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Part 3. Applications of RR to geometry of curves

7 Introduction

Part III takes on trust the theorem and some of the characterisations of g,
and discusses at some length what RR means and what it can do for us. The
main overall application of RR is the following: ensuring that C has enough
global functions with given poles allows us to study the possible ways of
embedding C' into projective space. In good cases, this allows us to go from
abstract notions such as a curve of genus g or a curve with a linear system
gy (see below) to a subvariety embedded C' C P" in a definite space and
defined by explicit equations. For example, a curve of genus 1 is isomorphic
to a plane cubic Cy C P3.

A particularly important general use of RR in complex analysis is to
prove that every compact Riemann surface is actually a projective algebraic
curve, so an object of algebraic geometry. This idea has many applications,
and opens up several branches of research.

7.1 Linear systems and projective embeddings

The point of the RR spaces L£(C, D) is to provide ways of mapping C to
projective space: a basis fi.; of L(C, D) gives the rational map ¢p: C --»
P!=1 that does P+ (fi(P) : -+ : fi(P)). Here I study how to establish
whether ¢p is an embedding (an isomorphism of C' to its image), and if so,
what the divisor D has to do with the geometry of C' C P!~1.

First, some traditional terminology going back to antiquity. For C a
nonsingular projective curve and D = ) dpP a divisor, write

|D| ={divf+D]| feL(CD)}

for the linear system of D. By construction, the divisors D; = div f + D
for f € L(C,D) run through the effective divisors linearly equivalent to



D. The set |D| is parametrised by P! = (£(C, D) \ 0)/k*, the projective
space of 1-dimensional subspaces of the vector spacee L£(C, D). We picture
this as a bunch of points running around C, parametrised by a projective
space, in much the same way as the pencil of plane conics AQq + Q2 = 0
is parametrised by P%A,u)'

The effective divisors of Dy € |D| may all have a common part A > 0.
This means that each f € L(C, D) satisfies div f + D > A. In other words,
L(C,D) = L(C,D — A). The biggest such A is the fized part of |[D|. We
write |D| = A+ |D — A|, where A is the fixed part and |D — A| the free part.

We say that | D| is free (or fized-point free) if it has no fixed part. Then for
every P € C, some f € L(C, D) has valuation vp(f) = —dp. In terms of the
sheaf O¢(D), this means that the global section f € T'(C, O¢(D)) = L(C, D)
is z;dp x unit of O¢ p, so that f bases Oc(D) as Oc-module near P. Thus
|D| free is synonymous with Oc(D) being generated by its global sections.

Remark 7.1 A free linear system |D| of degree d and L(C,D) = r + 1 is
traditionally called a g}, meaning that |D| consists of effective divisors of
degree d moving in an r-dimensional family. For example, the 2-to-1 map
C — P! from a hyperelliptic curve to P! is given by a gi; the hyperplane
linear system |H| on a curve of degree C, C P? is a gZ.

There are two little sources of confusion here: first, r+1 = I(C, D) is the
vector space dimension of £(C, D), whereas r refers to its projectivisation
P" = (£(C,D)\ 0)/k*, the parameter space of the linear system |D.

Next, this P" = |D| corresponds to 1-dimensional subspaces of L(C, D),
whereas the target space of ¢ p: C' — P=! has £(C, D) as its linear forms, so
its points correspond to codimension 1 subspaces of £(C, D). The divisors
of |D| are given by hyperplane sections of P~

7.2 Strategy to prove embedding

How do we establish that pp: C --» PI=! is an isomorphism to its image
p(C) =T C P"? An algebraic variety is a set of points X with locally
defined functions Ox on it. Thus for ¢: C' — I' to be an isomorphism, we
need (1) that it is bijective as a map of point sets, and (2) that pullback
of functions on I' provide all the functions on C'. The main result is the
following theorem.

Theorem 7.2 Let D be a divisor on a nonsingular projective curve C'. As-
sume the RR spaces of D on C' satisfy the conditions:

1. L(D — P) C L(D) for every P € C.



2. L(D—-P—-Q)< LD —P) for every P,Q € C with P # Q.
3. L(D —2P)C L(D — P) for every P € C.

Then ¢p: C — P71 is an isomorphism to its image op(C) =T C P 1,
Moreover, the hyperplanes of P'=! cut out the linear system |D| on C.

I start by relating the assumptions of the theorem to the above discus-
sion. (1) is the statement that |D| has no fixed part. In the more general
case, passing from D to the free part D’ = D — A does not change the
morphism ¢pr = ¢p. However, in that case, if the free part |D’| defines
an embedding ¢ p/, the hyperplanes of P!'~! would cut out the free |D’| and
take no account of the fixed part A.

(2) is the condition that £(D — P — @) C L(D) has codimension 2, so
that there is an f € £(D) that vanishes at P and not at @, or in other words,
there is a hyperplane of P!~ through ¢p(P) and not through ¢p(Q). Thus
(2) gives directly that ¢p is bijective on point sets.

To discuss (3), suppose that P € C appears in D with coefficient dp,
and that zp is a local parameter of the DVR O¢ p. Then by (1) we know
that some fo € £(D) has valuation vp(f2) = —dp, so is a basis of O¢(D) on
an affine neighbourhood U of P. Assumption (3) asserts that there is some
fi1 € L(D) with vp(f1) = —(dp —1). Then f1/fs is a regular function on U,
and is a regular parameter of the local ring O¢ p.

In complex analysis, this would complete the proof — we have a injective
regular map, and functions on the image include a local analytic parameter
at each point P, so the map is an immersion by the implicit function theo-
rem.

Proof of the theorem In algebraic geometry, write I' ¢ P!=! for the
Zariski closure of the image I'g = ¢p(C). It is an irreducible subvariety,
and by (2), the morphism ¢p: C' — T is injective on points. I have to prove
that pp is surjective, and that pullback defines an isomorphism of local rings
¢p: Org = Oc,p for every P € C.

The proof consists of three parts: (1) reduction to a finite morphism
py: Cp — 'y on affine pieces C; C C' and I'y, C I', with the induced ring
homomorphism ¢ : k[I';] C k[Cy] making k[C,] finite over k[I';]; (2) reduc-
tion to local commutative algebra with 4,022: Or,g = Oc,p a finite morphism
of local rings. (3) Conclusion of the argument using Nakayama’s lemma.

Remark 7.3 As with resolution of singularities in Part I, my treatment
here works by fitting the morphism C' — T in diagrams C' — I' — P!,



Reduction to affine Write 'y = ¢p(C) C P71 and let T' € P! be
its Zariski closure. Then I'g = ¢p(C) is an irreducible curve, and I" adds
at most finitely many points @ € T' (actually none, but that is still to
prove). The RR space £(C, D) gives the linear forms on P!~!, so a choice of
coordinates t;_; for P!=! gives a basis f;.; of £(C, D) and vice-versa.

Since T' is a curve, for general coordinates on P!~!, it is disjoint from
the codimension 2 subspace t; = to = 0. For the corresponding basis of
L(C, D), the first two elements f1, fo give effective divisors div f; + D with
disjoint support.

Given t1,ty chosen as above, for any Q € I', I can replace them with
appropriate linear combinations so that @ is in the hyperplane ¢; = 0 and
not in to = 0, so that x = t1/ty is regular and 0 at @, that is z € Opg.
Or, for any given point P € C, I can replace the corresponding f1, fo with
appropriate linear combinations so that fo € £L(C,D)\ L(C,D — P) and
fi€ ,C(C,D — P) and © = f]_/fQ € Ocyp.

Now consider the commutative triangle

c b, T
Nl
]pl

with C' — P! the morphism defined by the ratio (fi : f2), and T' — P! the
morphism induced by the linear projection P!=1 —-» P%tl, t2)"

I now reduce to the construction of Part 1. Set x = f1/f2 € k(C). It is
a nonconstant rational function on C, so that k(z) C k(C) is a finite field
extension. As in Part 1, write A, for the integral closure of k[z] in k(C)
and C = Spec A, for the corresponding affine curve. I can do the same for
y=a"1 = fo/f1, and identify C with the union C, U C,,.

Since I' ¢ P! is disjoint from t; = t» = 0, it is the union of two
standard affine pieces I'y, and I'y, (with ¢; # 0). The affine curve I';, having
a finite morphism to Al with parameter x = t;/to (respectively I'y, to A;
with y = ! = t2/t1).

This gives affine varieties and morphisms C, — I'; — Al with coor-
dinate rings k[x| C k[[';] C k[C,]. What I gain is that k[C,] is finite as a
module over k[z], so a fortiori over k[I';].

At this point it clarifies the argument to separate the commutative al-
gebra from the geometry.

Proposition 7.4 Let A C B be finitely generated k-algebras that are inte-
gral domains and m C A a maximal ideal. Assume the following:



(i) B is finite as A-module.

(i) The ideal I = mB is contained in a unique mazimal ideal n C B and
k= A/m = B/n.

(iii) m — n/n? is surjective.
Then on localising, the morphism of local Tings Ay, — By, is surjective.

In the current case, A = k[I';] and B = k[C,]. I have arranged that B
is finite over A. Next m = mg is the maximal ideal of a point Q) € I';. The
variety V' (I) of the ideal I = mB consists of the points of C,, that map to Q.
This consists of at most one point of C' by (2), with A/m = Oc p/m, = k.
It is nonempty by the following lemma.

Lemma 7.5 mB # B, so mB is contained in a mazimal ideal of B.

By contradiction, assume B = mB and suppose b; generate B. Then
b; = > a;jb; with a;; € m, and the usual determinant trick gives AB = 0
where A = det(d;; — a;;). Then A = 0 because 14 € B, but A = 1 mod m,
which is a contradiction.

So C, — T, is surjective, and since pp is injective then Q = ¢p(P) for
a unique P; this implies (b). Finally, (c) holds since (3) implies that some
f€L(C,D—P)has vp(f) =—(dp — 1) which gives vp(f/f2) = 1.

Reduction to local Replace A C B by their localisations A,, C B,. One
checks that the following still hold.

(i) By, is still finite as A,, module.

(ii) The ideal I, = mB,, is contained in nB,, and we still have k = A/m =
A /mAn, k= B/n = B,/nB,.

(iii) nB,/n?B, = n/n?, so that mA,, — nB,/n?B, remains surjective.

Proof of the local statement We have I,, C n, and by (3), and the image
of I, generates n/n?. This means that n = I,, + n?, so that Nakayama’s
lemma (applied to the B-module n) implies that I,, = n.

Now B is a finitely generated k-algebra and n a maximal ideal, it follows
by the weak NSS that B/n = k (the same k). Therefore 1 generates B/I =
B/mB, so that Nakayama’s lemma (appplied to the A-module B) implies
that 1 generatees.



8 'Traditional applications of RR

8.1 Characterisation of g =0

Proposition 8.1 Let C be a curve. Equivalent conditions
1. I(D) =1+ degD for some divisor D of degree > 1;
2. P~ Q for every P,Q € C.
3. g=0.
4. C =P,

This is all easy. If [(D) = 1+ deg D with deg D > 1, the same continues
to hold for D — P, and by induction we get a divisor of degree 1 with
[(D) = 2. Then the linear system |D| contains every P € C as a divisor,
proving 2. The map ¢p: C — P! is an isomorphism by Theorem 7.2.

8.2 Treatment of g =1

The ideas around RR provides practically the whole of the geometric theory
and function theory of elliptic curves. First, to restate RR in the special
case g = 1, it says that {(D) = deg D for every divisor D of degree > 1. For
D of degree 0, either D ~ 0 ~ K¢ or I(D) = 0.

A curve of genus 1 is isomorphic to a plane cubic C' = C3 C P?. Just
choose any divisor D of degree 3. The [(D) = 3, whereas [(D — P) = 2 and
I(D—P—Q) = 1for every P,Q € C, so that ¢p: C — P? is an isomorphism
to its image.

Next, for the group law, the basic point is that a divisor D of degree 1
on C has (D) =1, so is linearly equivalent to a uniquely specified effective
divisor of degree 1, necessarily a point P € C'. This makes the set of points
of C into a coset of the group Pic® C of divisor classes of degree 0. We need
to specify a point O € C' as the neutral element to get out of the coset and
into the group.

This construction is important, so I spell it out: write DivC for the
group of all divisors of C' (that is, the free Abelian group generated by the
points {P € C}), and deg: DivC — Z for the degree map. Its kernel is
the group Div? C of divisors of degree 0. The principal divisors PDivC =
{div f | f € k(C)*} also form a group (isomorphic to k(C)* /k*), which is
a subgroup of Div® C, because by Main Proposition (I) a principal divisor
has degree 0.



Now define Pic® C' to be the quotient group Pic® C' = Div? C /PDivC =
Div? C/~. The group law on this is just addition of divisors mod linear
equivalence, and the zero element is the class of the zero divisor.

Along with Pic® C, consider its coset Pic! C' formed by divisors of de-
gree 1 up to linear equivalence. As we have seen, this is in bijection with
C itself. Now choosing any point O € C provides a bijective map Pic’ C' —
Pic! C — C by [D] + [D+O0]. That is, a divisor class D of degree 0 maps to
the divisor class D + O, which is linearly equivalent to a unique P € C'; the
inverse bijection C' — Pic® C' takes P to the class of P — O. In conclusion,
the group law on C'is

(P,Q)—~ (P—0,Q —0)— (P+Q—20)— (P+cQ),

where the middle step is addition in Pic’, and P +¢ Q is the unique effective
divisor linearly equivalent to P + @Q — O.

There are a couple of exercises concerned with interpreting the geometric
P+Q+R form of the group law [UAG, Chap. 2] within the current treatment.

8.3 ¢ > 2: canonical embedding versus hyperelliptic

A curve C of genus g has a canonical divisor K with deg K = 2g — 2 and
[(K) = g. In the main case g > 2, we have the following dichotomy.

Theorem 8.2 Consider the map ¢r: C — P9~1 defined by the canonical
divisor. Then either ¢ is an isomorphic to its image C C P9~ and the
hyperplanes of P9=1 cut out the canonical system |K| on C. Or C has a
linear system gi, and ¢k is obtained as the composite C — P! = Iy C
PI9=1 where the first map is the double cover C — P! defined by the g3, and
I'y—1 is the rational normal curve of degree g — 1.

Proof Equality L(K — P) = L(K) holds only for ¢ = 0 (when both spaces
are zero). For RR would give I(P) — g = 1 — g + deg P, that is, I(P) = 2.
Next, if L(K — P — Q) = g— 2 for every P,Q € C then ¢k is an embedding
by Theorem 7.2. The alternative possibility is that L(K — P — Q) =g — 1
for some P 4 ). Then RR gives

(P+Q)—(9—1)=1—-g+2, thatis, (P+Q)=2.

Thus |P + Q is a g5. It follows again by Theorem 7.2 that it defines a
2-to-1 morphism ¢pyg: C — P!, so that C is hyperelliptic. Every divisor
D € |P + Q] is mapped to a single point by ¢, so that g factors via
¢p+@- On the other hand, its image must span P91 sois 'y,—1. Q.E.D.



MAA4L7 Algebraic curves
Example sheet 4, Deadline Tue 26th Feb

1. Function theory on a hyperelliptic curve Assume that % € k, and
let C' be a hyperelliptic curve of genus g > 2. It comes with a divisor |D|
that gives a g and a double cover ¢p: C — PL. Write f1, fo € L(C, D) for
a basis, where x = f1/f> is a parameter on P

The field extension k(P') C k(C) is a quadratic extension defined by
22 = Fygyo(z), and has a hyperelliptic involution that does i: z — —z.

The monomials S™(f1, f2) = {fT, {‘_lfg, ..., f&} are linearly indepen-
dent in £(nD) for each n, because x is transcendental over k. Calculate the
dimension of £(nD) for n = 1,...,¢. [Hint: Start by using the above to
show that (¢ —1)D must be irregular, and deduce that K¢ ~ (¢ —1)D. On
the other hand, gD must be regular.]

Next, use RR to show £((g + 1)D) is strictly bigger than S9T1(f1, fa).
We can choose the complementary basis element g so that z = g/ ]‘2ngl is
anti-invariant under the hyperelliptic involution, giving the new generator
with 22 = Fygi0().

Show the monomials S™(f1, f2) and S"97L(f1, fo) - g form a basis of
L(nD) for every n.

2. Curves of genus ¢ = 4 Let C be a curve of genus 4, assumed to
be nonhyperelliptic. Write ¢ : C' < P3 for its canonical embedding and
identify C' with its image C' C P3.

By construction of the canonical embedding, the hyperplanes of P? cut
out |K| on C. In the same way, quadric surfaces in P? cut out divi-
sors of |2K|. Calculate the dimension of the space of quadrics in P? and
[(2K) = dim £(C,2K), and conclude that C is contained in a unique quadric
hypersurface Q C P3.

As an irreducible quadric, @) necessarily has rank 3 or 4. If @ has rank
4 (so is w1x9 = x3xy4 in appropriate coordinates), prove that C' has two
different linear systems g%, Dq and Do, with Ko = D1 + Ds. Prove that
C C Q = P! x P! has bidegree (3,3) in P! x P!, and so C C Q is cut out by
a cubic hypersurface, C' = Q N F3.

If Dy is a g% on C, use RR to deduce that Dy = K — D is also a g3.
Therefore K = Dj + Dy is the sum of two linear systems gi. We distinguish
two cases: D1 o Do, or D1 ~ Do. Show that the first case corresponds to
the canonical image C' contained in a quadric of rank 4.

In the second case, write K = 2D with D = D; = Dy. Write t1,t



for homogeneous coordinates on the target P! of pp: C — PL. Show that
L(C, K) is based by x1,z2, 13 = t2, 12,12 and a new variable y. In £(2K)
there is a quadratic relation between the x1, xs, x3, providing the quadric of
rank 3 z173 = z3. Calculate the dimension of £(3K) and show that there
must be a cubic relations y* + Ag(x1, 22, 23)y + Bs(21, ¥2, 3) (here we need
1/3 € k to do the Tschirnhausen transformation).

3. Clifford’s theorem Prove that d > 2r for any irregular divisor D
defining a g); (here irregular means that the irregularity (K — D) # 0). In
other words, the fastest growth of /(D) among all curves C' and divisors D
is given by the hyperelliptic curves discussed in Q1.

[Hints: (1) use the following linear-bilinear lemma: let p: Vi x Vo — W
be a bilinear map from vector spaces Vi, Vo of dimension [1,ls. Suppose
p(v1,v2) € W is nonzero for every nonzero vy € V; and vy € Vo. Then the
image of ¢ spans a subspace of dimension > [ +12 — 1 in W. Proof: Tensors
of rank 1 {v; ® vy} form a subvariety of dimension /3 + Iy — 1 in Vj ® V4.
The kernel of p: V1 ® Vo — W intersects it in 0 only.

(2) Consider the multiplication map £(D) x L(K — D) — L(K), and
put together the inequality of the lemma with the RR formula.]

4. Degree 4 divisor on curve of genus 2 Let 'y C P%ﬂmy,z)
quartic curve with a node or cusp at (1,0,0) and no other singularities. We
can assume that its equation is x?as + b3 + ¢4, with a, b, ¢ forms in y, z of
the stated degree. Show that projection from P defines a 2-to-1 cover from
the resolution C' — P! - ramified in the discriminant sextic b> — 4ac, so
that C is a hyperelliptic curves of genus 2.

Recall that K¢ is the final irregular divisor. Prove that for any curve C'
of genus > 2 and any P,Q € C, we have [(K + P+ Q) — [(K) = 1, so the
morphism ¢p corresponding to D = K + P + () cannot distinguish the two
points P, @, that is, ¢p(P) = ¢p(Q).

Now suppose that ¢ = 2, and let D be any divisor of degree 4. Show
that I(D — K¢) > 0, so that D is linearly equivalent to K + P + Q). Prove
that ¢p: C — P? either maps C to a quartic curve I'y C P? with a node at
o(P) = ¢(Q) (resp., cusp if P = @), or is a double cover of a plane conic
(in the case D — K¢ = g3, that is, D = 2g3).

be a plane

5. Genus 6 Let C be a curve of g = 6, and assume it has no g3, g3 or g2.
If D is a g}, show that K — D has degree 6 and [(K — D) = 3. Show that
|IK —Disa g%, so defines a morphism ¢g_p: C — P2,



Let I's C P? be a sextic having double points (nodes or cusps) at the 4
points (1,0,0),(0,1,0),(0,0,1),(1,1,1) of the standard projective frame of
reference. By considering the linear system of cubics of P? passing through
the 4 points, show that the resolution C' has a linear system of dimension
> 6 and degree < 10.

Given that its resolution C' — T'g is a curve of genus 6. Show that C has
5 gis and complementary g3s. [Hint: Four of them are fairly obvious. The
fifth comes from the pencil of conics through the 4 points.]

It is a fact that any curve of genus 6 is given either by this construction,
or a different construction adapted to the case that C has a g3, g3 or g2,
or is a double cover of curve of g = 1. (The g% case correspond to a plane
quintic C5 C P2.) Unfortunately, it would be something of a detour from
the main course to discuss this rigorously or comprehensibly.
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