
Projective nonsingular model of a curve C and the
canonical class KC – a simpler treatment

1 Nonsingular model as Proj of a graded ring

A function field in 1 variable is K = k(Γ) for an algebraic curve Γ up to
birational equivalence. For x ∈ K a transcendence basis, K/k(x) is a finite
field extension of degree d.

As in Part 1, the integral closure Ax of k[x] in K is a finite k[x]-algebra.
It is the affine coordinate ring Ax = k[Cx] of a nonsingular affine curve
Cx → A1

x. Equivalently, I can write Cx = SpecAx. Ditto for y = x−1,
giving Cy.

When eventually defined, the whole nonsingular projective curve is the
union C = Cx ∪ Cy glued along their common open set

Cx \ (x = 0) ∼= Cy \ (y = 0). (1.1)

Rather than affine pieces over A1
x ∪ A1

y, I want to work directly with a
projective curve π : C → P1: for this, introduce the graded ring S = k[s1, s2]
with s1, s2 independent variables of degree 1, and set x = s1/s2, y = s2/s1.
As a graded ring, S has an action of Gm = k× given by

(s1, s2) 7→ (λs1, λs2) for λ ∈ k×. (1.2)

This action extends to the field k(s1, s2), and its invariant subfield is k(x),
where x = s1/s2. In common sense terms, I can view k[x] as starting from
the graded ring S and setting s2 = 1. This is the simplest case of the familiar
homogeneous-inhomogeneous trick of projective geometry.

Conversely, starting from k[x], I get the graded ring S by adjoining a
variable t in degree 1 and setting s1 = xt and s2 = t. Or after setting s1 = 1
in k[s1, s2], it provides t = y = x−1. In other words, S =

⊕
n≥0 k[x]tn, with

t a place marker distinguishing 1 in degree 0 from tn ·1 = yn in degree n ≥ 0.
Corresponding to the algebraic extension of function fields K/k(x), I

now construct the field extension L/k(s1, s2) as the composite

K L∣∣ ∣∣
k(x) k(s1, s2) = FracS

(1.3)

Just as S is obtained from k[x], the composite extension L comes from
K = k(Γ) by introducing a variable t as place marker for the degree, writing
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s1 = xt and s2 = t, and setting L = K(t). It has transcendence degree 2
over k, but is just a simple transcendental extension of K, with K recovered
inside it as the invariant subfield of a k× action.

Now A2
〈s1,s2〉 = SpecS is the usual affine cone over P1. The two affine

pieces Cx and Cy of the curve C are given by the integral closures of k[x]
and k[y] in K. In the following construction, B is the affine coordinate
ring of the affine cone over C. It has a k× action, so is a graded ring. As
discussed below, its generators have different degrees ≥ 1, which is possibly
an unfamiliar feature of the construction.

Proposition 1.1 (i) Write B ⊂ L for the integral closure of S. Then B
is a finite graded S-algebra. The rings Ax and Ay are obtained as

(B[1/s2])
0 = Ax and (B[1/s1])

0 = Ay. (1.4)

The superscript means homogeneous of degree 0, that is, k×-invariant.

(ii) The affine variety SpecB is the affine cone over the projective curve
C. It has a Gm = k× action with C = ProjB = (SpecB \ {0})/k×.

(iii) The integral closure B coincides with the sections ring

R(C,D) =
⊕
n≥0
L(C, nD) (1.5)

(discussed in [Part 4, 9.2]), with D the divisor of poles of x.

(iv) The generators s1, s2 of S define a free pencil |D| on C, and the free
pencil trick of [Part 4, 9.4–9.5] implies that B is a free graded S-module

B = S · 1⊕ S · w2 ⊕ · · · ⊕ S · wd ∼=
⊕

S(−al) (1.6)

with w1 = 1 of degree 0, and wl of degree

a1 = 0 < a2 ≤ · · · ≤ ad. (1.7)

Here, of course, d = [K : k(x)] is the degree of π : C → P1.

Remark 1.2 (a) The Serre shift notation S(−al) means S = k[s1, s2] as
a graded S-module with grading shifted by −al: its degree n part is
k[s1, s2]n−al so that in (1.6), degrees match up after multiplying by wl
of degree al.
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(b) The proofs are not hard. A little care when taking integral closure
ensures that the new integral elements wl are homogeneous of degree
al ≥ 1 for l = 2, . . . , d.

(c) The curve C has genus g =
∑

l≥2(al − 1). The range of summation
l ≥ 2 excludes the single negative summand a1 − 1 = −1. The only
case the generators w2, . . . , wd all have degree 1 is when g(C) = 0.

(d) The graded ring B gives rise to the standard affine pieces Cx and Cy
of C and their coordinate rings Ax = k[Cx] and Ay = k[Cy]. The
free graded result (iv) implies that Ax is a free k[x]-algebra with basis
u1 = 1, ul = wl/s

al
2 , and, likewise, Ay a free k[y]-algebra with basis

v1 = 1, vl = wl/s
al
1 . The coordinate change is, of course,

y = 1/x, vl = ul/x
al . (1.8)

The hyperelliptic curve of [Part 1, Example 3.5] provides a simple and
convincing example. See also Examples 2.7–2.8.

The generators x and ul of Ax are homogeneous elements of L of
degree 0 under its k× action (that is, k×-invariant). When the degree
m is understood, I use the same letter for a homogeneous form f ∈ B
and the corresponding polynomial f/sm2 ∈ Ax; informally, set s2 = 1
on the affine curve Cx.

(e) Inseparable OK. Assuming the extension K/k(x) is separable allows
convenient reference to textbooks for the proof of finiteness of normal-
isation. However, a couple of little tricks also cover the inseparable
case: see 3.1 in my 2019 notes. This is easy stuff. The essential point
is to use the result from Kaplansky that (after K/k(x) is replaced by
a normal extension Kν/k(x)), the field extension is a composite of a
separable extension and a purely inseparable extension of k(x). The
purely inseparable part of the extension is then k(x1/p

n
), and in this

case finiteness of integral closure is elementary.

2 Canonical module KB and canonical class KC

I define the canonical module of B = R(C,L) to be KB = HomS(B,S(−2)).
As a graded S-module, it is isomorphic to

⊕d
l=1 S(al − 2) in view of (1.6).

The first summand has shift −2, and the following summands shift ≥ −1.
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It is Z-graded, with graded piece

KB,m = HomS(B,S(−2 +m))0 =
d⊕
l=1

k[s1, s2]al−2+m (2.1)

for m ∈ Z. (The subscript 0 means or graded of degree 0.)
This space is nonzero for m ≥ 1− ad, as required to provide the irregu-

larity l(KC−nD) in the RR formula for l(nD) when n = −m ≤ ad−1. The
genus g(C) =

∑d
l=2(al − 1) is the dimension of the degree 0 graded piece

(KB)0. The first summand with shift −2 provides the irregularity of KC ;
that is, the 1 term of 1− g in RR.

The module KB provides the beautiful numerical properties of the canon-
ical class (for more on this, redo Ex. 5.11 and 5.12). The small drawback
is that as currently described, it does not seem to have much to do with C
itself: where is the canonical divisor KC of C? The answer is as follows:

Theorem 2.1 (1) A nonzero graded homomorphism ϕ ∈ KB,m has a well
defined effective divisor divϕ on C. See 2.3, Definition 2.5.

(2) The divisors divϕ − mD are linearly equivalent for all m and all
nonzero ϕ ∈ Hom(B,S(−2 +m)).

(3) Define the canonical class KC as the divisor class divϕ−mD. Then

KB,m = L(C,KC +mD) for m ∈ Z. (2.2)

Addendum 2.6 adds several items to this main result: (4) independence
of the transcendental generator x. Then, under the additional assumption
that π : C → P1 is separable: (5) Hurwitz’s formula

KC = −2D + Ramification divisor, (2.3)

and (6) the trace homomorphism B → S defines a preferred element s ∈
L(C,KC+mD) with divisor R. Finally, (7) a rational Kähler 1-form Ω1

k(C)/k
has divisor class in KC ; up to this point, my treatment of KC in Theorem 2.1
makes no use of differential forms, and does not require π to be separable.

2.1 Premultiplication

To relate the graded module KB to the curve C, the first step is to transform
it from a free S-module of rank d into a module of rank 1 over the S-algebra
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B. This step is a basic ingredient in any treatment of duality, and is called
premultiplication.

For E ⊂ F a finite field extension of degree d, view F as a d-dimensional
vector space over E. The dual F∨ = HomE(F,E) is again a d-dimensional
vector space over E. However, F∨ also has a premultiplication action by F
that makes it into a 1-dimensional vector space over F : multiplication by x
takes ϕ ∈ HomE(F,E) into the new map

x · ϕ ∈ HomE(F,E) given by (x · ϕ)(y) = ϕ(xy) for y ∈ F . (2.4)

Please think this through: of course, F does not act on the target E, but
it acts on the Hom space HomE(F,E) by multiplying in the domain before
applying the map. Prove the following as an exercise.

Lemma 2.2 Choose a basis w1, . . . , wd for F over E. Multiplication by x
is given by a d × d matrix M ∈ GL(d,E). In the dual basis (w∨1 , . . . , w

∨
d ),

the element x ∈ F acts on F∨ = HomE(F,E) by the transpose matrix trM .
Suppose the basis has w1 = 1E. Then the dual basis element w∨1 ∈ F∨

bases F∨ over F . [Hint: x ·w∨1 takes 1 7→ x, and any ϕ ∈ F∨ is determined
by ϕ(1).]

The dual F∨ is a 1-dimensional F vector space, but with no fixed basis.
Denoting it by F∨E would indicate its dependence on E. For a curve C the
divisor class KC is independent of the transcendental generator x or the
morphism π : C → P1 (cf. Addendum 2.6(5–6)), but there is no well defined
canonical divisor. Duality is a relative notion.

Duality applies equally to modules over a ring. Proposition 1.1(iv) says
that the S-algebra B is a free graded S-module. Its dual is the canonical
module KB = HomS(B,S(−2)); the shift −2 only modifies the grading.
Premultiplication means g ∈ B takes ϕ ∈ KB into

g · ϕ given by g · ϕ : p 7→ ϕ(g · p). (2.5)

It makes KB into a torsion-free graded B-module of rank 1. This is an
analog of a fractional ideal in a number field.

The case when KB is a free B-module is important, but is a special
case. We say that B is projectively Gorenstein. See the discussion around
Example 2.8.

From a highbrow point of view, standard arguments in scheme theory
turn a graded B-module M into an associated sheaf M̃ on C = ProjB.
Here K̃B is a torsion-free sheaf of rank 1, and hence (over the nonsingular
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curve C), a locally free sheaf of rank 1 (also known as line bundle or in-

vertible sheaf ). The divisor of a section or rational section of the sheaf K̃B
provides a divisor class KC with the properties required for Theorem 2.1.
In other words K̃B = OC(KC). Here, rather than appeal to the highbrow
theory, I make an effort to untangle the definitions in elementary language;
the highbrow theory is not especially difficult for the reader with a modest
background in schemes.

2.2 Localising π : C → P1 over P ∈ P1

We know B and KB as dual modules over S or over P1. I need to know how
a form f ∈ B or a graded homomorphism ϕ ∈ KB behaves at the different
points of the cover π : C → P1. I treat the localisation of C over P ∈ P1 in
some detail, for use in the proof of Theorem 2.1 and Addendum 2.6. In what
follows, I mostly take for granted the “homogeneous to inhomogeneous”
passage between B (an algebra over S = k[s1, s2]) and Ax (an algebra over
k[x]) discussed in Proposition 1.1 and Remark 1.2(d): informally, set s2 = 1,
and don’t worry too much about the homogeneous degree.

A point Q ∈ Cx has image P = π(Q) ∈ A1
x, with P the point x = a. Set

{Qi} = π−1P for i = 1, . . . ,#π−1P . The local parameter zP = x − a at P
generates the maximal ideal of OP1,P . Viewed as the polynomial function
zP ∈ Ax, its zeros define the effective divisor on C

π∗P = div0 zP =
∑

diQi where vQi(zP ) = di. (2.6)

This has degree d =
∑
di and is linearly equivalent to D, the divisor of poles

of x or of zP = x− a.
The local ring OP1,P of P ∈ P1 is the subring of the rational function

field k(x) of functions regular at P . The affine coordinate ring Ax of Cx is a
free algebra over k[x]; write OC,P = Ax ⊗k[x] OP1,P for its localisation at P .
This is the semilocal ring

⋂
Qi
OC,Qi ⊂ k(C), with finitely many maximal

ideals mQi ∩OC,P . It is a free OP1,P -algebra of rank d, an integral domain,
and in fact a unique factorisation domain, as I now discuss.

The quotient OC,P /(zP ·OC,P ) is a d-dimensional algebra over k, clearly
never an integral domain for d > 1. It decomposes as the direct sum

OC,P /(zP · OC,P ) =
⊕
OC,Qi/(zP · OC,Qi) (2.7)

corresponding to the divisor π∗P of (2.6), with summands

OC,Qi/(zP · OC,Qi)
∼=
∑

k[zQi ]/(z
di
Qi

) where vQi(zP ) = di. (2.8)
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The factors in (2.7) and (2.8) only depend on the local rings OC,Qi at Qi
and the di, so that (2.8) holds whatever local parameters zQi I choose.

If di = 1, the local parameter zP at P ∈ P1 is also a local parameter
at Qi ∈ C; the morphism π : C → P1 is then unramified or etale locally at
Qi. However, zP is a function on P1, so unable to distinguish the different
points Qi over P . To see the factors in (2.7), I must do something different.

Lemma 2.3 Write Ax =
⊕d

l=1 k[x] · ul as in Remark 1.2(d). The affine
curve Cx = SpecAx is then contained in Ad = A1

x × Ad−1, with u2, . . . , ud
coordinates on the second factor. The ul distinguish the different points
Qi ∈ π−1P over each P : (x = a).

In more detail, for each Qi, take a general linear combination
∑d

l=2 αilul
that is zero at Qi (with constants αil ∈ k), and set zQi = x−a+

∑d
l=2 αilul.

Then

(i) zQi ∈ Ax ⊂ OC,P is a local parameter at Qi and a unit at Qj for j 6= i.

(ii) The semilocal ring OC,P is a UFD. It has prime elements zQi and units
O×C,P =

⋂
Qi
O×C,Qi

. Any f ∈ k(C)× is of the form f = f0 ·
∏
i z
ai
Qi

with

ai = vQi(f) and f0 ∈ O×C,P a unit. In particular,

zP = g ·
∏

i
zdiQi

with π∗P =
∑
diPi as in (2.6). (2.9)

(iii) Write gi =
∏
j 6=i z

dj
Qj
∈ Ax. Each gi is in the semilocal ring OC,P , is

a unit at Qi, and maps to zero in the other summands of (2.8). Thus
the gi base the summands in (2.8) as Artinian modules over OP1,P or
over the semilocal ring OC,P .

(iv) For each i, set λi = gi + zdiQi
. Then λi ∈ O×C,P and the elements

ei = gi/λi ∈ OC,P are idempotents for the direct sum decomposition
(2.7) of Artinian rings.

Proof The point Qi ∈ C ⊂ Ad is a nonsingular point of a curve, and zQi

defines a hyperplane of Ad through Qi. For a general choice, it does not
contain the tangent line TC,Qi nor any of the other Qj , so (i) is clear. I can
write any nonzero f ∈ k(C) as f = f0 ·

∏
zaiQi

with ai = vQi(f) and f0 a unit

at each Qi, so f0 ∈ O×C,P . In particular, the rational function
∏
i z
di
Qi
/zP has

valuation 0 at each Qi, so is a unit of OC,P ; this gives (ii). The product in
(iii) is a unit at Qi and maps to zero in each of the other factors, so the
statement is clear. For (iv), λi and gi have the same image in OC,Qi/(zP ),
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with λi a unit at every Qj . Thus ei = gi/λi maps to 1 ∈ OC,Qi/(zP · OC,Qi)
and to 0 in the other factors, as required. �

Remark 2.4 The zQi ∈ Ax are defined on the affine curve Cx, with the
good “local parameter” properties of Lemma 2.3 after localisation. Results
stated in terms of the semilocal ring OC,P hold on a Zariski open set of C
including all the Qi, so on a neighbourhood of the fibre π−1P that I don’t
need to specify.

2.3 The divisor of a graded homomorphism ϕ ∈ KB,m
For a polynomial f ∈ Ax, Lemma 2.3(ii) simplifies to give:

vQi(f) = max
{
a
∣∣ f ∈ zaQi

· OC,P
}
. (2.10)

For a rational function f ∈ k(C)×, getting rid of possible poles of f at the
other points Qj over P leads to the somewhat more involved formula:

vQi(f) = max
{
a ∈ Z

∣∣∣ ∏
j 6=i

znQj
· f ∈ zaQi

· OC,P
}

for n� 0. (2.11)

The valuation vQi(ϕ) of a graded homomorphism ϕ is defined as the dual
to (2.10) under the S-bilinear perfect pairing

KB ×B → S(−2) that evaluates (ϕ, f) 7→ ϕ(f). (2.12)

Definition 2.5 Let ϕ ∈ KB,m be a graded homomorphism of degree m as
in (2.1). Setting s2 = 1 on the affine piece Cx replaces B by Ax and S by
k[x], so makes ϕ into a k[x]-homomorphism Ax → k[x]. In the notation of
2.2, Lemma 2.3, the valuation of ϕ at a point Qi ∈ π−1P is given by

vQi(ϕ) = max
{
a
∣∣ ϕ(z−aQi

·Ax) ⊂ OP1,P

}
. (2.13)

That is, the valuation of ϕ : Ax → k[x] at Qi is the maximum a for which ϕ
extends to the fractional ideal z−aQi

· OC,P .
In the rational case, I view a rational graded homomorphism ϕ as a

k(x)-linear map on the function fields k(C)→ k(x), and set

vQi(ϕ) = max
{
a ∈ Z

∣∣∣ ϕ(∏
j 6=i

znQj
· z−aQi

)
⊂ OP1,P

}
for n� 0. (2.14)

The powers of the zQj cancel the poles of f at the other points Qj before
applying ϕ, so this is dual to the procedure of (2.11).

The divisor of a graded homomorphism ϕ ∈ KB,m (or rational graded
homomorphism) is defined as divϕ =

∑
Q∈C vQ(ϕ).
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2.4 Proof of Theorem 2.1

Establishing the definition of divϕ in Definition 2.5 was the main issue (1).
With it in place, the rest follows from the simple points below, together
with the fact that rational homomorphisms ϕ of fixed degree m form a
1-dimensional vector space over K = k(C).

Since KB is a graded S-module, multiplying by a form an(s1, s2) ∈ Bn
takes ϕ ∈ KB,m to an · ϕ ∈ KB,m+n. It is clear that

div(an · ϕ) = div(an) + div(ϕ) for an 6= 0. (2.15)

This applies in particular to the powers of s2 with div s2 = D that I used
tacitly for dehomogenising.

Now KB has rank 1 as a B-module, so KB ⊗L is a 1-dimensional vector
space over the composite field L of (1.3). Each graded component (KB⊗L)m
for m ∈ Z is a 1-dimensional vector space over K = k(C).

It follows that for each m the divisors divϕ for all ϕ ∈ (KB ⊗ L)m are
linearly equivalent. Moreover, s−m2 · ϕ ∈ (KB ⊗ L)0, so that the divisors
div(s−m2 · ϕ) = divϕ−mD form a single equivalence class for all m and all
ϕ. This proves (2) and defines the divisor class KC .

Fix one graded homomorphism ϕ ∈ KB,n of degree n, to define a repre-
sentative KC = divϕ−nD (effective or otherwise) of the linear equivalence
class KC . Then according to the definition of RR space,

L(KC +mD) =
{
g ∈ k(C)

∣∣ div g + divϕ− nD +mD ≥ 0
}

=
{
g ∈ k(C)

∣∣ div(gϕs−n+m2 ) is regular
}

= KB,m,
(2.16)

which proves (3). �

2.5 Main Theorem 2.1 continued

Statements (5–6) below depend on the assumption that the transcendence
basis x or the morphism π : C → P1 is separable, that is, k(x) ⊂ k(C) is a
finite separable extension. The proof of (7) also uses a separable cover. My
arguments up to now have not involved separability.

Addendum 2.6 (4) The divisor class KC is independent of the trans-
cendental generator x of k(C).

(5) Hurwitz’s formula: KC = −2D +R, where the ramification divisor R
of π : C → P1 is defined in (2.17). In particular, the genus of C is
given by 2g − 2 = −2d+ degR.
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Thus while KC itself is a divisor class, the choice of π defines a unique
effective divisor R in the class of KC + 2D or KC/P1 .

(6) The trace homomorphism Tr: B → S is an element of KB,2, Its divisor
div Tr is a well defined effective divisor linearly equivalent to KC + 2D
or KC/P1. It is equal to the ramification divisor R =

∑
(dQ − 1)Q.

(7) The notion of Kaehler 1-form Ω1
C/k and its divisor is treated in 2.5.4.

Then any nonzero rational 1-form s ∈ Ω1
k(C)/k has divisor div s linearly

equivalent to KC .

2.5.1 Notes towards the proof, (4)

This is a kind of tower law. Any two different covers C → P1 fit together
into a commutative square over a common P1. Say p1, p2 : C → P1 and
q1, q2 : P1 → P1 with q1 ◦ p1 = q2 ◦ p2. Then calculate KC via p1 and via
q1 ◦ p1, etc. Of course, the RR formula already implies directly that KC is
unique up to linear equivalence.

2.5.2 Definition of the ramification divisor R, (5)

Assume that x is a separable transcendence basis of k(C). The definition
of separable is that the minimal polynomial p ∈ k[X] of any y ∈ k(C) has
distinct roots, or equivalently, that p and its formal derivative p′ are coprime
in k[X]. Standard arguments (including the hcf property ap+ bp′ = 1 with
a, b ∈ k[X]) then imply that π : C → P1 has d = deg π distinct points over
P ∈ P1 for a dense Zariski open set, that is, over all but finitely many points.

For Q ∈ C set π(Q) = P , and view Q as one point Q = Qi ∈ π−1P .
Recall the di from π∗P =

∑
diQi in (2.6) and the properties (2.7)–(2.8). It

follows from what I just said that for all but finitely many points P ∈ P1,
all the di = 1. Thus

R =
∑

Q∈C
(dQ − 1)Q (2.17)

is a finite sum, and defines the ramification divisor R of π.
NearQ, the cover π defines a finite extensionOP1,P ⊂ OC,Q of DVRs, and

the local parameter of OP1,P factorises as zP = unit× zdQQ as in (2.8). The
coefficient dQ− 1 in R is the conversion factor between valuations measured
upstairs in units of zQ and downstairs in units of zP .

The valuation of a rational function f ∈ k(C) or a rational graded homo-
morphism ϕ could be expressed in terms of B or KB, and calculated in terms
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of zP . However, the definitions used in 2.3 are in terms of zQ. The coefficient
dQ−1 in the ramification divisor is the difference between measuring in units
of zQ or zP = zdQ.

The formula (2.17) relates to separable extensions of DVR, with zP =
(zQ)d. The local ramification divisor (dQ − 1)Q arises when calculating the
dual

Hom(OC,Q, OP1,P ) (2.18)

2.5.3 Trace, (6)

Do it yourself.

2.5.4 Relation with Kaehler 1-forms Ω1
C , (7)

My narrative makes no use of Kaehler differentials, that form the mainstay
of traditional treatments of RR.

For a ring A and A-algebra B, the module of Kaehler 1-forms Ω1
B/A is

a B-module defined by the universal mapping property for A-derivations
d : B → Ω1. See for example Matsumura [M], Chapter 9 for a professional
treatment of its definition and main properties. The more basic treatment
given in Shafarevich [Sh], Chapter 3 is adequate for my current needs.

As usual, let K = k(C) be the function field of a curve C over an
algebraically closed field k. Then Ω1

K/k is a 1-dimensional vector space over
K, based by dx for any separable transcendental generator x ∈ K. This is
elementary: any z ∈ K is the root of a monic polynomial p ∈ k(x)[T ] that
is separable. We can treat p as an implicit polynomial equation p(x, z) = 0
for z, and separable means that ∂p

∂z 6= 0 ∈ K. From this it follows that

dz = −∂p/∂x
∂p/∂z dx.

If x is an affine parameter on A1
x ⊂ P1 then one calculates that dx has a

pole of order 2 at infinity, since x = 1/y give dx = −(1/y2)dy.
The local ring OC,Q at Q ∈ C is a DVR with local parameter zQ. One

checks by the same kind of argument that Ω1
C,Q = Ω1

OC,Q/k
is a free module

of rank 1 based by dzQ, that is OC,QdzQ,

For a separable extension, dzP evaluated in Ω1
C,Q = dQz

dQ−1
Q dzQ.

There is a different proof based on relative formula for Ω1.
The whole of my treatment uses Hom and does not use Kaehler differ-

entials.

Example 2.7 (Nonsingular plane curve Ca ⊂ P2) Let Ca ⊂ P2 be a
nonsingular curve of degree a with defining equation Fa(s1, s2, s3). Assume
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(0, 0, 1) /∈ Ca so F (0, 0, 1) 6= 0. Then Fa is a monic equation for s3 over
S = k[s1, s2], and the homogeneous coordinate ring B = k[s1, s2, s3]/(Fa) is
a free module over S with basis 1, s3, s

2
3, . . . , s

a−1
3 , so that B ∼= S⊕S(−1)⊕

· · · ⊕ S(a− 1).

Example 2.8 (Trigonal curve) The case d = 3 corresponds to a trigonal
curve or 3-to-1 cover C → P1. It leads to B = S · 1 ⊕ S · y ⊕ S · z ∼=
S ⊕ S(−a) ⊕ S(−b) with 0 < a ≤ b ≤ 2a. The ideal of relations holding
between y, z is typically generated by

y(y − c) = dz,

(y − c)(z − e) = df,

z(z − e) = fy,

that is,
∧2

(
z − e y d
f z y − c

)
= 0, (2.19)

where c, d, e, f ∈ S are homogeneous of degree a, 2a− b, b, 2b− a. The curve
C is nonsingular for fairly general choice of c, d, e, f , and is a trigonal curve
C → P1 of genus a+ b− 2.
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[The final couple of paragraphs still need some editing.]
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