 2KC).
The key to this is the Castelnuovo free pencil trick.

Linearly general position For C ⇢ Pn a nonsingular curve that spans
Pn, it is known that a su�ciently general hyperplane H ⇢ Pn cuts C in d
points that are linearly in general position. This result is a curious backwater
of the algebraic geometry literature, and I leave the proof to the Appendix
below.

Choose g general points P1, . . . , Pg of C ⇢ Pg�1, and assume the Pi

map to the coordinate points (0, . . . , 0, 1, 0, . . . , 0) 2 Pg�1. Applied to the
hyperplane V (s1), linearly general position implies that s1, s2 vanish on
the divisor A = P3 + · · · + Pg but not at any other point of C, so that
s1, s2 2 L(C,KC �A) form a free pencil as in 9.5.

Now L(A) = 1. This follows (say) from Standard Trick (b): the points
P3, . . . , Pg are general, so subtracting them one by one from KC give irreg-
ularity l(KC �A) = 2, therefore l(A)� 2 = 1� g + degA.

The conclusion of the free pencil trick Proposition 9.5 is that the two
subspaces s1L(KC), s2L(KC) intersect only in the 1 dimensional space L(A).
This means that the 2g � 1 monomials

s21, . . . , s1sg and s22, s2s3, . . . , s2sg (9.15)

are linearly independent in L(2KC �A). They vanish at the g� 2 points of
A by construction.
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Now the g � 2 monomials s23, . . . , s
2
g are linearly independent modulo

L(2KC � A), because at each Pi, s2i is nonzero, and the others zero. They
thus form a complimentary basis of L(2KC).

For d � 3, by the same argument, the two subspaces s1L((d � 1)KC)
and s2L((d � 1)KC) intersect in L((d � 2)KC + A). Since d � 3 this is in
the regular range, so there sum maps surjectively to L(dKC � A), and the
monomials sd3, . . . , s

d
g again form a complementary basis of L(dKC). QED

To do

Worked example for g = 4, g = 5: use Max Noether’s theorem to get Q2\F3

in P3 and Q1\Q2\Q3 as plausible constructions the canonical models. Add
a few hints looking forward to the Petri analysis.

To do The mult map L(D) ⌦ L(KC � D) ! L(KC) is called the Petri
map. There are favourable cases in which it is surjective, that has nice
consequence.

I also use the Castelnuovo free pencil trick in Chapter 4, (page 6 in the
2020 notes) in the proof that s1, s2 in the complete sections ring R(C,D)
form a regular sequence.

10 Appendix on inseparability

10.1 Definitions

The material here is not really essential for algebraic curves (except for the
easy part of the proof of linearly general position), but I hope eventually to
put it all together as an appendix for the reader who needs it. Inseparable
extensions are usually only mentioned in passing in a Galois theory course,
and mainly to get rid of them. However there is no special mystery or
di�culty about what is going on, even if it is not specially familiar.

The first thing to say is the paradoxical geometric property of an insep-
arable function or map. In analysis, or in geometry in characteristic 0, a
function f(x) that has zero derivative everywhere, or a map ' all of whose
partial derivatives are identically zero is of course a constant. In character-
istic p this does not hold. If a polynomial f has f 0

⌘ 0, the only thing one
can say is that f only involves its variables to the pth power.

Separable Let K ⇢ L be a field extension with [L : K] < 1. The
following equivalent conditions define what it means for x 2 L to be separable
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over K, or (with a minor change of wording) for the whole extension K ⇢ L
to be separable.

• The minimal polynomial fx 2 k[X] of x splits into distinct factors in
any extension of L.

• The minimal polynomial fx has formal derivative f 0
6= 0.

• The tensor product L⌦K L has no nilpotents.

• The trace homomorphism TrL/K : L ! K is nonzero. Moreover the
trace provides a nondegenerate bilinear pairing

TrL/K(xy) : L⇥ L ! K. (10.1)

Sample argument: if the extension K ⇢ L is inseparable, then there is
an a in K such that xp � a has a root in L. Then L ⌦ L has two such
elements x1 = x⌦ 1 and x2 = 1⌦ x with xp1 = xp2, therefore (x1 � x2)p = 0,
so it has nilpotents. At the same time, calculating the trace of any element
of L by any method must involve sums of p identical terms, so the answer
can only add to zero.

TO DO. Discussion and proof of that.

Purely inseparable The following equivalent conditions define what it
means for x 2 L or the whole extension K ⇢ L to be purely inseparable.

• The minimal polynomial fx is Xpn
� a = (X � ↵)p

n
).

• x has no other conjugates in any extension field L ⇢ L0.

• If L ⇢ L0 is any extension field and ' : L ! L0 a K-linear homo-
morphism then '��L = IdL.

• K(x)/K is normal and AutK(K(x)) = {Id}.

Standard discussion from Galois theory. L/K is a _normal_

extension if L contains all the roots of the min poly f_x

of every x in L

<=> L = splitting field of some F in K[X]

<=> all the conjugates in L’ of any x in L are still in L

<=> for L in L’ extension, any field homomorphism/ k from

L -> L’ takes L to itself.
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The following arguments are already in Chapter 1 of the 2022 notes.

Theorem [Kaplansky] Assume L/K is normal. Then L is

in a unique way the composite of L^sep and L^insep

L

L^sep L^insep

K

where L^sep = { x in L | x is separable }

and L^insep = { x in L | x is purely inseparable }.

Then

L^sep/K is Galois (normal and separable)

L/L^insep is Galois with the same group

Gal(L/L^insep) = Gal(L^sep/K) = Aut(L/K)

L^insep/K is the fixed subfield of Aut(L/K)

L/L^sep is purely inseparable

The proof is straightforward verification using the

main results of Galois theory.

Composition of field extensions: the 2 field extensions

are disjoint, and as a K-algebra L = L^sep tensor_K L^insep.

10.2 Finiteness of integral closure

The result for finiteness of integral closure works for finite field extensions
(separable or not), depending on Kaplansky’s theorem. This is already in
the notes for Chapter 1, but it fits more logically here.

10.3 Frobenius morphism

The characteristic p identity

(x+y)^p = x^p + y^p

means that every ring R of char p has an automorphism

Frob_R = phi_R = phi : R -> R defined by x |-> x^p.

This idea already provides the whole of the Galois

theory of finite fields: write q = p^n. The finite
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field FF_q has Frobenius map phi.

-> The subset of FF_q of elements fixed under phi

is the subfield FF_p (the roots of x^p = x).

-> phi generates Gal(FF_q) \iso ZZ/n, and for

m | n, the fixed subfield of phi^m is FF_p^m.

For an algebraic variety (or scheme) over a field of

characteristic p, we have to distinguish the

_absolute_ Frobenius versus _geometric_ Frobenius.

The point is that although phi is a ring homomorphism,

it is NOT a k-algebra homomorphism, since it messes

with the ground field k itself.

You can twist the absolute Frobenius (that takes

P = [x1,.. xn] -> [x1^p,.. xn^p]) into a morphism of varieties

by changing the target to be a variety with a different action

of the field k. Although not so much for this course, this is

important in many other areas of algebra and number theory

over a field of characteristic p, and was the key first step

in the Weil--Grothendieck--Deligne treatment of the Riemann

hypothesis over a finite field.

10.4 Theorem on linearly general position

Let � ⇢ Pn be an irreducible curve of degree d spanning Pn. Then, at least
in characteristic zero, a general hyperplane section of � is a set of points in
linearly general position. This means that � cut with a general hyperplane
H = Pn�1 is a set of d points such that every subset of n points spans H. For
example, if n � 3, every general hyperplane section of � contains a secant
line that is not a trisecant.

Step 1. Reduction from C in PP^n with degenerate linear

dependencies on its general hypersection

to C in PP^3 with every secant a multisecant.

Pf. Take linear projection from n-3 general points and follow

your nose. The projection is generic, so if C in PP^n was

nonsingular then C in PP^3 remains so.

Step 2. C in PP^3: every general secant is a multisecant
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=> tangent lines at every two general points

P, Q are coplanar

Pf. The secant line PQ has a 3rd point R. If you move the

point P infinitesimally to P’, the secant line RP’ must

contain a point Q’ infinitely near to Q. Therefore RPP’ QQ’

are all coplanar, and the plane containing them contains the

tangent line to P and the tangent line to Q.

Step 3. The tangent lines to C concurrent in pairs

=> they all pass through some A in PP^3. That is,

C has an inseparable projection from A in PP^3

(This is Samuel’s strange curve.)

Pf. Baby projective geometry. 3 or more lines in PP^3 that are

pairwise concurrent are either all coplanar or all concurrent.

The tangent lines contain all points of C, so they are not all

coplanar.

Hartshorne and Samuel define an irreducible projective curve � all of
whose tangent lines at nonsingular points are concurrent at A to be strange.

In characteristic 0, there are no strange curves (except, arguably, a
straight line). Because the projection from A would give a rational map
� 99K Pn�1 with di↵erential everywhere zero. Then the map would have to
be constant to a single point.

In characteristic p, the condition just means that the projection from A
is inseparable. There are any number of such curves, but Samuel proved
that they are all singular except the plane conic in characteristic 2.

For the proof and discussion, in this edition of the notes, I attach a
typeset version of Samuel’s appendix.

Remark 10.1 I have a number of current obsessions in this subject.

(I) Modern algebraic geometers have extraordinary di�culties in relating
to language of the past - the 19th century, the Italian era, the Zariski and
Weil period around WW2, the Serre and Grothendieck period. The problem
with the latter is that there are brilliant researchers tackling hard problems,
and when they get a result they publish it, warts and all.
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(II) I have the distinct memory that Mumford told me around 1980 that
the linearly general position statement for a singular irreducible curve is of
course false in general, because there are curves whose every hyperplane sec-
tion is a configuration that has an action of F+

p action. I’m not there yet, but
I hope to understand his hint eventually. (Or maybe I just misunderstood
it.)

(III) Samuel’s notion of strange curve may be related to group schemes
of order p or p2. The projection from A is an inseparable morphism C ! �,
and the functions on C are generated by a single new coordinate function
x1/x0.

This presumably means that it factors via geometric Frobenius C ! C(1)

(up to isomorphism: a priori we don’t know what projective space C(1) is
embedded in). This inseparable may be a µp or ↵p torsor (or both). Then
possibly the singularities of C relates to the zeros of p-closed vector fields.
The correct treatment must navigate the counterexamples

C = straight line and C = plane conic in characteristic 2.

(IV) Big challenge: to find grown-up counterexamples to linearly general
position for irreducible curve, or to prove they don’t exist.
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Pierre Samuel
Lectures on old and new results on algebraic curves
Bombay, Tata Institute, 1966

Appendix to Chap. II, p. 76–78
Nonsingular strange curves

For proving the existence of a plane model of a function field with only nodes

(Chap. II, Section 1), we had to avoid the strange curves of characteristic p,

that is, the curves C in projective space all of whose tangents have a common

point. A posteori (that is, using facts about divisors of di↵erentials), one

can prove that we were fighting against a phantom. More precisely:

Theorem The only nonsingular projective strange curves are the lines,
and in characteristic 2, also the plane conics.

That a plane conic

ayz + bzx+ cxy + dx
2
+ ey

2
+ fz

2
= 0

is strange in characteristic 2 is well known and easily proved. The equation

of the tangent at (x, y, z) is

XF
0
x + Y F

0
y + ZF

0
z = X(bz + cy) + Y (cx+ az) + Z(ay + bx) = 0,

and is satisfied by the point (a, b, c) (here (a, b, c) 6= (0, 0, 0) because other-

wise our conic is a double line).

Conversely, let C ⇢ Pn
be a nonsingular strange curve, defined over an

algebraically closed field k of characteristic p > 0. By a suitable choice of

coordinates, we may assume that the point A common to all tangents to

C has homogeneous coordinates (1, 0, . . . , 0), and that C has no points at

which two coordinates vanish (except perhaps for A).

Let L = k(C) be the function field of C, and

(x, x2, . . . , xn) with x and xi 2 L.

the a�ne coordinate functions of C outside the hyperplane H (last coordi-

nate = 0).
1

1I interpret this to mean that Pn has homogeneous coordinates u1, . . . , un, v with v = 0
the hyperplane at infinity, x = x1 = u1/v and xi = ui/v. The point A is on the hyperplane
at infinity. The choice of coordinates gives that u1 6= 0 at all such points.
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Since all tangents to C pass through A, we have

Dx2 = · · · = Dxn = 0 for any k-derivation D of L.

That is,

x2, . . . , xn 2 L
p
. (1)

We are going to compute the divisor div(dx). At a point P 2 C away

from C \ H, the curve C is transversal to the hyperplane x1 = 0, whence

x� x(P ) is a uniformizing parameter at P . Thus

vP (dx) = 0 for P 2 C \ (C \H). (2)

By hypothesis, all points of C\H lie in the a�ne piece with coordinates

(1/x, x2/x, . . . , xn/x). We set y = 1/x and yi = xi/x, so that y 2 L
p
yi for

i = 2, . . . , n

Suppose first that P 6= A. We have y(P ) = 0, and yi(P ) 6= 0 for

i = 2, . . . , n. Since the maximal ideal of the local ring OP (the valuation

ring of vP ) is generated by y, y2 � y2(P ), . . . , yn � yn(P ), there exists an

index i for which t = yi � yi(P ) is a uniformizing parameter at P .

Since y 2 L
p
yi and since vP (y) > 0, the expansion of y as a power series

in t is

y = (yi(P ) + t)(↵0t
pjP + ↵1t

p(jP+1)
+ · · · ) with ↵0 6= 0 and jP > 0.

This contains terms of degree pjP and pjP + 1 with nonzero coe�cients.

Therefore vP (y) = pjP and vP (dy/dt) = pjP . Also, since dx = �dy/y
2
, it

follows that

vP (dx) = �pjP with jP > 0. (3)

Finally, if A 2 C, we have y(A) = y2(A) = · · · = yn = 0. As above, one

of the yi is a uniformizing parameter at A, say t = yi. From y 2 L
p
yi and

vA(y) > 0, we get the power series expansion

y = t(↵0t
pjA + ↵1t

p(jA+1)
+ · · · ) with ↵0 6= 0 and jA � 0.

Hence vA(y) = pjA + 1, and vA(dy/dt) = pjA. Since dx = �dy/y
2
, we get

vA(dx) = �pjA � 2 with jA � 0. (4)

From (2), (3) and (4), and from the fact that C \ H 6= ;, we see that the

degree of div(dx) is < 0.

Since it is 2g � 2 (where g denotes the genus of C), it is necessarily �2,

and g = 0. Looking at (3) and (4), we see that only two cases may happen
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(a) C \H consists of only one point P 6= A. Then

vP (dx) = �2, p = 2, j = 1, and vP (y) = 2.

This last relation shows that C ·H = 2P , whence C has degree 2. We

get a conic in characteristic 2.

(b) C \H contains only the point A. Then

vA(dx) = �2, jA = 0, and vA(y) = 1,

so that C ·H = A; thus C has degree 1 and is a straight line. QED

Remark There exist, of course, many singular strange curves in charac-

tistic p: take a function field L of transcendence degree 1 over k, func-

tions z2, . . . , zn 2 L which generate L
p
over k, and choose z 2 L \ L

p
.

Then L = k(z, z2, . . . , zn). The a�ne curve D with coordinate functions

(z, z2, . . . , zn) is a model of L. Take its projective closure D. It is easily

seen that all tangents to D at nonsingular points pass through the point

(1, 0, . . . , 0).
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The main aim in all of these references is to prove that any curve projects

birationally to a plane curve of degree d with � nodes as the only singularity,

so that they can use their favourite characterisation or definition of the genus

as
�d�1

2

�
� � and of L(KC) as adjoints of degree d� 3 (forms of degree d� 3

vanishing at the nodes). My treatment of KC is quite di↵erent.

[ACGH] has an alternative and quite di↵erent idea: use Harris’ Galois-

monodromy argument to prove that the generic hyperplane section of C

cannot have both linearly dependent and independent subsets of points. I

have not yet understood whether this works in characteristic p.

Most seriously, I still have no idea whether there are any irreducible

curves (necessarily in characteristic p, “strange”’ and singular) whose general

hyperplane section is not in linearly general position.
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