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Miles Reid

Part 2. The RR theorem (assuming I-IIT))

5 Introduction

Part 1 set out the main object of study, a nonsingular projective algebraic
curve C. For C to be nonsingular at a point P € C' is the condition that
the local ring O¢ p is a discrete valuation ring (DVR). Alternatively, an
affine curve C' C A™ is nonsingular if and only its coordinate ring k[C] is
normal (that is, integrally closed). A basic initial circle of ideas is called
resolution of singularities: this replaces any irreducible algebraic curve I'
with a nonsingular projective curve C having a morphism C' — I that is
finite and birational, and establishes that the nonsingular projective model
C' is unique up to isomorphism. Over C, these curves can also be identified
with compact Riemann surfaces.

Part 2 assumes the notion of nonsingular projective curve C' C P (over
an algebraically closed field k), and its field of rational functions k(C). Non-
singular means the local ring O¢ p at every point P € C' is a DVR. For
f € k(C)* and P € C, the valuation vp(f) describes the zeros or poles of
f

The Riemann-Roch theorem controls the vector space L(C, D) of mero-
morphic functions with specified poles on a compact Riemann surface or a
nonsingular projective algebraic curve — if you allow more poles, you get
more functions. Part 2 discusses the statement of the Riemann-Roch theo-
rem:

dim £(C,D) >1—g+degD (5.1)

(together with accompanying reasonable conditions that guarantee equal-
ity). Here the divisor D is a formal sum D = Y d;P; of points P; € C
with multiplicity d;. The Riemann—Roch space L(C, D) is the vector space
of rational or global meromorphic functions on C having only poles at P; of
order < d; (I assume here for simplicity that d; > 0, the main case). The
number g = g(C) is the genus, the most important numerical invariant of



C. It can be described intuitively as the “number of holes” in topology,
but it has many quite different characterisations in analysis and in algebraic
geometry, and can be calculated in many different ways.

The proof of RR in algebraic geometry is deduced here from three Main
Propositions (I-1II) that I state below, but only prove in Part IV.

6 Divisors and the RR space

Definitions I work over an algebraically closed field k. A nonsingular
projective curve is an irreducible variety C' C PV such that the local ring
Oc,p at each P € C is a DVR. This means O¢c p C k(C) is a subring of
the function field of C, with maximal ideal mp = (zp) the principal ideal
generated by a local parameter zp. Every nonzero function f € k(C)* is
then of the form f = 2} - fo with fo € Oé’P a unit at P. Here v = vp(f) is
the valuation of f at P. We say f has zero of order vp(f) if it is positive,
or pole of order —vp(f) if it is negative.

A divisor is a finite combination of points of C', written D = " d; P; with
P; € C and d; € 7Z; or alternatively D = ) . dpP, where the expression
assumes that dp = 0 for all but finitely many P. A divisor D = ) dpP is
effective (written D > 0) if dp > 0 for every P. The degree of D is ) pc dp.

The divisor div f of a rational function f € k(C)* is

div f = va(f)P = zeros of f — poles of f. (6.1)

Both f and f~! are regular outside a finite set, so (6.1) is a finite sum.
A divisor of the form div f for f € k(C)* is principal. Two divisors D
and Do are linearly equivalent if they differ by a principal divisor, that is,
Dy — Dy = div g for some g € k(C)*.

The RR space of D on C'is defined as the vector subspace

L(C,D)={f€k(C)|divf+D=>0}C k(). (6.2)

If D is effective the condition div f + D > 0 allows f to have poles of order
< dp at each P (adding the positive part of D cancels its poles). The more
general case is a neat way of allowing poles of order < dp where dp > 0, and
imposing a zero of order > b where b = —dp > 0 (so the zeros of f cancel
the negative terms in D).

While not strictly necessary, it is informative to use the same condition to
define the structure sheaf O¢ and the divisorial sheaf O¢ (D). The constant
sheaf k(C') has the fixed pool k(C') of rational functions on every nonempty



Zariski open set of C. Inside k(C'), the regular functions are characterised as
Oc.p = {f € k(C) | vp(f) = 0}. At each P, the divisorial sheaf condition
for O¢(D) replaces this with div(f) + dp > 0; this means that O¢(D) is
generated locally at P by z;dp ,or Oc(D)p =0Oc¢,p - ZC%P. (If you know the

ideas of algebraic number theory, this is essentially thepsame as a fractional
ideal.)

Then Oc¢(D) is the subsheaf of the constant sheaf k(C) obtained by
imposing the condition div f + D > 0 over each Zariski open subset U C C.
In other words the sections of O¢(D) over U are

Oc(D)(U) = T(U,0c(D))
= {f € k(C) ’ vp(f)+dp >0 forall Pe U} C k(C).

This definition is local near each P € U, making the sheaf condition auto-
matic. The definitions make O¢(D) a locally free sheaf of Oc-modules of
rank 1, based by z;dP in a Zariski neighbourhood of P. The global sections
['(C,O¢c(D)) is the same thing as the RR space L(C, D).

If D > 0 then O¢c C O¢(D). Also, Oc(—D) =Ip C Oc¢ is the sheaf of
ideals of D (regular functions with zeros on D).

The following points come at once from the definitions; they recur re-
peatedly as standard computational devices in the proof and all applications

of RR.

Proposition 6.1 (Standard tricks) (a) For D a divisor and P € C
a point, consider the inclusion L(C,D — P) C L(C,D). Then any
s € L(D)\ L(D — P) is a complementary basis element. In other
words, we have the dichotomy:

(i) either L(D) = L(D — P);
(ii) or L(D)=k-s® L(D — P) for some nonzero s € L(D).

More crudely, L(D — P) C L(D) has codimension at most 1.
(b) Moreover if L(D) # 0, (i) holds for at most finitely many P € C.
(C) diV(flfg) =div f1 + div fo for all f1, fo € k(C)X

(d) Suppose D1 and Dy are linearly equivalent divisors, with D1 — Dy =
divg for g € k(C)*. Let f € k(C)*. Then

feL(D) « fgeL(Dy). (6.3)

That is, multiplication by g defines an isomorphism k(C) — k(C') that
takes L(D1) to L(D2). In particular [(Dy) = 1(D2).



(e) Suppose LA+ B — P) = L(A+ B) for divisors A and B and P € C.

Then not both inclusions
L(A—P)C L(A) and L(B-P)C L(B) (6.4)
can be strict.

The proofs are completely formal.

(a) Take a local parameter zp at P and write dp € Z for the multiplicity
of P in D. The condition div f + D > 0 at P is equivalent to zﬁlgp f regular
at P, so z}i)’jf € Oc¢,p. For some s € L(D), if z;lgps vanishes at P then also
sz*ls is regular at P, so s € L(D — P). If this holds for all s € £L(D) then
(i) holds. Otherwise Z;IDP s is a unit at P for some s, in which case (ii) holds.

(a) reflects the fact that the powers of the maximal ideal of a DVR are
principal m? = (z%), with successive quotients the residue field m®=!/m? =
A/m.

(b) For any nonzero f € £(D), the divisor div f + D is effective, and (ii)
holds for any P not in its support.

(c) This follows from the basic property v(fg) = v(f) + v(g) of a discrete
valuation: at any P € C, suppose f1 = z}i} -up and fo = z}i} - U9, with units
ui,ug € OF p and vp(f;) = d;. Then fifo = zfgl+d2u1U2 with ujus a unit,
so that vp(f1f2) =d; + ds.

(d) This holds because div(fg) = div f + divg = div f + D1 — Dy. Thus
div f + Dy > 0 if and only if div(fg) + D2 >0

(e) This follows from (c): f € L(A)\ L(A—P)and g € L(B)\ L(B - P)
would give fg € L(A+ B) and vp(fg) = ap + bp, where the coefficients of
A and B at P are ap and bp, so fg¢ L(A+ B —P). Q.E.D.

6.1 Main Proposition (I)

A principal divisor has degree 0: deg(div f) = 0 for f € k(C)*. Since we
interpret the divisor of f as div f = zeros of f — poles of f, this says that
any rational function has the same number of zeros and poles.

Corollary 6.2 1. Ifdeg D < 0 then L(C,D) = 0.
2. (D) =dim L(C,D) <1+ degD for any divisor D.



Proof If 0 # f € L(C,D) then div f + D is an effective divisor, so has
degree > 0, hence deg D > 0. This proves 1.

2 follows from 1 by induction on deg D and Standard Trick (a). Suppose
deg D > 0 and let P € C be any point. Then deg(D — P) = degD — 1 so
by induction (D — P) < deg D, and (a) gives [(D) <1+4degD. O

Corollary 6.3 If A=) P; is an effective divisor (repeated points allowed)
then I(D — A) > (D) — deg A.

This follows by repeated use of Standard Trick (a): in passing from D
to D — P) —--- — P;, the dimension of L(D — P} — --- — P;) decreases by at
most 1 at each step. Q.E.D.

Motivation for (I) On a compact Riemann surface, we can prove Main
Proposition (I) by contour integration and the Cauchy integral theorem. In
fact, let f be a global meromophic function and write

d
dlog f:J;f or locally 4444z

for its logarithmic derivative. This has pole of order 1 with residue vp(f)
at every zero or pole of f: for where f = 2% . fy with fo a unit, we get
dlog f = g + regular. The integral § dlog f around a contour thus counts
the zeros and poles in the interior of the countour (x27i).

Take a countour I' that divides the surface up into an interior containing
all the zeros and poles and an exterior containining no zeros and poles. Then
ﬁ § dlog f = deg(div f) if we view I' as surrouning its interior, and = 0 if
we view it as surrounding its exterior. Equating the two gives deg(div f) = 0.

On a compact Riemann surface, Cor. 6.2, (1) includes the statement
that there are no global holomorphic functions other than the constants.
In complex analysis, this follows from the Maximum Modulus principle: a
global holomorphic function f would have modulus | f| a continuous function,
and on a compact space this would take a maximum value at some point P.
But then the modulus would be constant, and hence also f is constant.

6.2 Main Proposition (II)

There exist a family D, of divisors on C such that deg D,, — oo while the
difference 1+deg D,, —(D,,) remains bounded, say 1+deg D, —1(D,) < N.

Corollary 6.4 Assume this. Then the same bound 1+ deg D — (D) < N
holds for every divisor D on C.



Proof The first step is to show that for every D, there is some n such that
L(D,, — D) # 0. In fact if D = A — B with A, B effective divisors, choose
n such that I[(D,,) > deg A. Corollary 6.3 implies that £(D,, — A) # 0.

Thus replacing D,, — D = D,,— A+ B by a linearly equivalent divisor, we
can assume it is effective, say D, — D ~ A > 0; I can turn that around to
D ~ D,, — A. Now Corollary 6.3 again implies that [(D) > I(D,) — deg A,
so that

14+degD —1(D) <1+degD +degA —1(Dy)
<1l4degD, —1(D,) <N. O

6.3 Motivation for (II)

In complex analysis, this is the hard part of Riemann—Roch, that requires
partial differential equations to prove the existence of harmonic functions
(satisfying the Laplace equation Af =, with singularities at the poles inter-
preted in terms of boundary value problems), and then the Cauchy—Riemann
equations to link harmonic functions and holomorphic functions. Riemann’s
own motivation for the statement (that he never proved correctly) involved
the ideas of electrostatics: a pointwise electric charge must defines a har-
monic potential “for physical reasons”.

In algebraic geometry this is easy. A projective curve is birational to a
plane curve, say via a morphism f: C — C, C P2, where C, is a plane curve
of degree a (usually singular) defined by F,(x,y, z) = 0. Choose coordinates
x,y, 2 so that the line 2 = 0 meets C only at nonsingular points (or even
transversally), and set H = divz for the divisor “at infinity”. It is the
effective divisor defined by z/x where x # 0 and by z/y where y # 0, and
it has degree a because F, cuts out a points with multiplicity on the line
z=0.

Now any degree n form Gy(z,y,z) defines a rational function G /z"
on C' with poles at most nH. It is an exercise to see that this restriction
provides a subspace of £L(C,nH) of dimension 1 — (agl) + an.

6.4 Definition of genus ¢(C) and immediate consequences
In view of Corollary 6.4, it makes sense to define

9(C) = max{1 +deg D — (D) | for every divisor D on C'}
It then follows formally that

I(D)>1—g+degD for every D, (6.5)



and equality holds for some D.

We say that D is regularif [(D) = 1—g+deg D. Otherwise, the different
(D) — 1+ g —deg D is the irregularity of D. The full form of RR includes
a formula for the irregularity of D. See 6.6 below.

I use this definition for the discussion of the following sections, as the
most appropriate for the logical purposes of proving the RR theorem and
using it in algebraic geometric applications. I discuss later how it relates
to several other definitions in algebraic geometry, topology, analysis and
different types of cohomology.

Proposition 6.5 1. Every divisor D of degree > g has L(D) # 0.
2. There exists a divisor Dy with deg Dy = g — 1 such that L(Dy) = 0.
3. Equality holds in (6.5) for every D with deg D > 2g — 1.

Proof (a) is clear. For (b), let D be some divisor for which equality holds
n (6.5). If deg D > g then L£(D) # 0, so that Standard Trick (b) applies:
I(D— P) =1(D)—1 for all but finitely many points of C. It follows that
equality also holds in (6.5) for D — P, with smaller degree. Continuing
likewise takes us down to deg D = g — 1, which is (b).

Now for (c), if Dg is as in (b) and deg D > 2g — 1 then deg(D — Dy) > g
and so L(D — Dy) # 0, so that D — Dy is linearly equivalent to an effective
divisor A with deg A = deg D — g + 1. As before, I can turn this around to
Dy ~ D — A. Then Corollary 6.3 gives [(Dg) > (D) — deg A, so that

I(D)<0+4+degA=1—g+degD.
This proves (c). Q.E.D.

6.5 Main Proposition (III)
With g defined as above, there exists a divisor K with deg K = 2g — 2 and
I(K)y=g>1—g+degK.

This statement is considerably more subtle, and is the key point that will
occupy us in the final stages the proof.

This K = K¢ is called a canonical divisor of C. We see shortly that it is
unique up to linear equivalence, and its divisor class is called the canonical
class of C'. It is irregular, and is the biggest irregular divisor. It has the
following property, that allows it to control the irregularity of every divisor,
as I prove in the next section.



Lemma 6.6 L£(C,K¢) = L(C,K¢c + P) for every P € C.

Proof We already know this: Main Proposition (III) says [(K) = g,
whereas deg Ko+ P = 2g — 1, so that [(K + P) = g by Proposition 6.5, (3).

6.6 Proof of RR assuming Main Propositions (I-III)

Theorem 6.7 Let C, g = g(C) and K¢ be as above. For every divisor D
on C
I(D)—I(K—-D)=1—g+degD (6.6)

Proof, Step 1 Equality holds in (6.6) if deg D > 2g —1 or deg D < 0. So
there is nothing to prove unless deg D is in the range [0,...,2¢g — 2].

In the first case, K — D has degree < 0 so (K — D) = 0 by Corollary 6.2,
and [(D) = 1 — g + deg D by Proposition 6.5, (3). In the same way, if
degD < 0thenl(D)=0and (K —D)=1—g+deg(K—D)=g—1—degD
so (6.6) also holds.

Step 2 Consider any increasing chain of divisors
D_1<Dy<Di << D2972 < DQQ,l

with deg D; = i for ¢ = —1,...,29 — 1, with each step adding one point:
D;11 = D; + P;. Then Standard Trick (a) gives I(D;y1) = I(D;) or I(D;) +
1. The chain has 2g steps, starting with [(D_;) = 0 and finishing with
[(Dag—1) = g, so exactly g steps go up by 1, and g steps remain fixed.

Step 3 The same thing applies to the chain K¢ — D; for ¢ decreasing from
2g—1 down to —1. This also has 2g steps, starting from degree —1 and going
up to degree 2g — 1; each step from i+1 down toiis K—D;— P; < K — D;.
As in Step 3, exactly g steps go up by 1, and g steps remain fixed.

However, since D;y1 = D; + P;, if both the inclusions £(D;) C L£(D;+1)
and L(K — D;;1) C L(K — D;) were strict, Standard Trick (e) would imply
that L(K) C L(K+P;) is strict, which Lemma 6.6 forbids. Therefore exactly
one of the two inclusions is strict for each q.

Step 4 For every D with 0 < degD < 29 — 1 and every P € C, the pair
D — P < D is contained in a chain as in Step 2 (in many ways). In fact, I
can just subtract off one by one any deg D points from D — P to get down
to degree —1, and add any 2g — 1 — deg D points to get up to degree 2g — 1.



It follows from Step 3 that ezactly one of the inclusions £L(D—P) C L(D)
and L(K — D) C L(K — D + P) is strict. That is,

either (D) —1(D—P)=1 and (K —-D+ P)—I(K — D)) =0,
1

6.7

or  U(D)—UD-P)=0 and {(K—-D+P)—I(K—D)) = (6.7)
Step 5 Theorem 6.7 now follows by induction, starting from deg D = —1.
In fact, if (6.6) holds for D — P, it follows for D by (6.7).

6.7 Motivation for (III)

On a compact Riemann surface S, the canonical class corresponds to the
space of holomorphic 1-forms Q}g A holomorphic 1-form is locally of the
form s = g(z)dz with g a holomorphic function. We also have meromorphic
1-forms obtained by allowing g(z) to be a meromorphic function, and K =
+s is formed from the zeros and poles of the g(z).

Now Lemma 6.6 corresponds to the statement that a meromorphic 1-
form s on a Riemann surface cannot have a simple pole a P as its only
singularity. In fact, the integral of s on a contour around P gives §s =
residue of S of P, but the same contour can be viewed as bounding the
exterior of S on which s is holomorphic. Therefore the residue would be
zero, so that s does not actually have a pole.

In analysis, a meromorphic function f with pole of order d at P has the
local form 0y ag i a

f(z) = Q+F+---+?+regular

with the principal part having d free parameters ai,...,aq. Corollary 6.2
correspond to the idea that allowing poles on an effective divisor D allows
principal parts depending on a vector space of dimension deg D = > dp.

Corresponding to the g-dimensional vector space £(C, K¢) of Main Propo-
sition (III), an analytic definition of the genus g(.5) is as the dimension of
the space of global holomorphic 1-forms. Now given any global holomor-
phic 1-form s, contour integration provides a linear relation on the possible
principal parts of f. Indeed, if we take a contour going around all the poles
of f then § fsis 2mix the sum of the residues of fs. Viewing the contour
as going around its exterior, we see the integral is zero. In other words,
the g holomorphic 1-form of S provide g linear conditions on the possible
principal parts, which explains the right-hand side 1 — g + deg D of the RR
formula. The irregularity of D covers the possibility that these conditions
are not linearly independent, and this also explains the formula I(K — D)
for the irregularity of D.



Example Sheet 3

1. Number of forms of degree n Write S,, = S™(z,y,2) = k[z,y, z],
for the space of homogeneous forms of degree n in x,y,z. Calculate the
dimension of S,,. [Hint: To guess the answer, calculate it forn = 0,1,2,3. To
prove it, set up an induction on n. (This is an absolutely basic calculation.)]
2. Hyperplane divisor H Let C, C ]P’%m’y’z>
degree a, defined by F, = 0. Define the valuation vp(2) of the linear form z
on Cy, to be dp = vp(z/x) if P is in the affine piece x # 0 or dp = vp(z/y) if
P is in the affine piece y # 0. Equivalently, it is the multiplicity of the form
F.(x,y, z) restricted to IP’%M/> as in [UAG, Chap. 1]. (N.B. Valuation starts
off as a property of a rational function f € k(C) at P € C; for a nonsingular
projective curve C' C P™, this definition extends it to homogeneous forms
f € k[C]homog-)

Write H = div(z) = Y vp(z)P for the divisor of z on C,, (or “divisor at
infinity”). It is an effective divisor of degree a by the argument of [UAG,
Chap. 1].

If L C P? is any line, show that div(L) is a divisor of degree a linearly
equivalent to H.

be a nonsingular curve of

3. Degree of a principal divisor Any rational function f € k(C,) can
be written as f = G,,/H,, for some G, Hy, € Sy,. Assuming the state-
ment of Bézout’s theorem, determine degdiv(G,,), and deduce the identity
deg(div f) = 0.

4. The RR space of mH For G, € S, not vanishing on C,, the rational
function G,,/z™ € k(C,) defines an element of £L(C,, mH). Calculate the
dimension of the subspace defined by these restricted forms. [Hint: G,, € S,
to C, vanishes on C, if and only if G, is in the ideal of multiples of Fj.
That is, the sequence

0— Sm—a = Sm — L(Cy,mH) (6.8)

is exact, where the first map is multiplication by Fj.]|
Prove that I(Cy, mH) = dim £(Cy, mH) has dimension

m+ 2 m—a-+2
> — if m > a.

Show how to rewrite this as 1 — g + deg(mH) for appropriate g.
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From now on, assume that (6.8) is also exact at the right end. Deduce
the exact formula {(Cy,mH) =1 — g + deg(mH ) for m > a.

5. The canonical class is (e« —3)H For m =a,a—1,a —2,a — 3, you
get into interpreting the binomial coefficient (g) for n < 2. Show that the
exact formula of Q4 works as stated for m > a — 2.

By considering m = a — 3, show that C, has a divisor K¢ so that
deg Ko =29 —2and [(K¢g)=9g>1—g+degKc.

6. L(Kc+ P) With C, € P2 and K¢ = (a — 3)H as above, prove that
L(K¢ + P) = L(K¢) for any P € C. [Hint. Let L be any line through P.
The divisor div(L) — P is what you get by taking the intersection C, N L
in [UAG, Chap 1] consisting of a points with multiplicity, and decrease the
multiplicity of P by 1 (usually from 1 to 0). Now consider £(Cq, (a —2)H)
from Q4 above, and impose the conditions of vanishing on div(L) — P.]
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