

MA4L7 Algebraic curves

Example Sheet 3. Deadline Tue 12th Feb at 2:00

1. Number of forms of degree n Write $S_n = S^n(x, y, z) = k[x, y, z]_n$ for the space of homogeneous forms of degree n in x, y, z . Calculate the dimension of S_n . [Hint: To guess the answer, calculate it for $n = 0, 1, 2, 3$. To prove it, set up an induction on n . (This is an absolutely basic calculation.)]

2. Hyperplane divisor H Let $C_a \subset \mathbb{P}_{\langle x, y, z \rangle}^2$ be a nonsingular curve of degree a , defined by $F_a = 0$. Define the valuation $v_P(z)$ of the linear form z on C_a to be $d_P = v_P(z/x)$ if P is in the affine piece $x \neq 0$ or $d_P = v_P(z/y)$ if P is in the affine piece $y \neq 0$. Equivalently, it is the multiplicity of the form $F_a(x, y, z)$ restricted to $\mathbb{P}_{\langle x, y \rangle}^1$ as in [UAG, Chap. 1]. (N.B. Valuation starts off as a property of a rational function $f \in k(C)$ at $P \in C$; for a nonsingular projective curve $C \subset \mathbb{P}^n$, this definition extends it to homogeneous forms $f \in k[C]_{\text{homog.}}$)

Write $H = \text{div}(z) = \sum v_P(z)P$ for the divisor of z on C_a (or “divisor at infinity”). It is an effective divisor of degree a by the argument of [UAG, Chap. 1].

If $L \subset \mathbb{P}^2$ is any line, show that $\text{div}(L)$ is a divisor of degree a linearly equivalent to H .

3. Degree of a principal divisor Any rational function $f \in k(C_a)$ can be written as $f = G_m/H_m$ for some $G_m, H_m \in S_m$. Assuming the statement of Bézout’s theorem, determine $\deg \text{div}(G_m)$, and deduce the identity $\deg(\text{div } f) = 0$.

4. The RR space of mH For $G_m \in S_m$ not vanishing on C_a , the rational function $G_m/z^m \in k(C_a)$ defines an element of $\mathcal{L}(C_a, mH)$. Calculate the dimension of the subspace defined by these restricted forms. [Hint: $G_m \in S_m$ to C_a vanishes on C_a if and only if G_m is in the ideal of multiples of F_a . That is, the sequence

$$0 \rightarrow S_{m-a} \rightarrow S_m \rightarrow \mathcal{L}(C_a, mH) \tag{1}$$

is exact, where the first map is multiplication by F_a .]

Prove that $l(C_a, mH) = \dim \mathcal{L}(C_a, mH)$ has dimension

$$\geq \binom{m+2}{2} - \binom{m-a+2}{2} \quad \text{if } m \geq a.$$

Show how to rewrite this as $1 - g + \deg(mH)$ for appropriate g .

From now on, assume that (1) is also exact at the right end. Deduce the exact formula $l(C_a, mH) = 1 - g + \deg(mH)$ for $m \geq a$.

5. The canonical class is $(a - 3)H$ For $m = a, a - 1, a - 2, a - 3$, you get into interpreting the binomial coefficient $\binom{n}{2}$ for $n \leq 2$. Show that the exact formula of Q4 works as stated for $m \geq a - 2$.

By considering $m = a - 3$, show that C_a has a divisor K_C so that $\deg K_C = 2g - 2$ and $l(K_C) = g > 1 - g + \deg K_C$.

6. $\mathcal{L}(K_C + P)$ With $C_a \in \mathbb{P}^2$ and $K_C = (a - 3)H$ as above, prove that $\mathcal{L}(K_C + P) = \mathcal{L}(K_C)$ for any $P \in C$. [Hint. Let L be any line through P . The divisor $\text{div}(L) - P$ is what you get by taking the intersection $C_a \cap L$ in [UAG, Chap 1] consisting of a points with multiplicity, and decrease the multiplicity of P by 1 (usually from 1 to 0). Now consider $\mathcal{L}(C_a, (a - 2)H)$ from Q4 above, and impose the conditions of vanishing on $\text{div}(L) - P$.]