MA4L7 Algebraic curves

Miles Reid

Part 4. Graded rings and proof of (I-III)

9 Introduction

9.1 Definitions of graded rings and graded modules

A graded ring (over k) is a commutative ring R with a 1, having a direct
sum decomposition R = @, -, R, with the assumptions

1. Ro = k;
2. The ring multiplication takes R,, X R,, = Ry 4n,;

3. R is generated over k by finitely many elements x; € R,,, that are
homogeneous of degree n;.

The first cases you meet have all the generators in degree 1: the ho-
mogeneous coordinate ring k[xo..n] of P" or k[X]|homeg = k[®o..n]/Ix of a
projective subvariety X C P™. Since our current treatment works with irre-
ducible varieties, we almost always assume that R is an integral domain.

Another common case that we have already seen many times is the sec-
tions ring R(C, D) associated to a hyperelliptic curve C' and its hyperelliptic
divisor D that is a linear system g3. In this case the graded ring is

k[xlvl‘% z]/(z2 - f2g+2(3317 132))

where deg z = g+1. This means that fora =0, ..., g, the a4+1 homogeneous
monomials S%(x1,x2) base L(C,aD); we need one further generator z in
degree g + 1 that satisfies a relation in degree 2g + 2 that (in characteristic
# 2) we take to be 2% — fogio(21,22). Then for every a > g + 1, the RR
space L(C,aD) is based by S%(x1,72) and S* 97 !(z1,29)2. (Check that
this givesa+1+a — g =1 — g + 2a, in accordance with RR for a regular
divisor.)

A graded module M over a graded ring R, is an R-module with a direct

sum decomposition M = @, , M,, satisfying the assumptions



1. R, # 0 only for n > —c (for some c);
2. The ring action takes R,,, X My, — My, 4n,;

3. M is generated over k by finitely many elements m; € M,,, that are
homogeneous of degree n;.

9.2 Sections ring R(C, D)

The general case that I use most commonly is the sections ring

R(C,D) = P L(C,nD)

n>0

corresponding to a free linear system |D| on a curve C. The free assumption
is that £(C, D) (in degree 1) has two sections s, s2 defining effective divisors
Dy = divs; + D and Dy = divse + D with disjoint support (as in the
Castelnuovo free pencil trick).

Remark 9.1 Since we are mostly only interested in the ratio s; : so, 1
sometimes have in mind that sy = 1 € k(C), so that D = Dy > 0 and s
corresponds to 1 € L(C, D) or to the natural inclusion sy: O¢ — Oc(D);
however, even if I do this, I still insist that so € Ry is an element of degree 1
(as opposed to the unit element 1 € Rp).

A free linear system comes about automatically from any nonconstant
rational function f € k(C) or its morphism ¢: C — P!, with D; = ¢=1(0)
the divisor of zeros and Dy = ¢~ !(c0) the poles of z = s1/s3.

My main trick is to set S = k[s1, s2] for the homogeneous coordinate
ring of P!, and view R(C, D) as a module over S.

9.3 Simplest application

Let C, C P? be a nonsingular curve of degree a. Assume that the coordinate
points (0,0,1) ¢ C,, and choose coordinates (z1,2,2) on P2. Then the
equation of C, is monic in z, of the form

a )
a i
Fo=2"+ § =1 Ca—i(xly‘q:Q)Z >

with ¢,—; € S,,. The homogeneous coordinate ring of C, is of course simply
k[ca}homog = k[xl’ X2, Z]/(Fa)‘



Now as a module over S = k[xy, z2], it is the free graded module based
by 1,2,2%,...,2% L T write

k[Calhomog = S @& S(—1) & - & S(—(a — 1))
T (9.1)

= @ S(—ai).

=1

Here a; = i — 1, and S(—i) = S - 2* is a copy of S as a module over itself,
but with basis 2 in degree i. The homogeneous part of S(—i) in degree d is
thus the vector space k[z1,2]4_; (based by the monomials S9~%(x1, z2)).

I make the convention that S?~#(zy,x2) = ) if d < i, and count them as
#5971 (21, 29) = [d — i + 1]4, where [n]; =n or 0 if n < 0.

The degree d part of k[Cqlhomog is thus

a-1 d—1i . . a— .
Zi:ﬂ S "(x1,22) of dimension Zi:o [d—i+1],,

This gives the precise result for £(Cy,dH) (where H is the hyperplane
section, say xo = 0).

(432) ifd<a

I(C,dH) =
( ) {1—g—|—da ifd>a—2

Here g = (“51) =1((a — 3)H). In the cases d = a — 2, a — 1 both formulas
are valid, and coincide.

9.4 Proof of (I)

(I) is the statement that degdivz = 0 for every = € k(C). The proof uses
easy material on modules over a DVR.

Recall that C' = C,,UC,, where for any « € k(C), the affine curve C, has
affine coordinate ring A, = k[Cy] the integral closure of k[z] C k(z) in the
field extension k(C'), and Cy, the analogous construction for y = z~!. Each
of C; and Cy is normal, so nonsingular. The two constructions coincide on
the overlap, over k[z,z1].

Now A, is a finite module over k[x] by the main proposition on integral
closure. Any point P € Al has the local ring Op1,p which is a DVR, and I
can localise A; near P to give the module A, p = Ay @y Opr p.

Lemma 9.2 Let A be a PID and M a finite A-module.

Then M is isomorphic to a direct sum of torsion modules A/(a;) with
a; € A plus a free A-module A”.

In particular, a torsion-free finite module over a DVR 1is free.



Proof Start from M = A"/N, with A™ a free module corresponding to
a set of generators e; € M, and N the submodule of relations. Then N is
generated by a set of relations

> 0
a;jej = 0.
1 M

Now, since the coefficients belong to a PID, the matrix (a;;) can be reduced
by row and column operations to the form

diaga; 0
0 0)°
Then M =@ A/(a;) ®A". Q.E.D.

Corollary 9.3 The following numbers coincide:
1. The degree d = [k(C) : k(x)] of the field extension k(x) C k(C).

2. The rank of the free module Ay p = Ay ®plz) Opr p over the DVR
Op1,p for any P € AL

3. The dimension over k of the quotient vector space Ay p/mpAy p for
any P € AL.

4. The degree deg div(z — ap) of the divisor of zeros of x — ap on Cy.
5. The same as (2—4) with x replaced by y.

In particular, this proves that degdiva on C, equals degdivy on Cy,
which gives (I).

9.5 Proof of (II), coarse form

(IT) is the statement that there exists a family {D,} of divisors on C' with
deg D,, — oo but 1+deg D,, —I(C, D,,) bounded. This section gives a coarse
proof, with no attempt to give a sharp bound, that is, to say anything precise
about the genus of C. A more precise version is given below, with equalities
and a formula for g(C).

Recall that I set A, for the integral closure of k[x] in k(C). It is finite
over k[z] and, as a subring of k(C), it contains a basis vy,...,vg of k(C)
over k(x) (which is d-dimensional, as we just saw).

Where z = oo I made the same construction for y = 2~ to get the
remaining points of C' = C, U Cy, Each v; is regular on C,, so that its
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divisor of poles lies over y = 0. It follows that there is some ng so that
y"v; € Ay is regular on Cy for i =1,...,d.

Then v; € L(C,ngD), where D is the divisor of zeros of y. Therefore for
n > ny, the vector space £(C, nD) contains the subspace @?:1 klx])<n—ng Vi,
of dimension d(n — ng + 1), whereas degnD = nd.

Now 1+ nd — d(n —no + 1) is independent of n, which proves (II).

9.6 The sections ring R(C, D) is a free S-module

Let S be a ring and M an S-module. A sequence s1, So,... in S is a reqular
sequence for M if s; is a nonzerodivisor of M, then s, is a nonzerodivisor
of M/s1M and so on. In general, one requires each s;;; a nonzero divisor
of M/(s1,...,s8;)M for each i, but here I only need regular sequences of
length 2. The rings and modules here are all graded, with sq, so of degree 1.
Let R(C, D) and s1,s2 € L(C, D) be as in 9.2, and set S = k[s1, s2].

Proposition 9.4 (A) s1, sz is a regular sequence for R(C, D).

(B) The sections ring R(C, D) is a free graded module over S, of the form
R(C,D) =D S(~a;) =S @ S(~az) @ ® S(—aq) (9.2)

withar =0<as <---<ay.

(C) For everyn € Z, we have [(C,nD) = Z?Zl[n—ai—i—lh. In particular,
for every n > aq — 1, this gives equality

I(nD) = ijl(n —a;+1)=1—g+degnD, (9.3)

where . 4
0= lai— 1 = ai - 1) (9.4

i=1 =2

(Including the —1 in the first summand would give Z?Zl(ai —-1)=9g-1.)

Proof of (A) The only multiplication involved in S x R(C, D) — R(C, D)
is multiplication in the function field k(C), so it is clear that s; is a non-
zerodivisor.



To say that sg is a nonzerodivisor modulo s; means any fo» € R(C,D)p—1
that becomes a multiple of s; after multiplying by s, was already a multiple
of s1. That is, for f1, fo € R(C,D)p_1,

sofa =81f1 = fa=s1c for some ¢ € R(C, D), 2.

We have already seen this argument in Part 3 in the form of the Castelnuovo
free pencil trick.

Bearing in mind that we are dealing with elements of the field k(C), 1
can simply define ¢ by ¢ = f1/s2 = fa/s1 € k(C)*. I claim that ¢ satisfies
dive+ (n—2)D > 0.

In fact, cs;1 = fo € L((n — 1)D) and ¢sy = f1 € L((n — 1)D) are given.
As usual, since s1, sy define a free pencil in |D|, write divs; + D = D
and divse + D = Do, where Dy and Do are effective divisors with disjoint
support.

Then

div(es1) + (n —1)D =dive+ (n —2)D+ Dy >0 and
div(es2) + (n —1)D =dive+ (n —2)D + Dy > 0.
Now D; and D3 have disjoint support, so it follows that divc+(n—2)D > 0
and c € L(C,(n—2)D) = R(C, D)y,—_2. This proves (A).
The argument boils down to saying that the sequence

0— R(C,D)p,—2— R(C,D),—1® R(C,D),—1 — R(C,D),

is exact, where the first arrow is ¢ +— soc, sic and the second is f1, fo —
s1f1 — sa2fe. (This is Koszul complex of s1, s2; the sequence s1, so is regular
if and only if its Koszul complex is exact.)

Proof of (B)

Lemma 9.5 Set S = k[s1, s3], and let M be a finite graded S-module for
which s1, 82 is a reqular sequence. Then M is a free graded S-module, that

is, M = @ S(—b;) for some b; € Z.

Proof Write M = M/(s1M + soM). Then M is a graded vector space
over k, say M = @k - ¢; with €; of degree b;. Each basis element can be
lifted to e; € M of the same degree, and M = Pe;.

Proof of (C) By (B), R(C,D) = @ S(—a;) for some a;, that I write in
increasing order. Now since £(C,0D) = Ry = k, it follows that a; = 0 and
a; > 1. The formula for I(nD) is a straightforward calculation.



9.7 A counterexample: Macaulay’s quartic curve I'y C P?

The proof that s1, so is a regular sequence for the sections ring R(C, D) uses
the assumption that the homogeneous component R, in each degree is the
whole vector space L(C,nD).

The classic counterexample is Macaulay’s quartic curve I'y, the image of
the embedding P! «— IE’)i)’m’y’Z’t> given by (u?*, udv,uv®,v*). At each point of
the image either = # 0 or ¢ # 0, and on those affine opens y/z (respectively
z/t) is a local parameter. The homogeneous coordinate ring k[I'4]homog is the
complete linear system in every degree except 1: for example, you can see
that the quadratic monomials in (u*,u3v,uv?,v*) include every monomial
of degree 8.

However, the absent w = u?v? means that zw = y? is an element of
E[I'4]homog, but not a multiple of  in it (that is, not an element of the
ideal (x) C k['4]homog)- Hence the ideal of I'y contains x(tw) — t(zw) where
zw ¢ (x). It follows that = is a zerodivisor modulo ¢, which contradicts
regular sequence.

The defining equations of I'y are

.
zt =yz and x2% =y, (9.5)
23 = yt2.

Notice the “rolling factors” x +— z and y — t in the three cubic equations.
Rather than independent relations, they can be viewed as a single bihomo-
geneous equation of bidegree 3,1 in the quadric surface xt = yz (isomorphic
to P! x P!), whereas the three equations on the right are cubics in P? that
contain I'y plus copies of the lines x =y =0 or z =t = 0 added to make a
curve of bidegree 3, 3.

The fault is not with the embedded curve, but with its affine cone
E[T'4]homog, and specifically with its maximal ideal (z,y,2,t). Write CI'y
for the affine variety Spec(k[T'4]homog), Which is the affine cone in A* over
I'4, defined by (9.5).

This cone is nonsingular outside the origin. Its bad property is that if
we take the intersection of CI'y with any hyperplane through the origin, it
automatically has an “extra nilpotent sticking out at zero” (or embedded
prime in the sense of primary decomposition). The point is the missing
ring element w = u?v2. Whereas w is not in the ring, each of its multiples
(z,9,2,t) - wis: 2w = y?, yw = z2, etc. These elements are then torsion
modulo any of z,y, z, t.



It is striking that one can calculate the dimension of k[I'4]homog/ (%, 1)
(or E[I'4]homog/ (11, 12) for any general linear forms l,(ls in z,y, z,t), and get
the answer 5 (rather than the expected value 4 = degI'y). See Ex. ?? for
more on this.

9.8 The dual (or canonical) module K

I use the above definitions and notation. The key construction that provides
the canonical divisor K¢ starts from the graded S-module

K = Homg(R(C, D), S(~2))

=S5(-2)®S(az —2)® - ® S(aqg — 2). (9:6)

The easy thing this does is provide nice numerical properties, relating
exactly to what I want for K¢ and the Riemann—Roch spaces L(K¢ + nD)
for n € Z. The specific result is as follows (compare with Proposition 9.4,

(©)):

Proposition 9.6 1. For everyn € Z, the dimension of the degree n piece
of K is given by

) d
dim K, = Zizl[“i +n—1]4. (9.7)
2. In particular, for n > 1 every term is > 0, so this gives

d d
dim K, = Z‘_l(ai +n—1)= Z‘_l(ai —1) +nd
=g —1+degnD.

(9.8)

(This agrees with 1 — g + deg(K¢ + nD) once I establish K¢.)

3. Forn > 0 the first term in the sum is [-2+1]+ = 0, and the remaining
terms are all > 0, so

dim Ky = 2522(%- -1)=g. (9.9)

4. For every n € 7Z,

d
n—a; + 1]+ — Zizl[ai —n—1]4
=1—g+ndegD.

I(nD) —dimK_, = Z‘?

=1

(9.10)



5. The difference of degrees between the free S-module KC of (9.6) and the
free S-module R(C, D) of (9.2) gives

deg K — deg R(C,D) = (a; —2) = > (—a;)
= QZ:{:I(% —1)=2g-2.

The proof is straighforward. For (4), note that in each term, either
n > a; — 1, in which case the first term is n — a; + 1 and the second term
is zero, or n < a; — 1, in which case the first term is zero and the second
term is again n — a; + 1 (two minus signs cancel), so that in any case, the
expression gives Y (n —a; + 1).

(9.11)

9.9 The canonical module K as an R(C, D)-module

As defined in the preceding section, K = Homg(R(C, D), S(—2)) is only a
module over S = k[s1, s2]. This relates to P! rather than to C. It can be
turned into a module over the sections ring R(C, D) by premultiplication.
In more detail, f € R(C, D) acts on Homg(R(C, D), S(—2)) taking the
homomorphism ¢ to the new homomorphism f - ¢ given by

(f-@)(r) = (fr) forre R(C,D).

Premultiplication is an important issue, that applies in any discussion of
duality. It means first multiply by f, then apply the homomorphism .

Perhaps a more natural way to describe this action is to think of I as
the dual of the free S-module R(C, D) (the little twist (—2) only modifies
its graded structure). Namely, multiplication by f defines a homomorphism
pr: R(C,D) — R(C, D) of free S-modules. With the given basis {;}, this
map is given as usual by a matrix F' = (my;), with fz; = > my;z;.

The dual (or “adjoint”) map on the dual module f¥: K — K is then
given simply by the transpose matrix. To spell it out, fix a basis element
t € S(—2), and write {2/} for the basis of K dual to {z;}, so that the dual

element is
t if j =k,
Z,\g/: Zj —> J .
0 otherwise.

The action of f on an element ¢ of the dual module K is the composite of
multiplication by f on R(C, D) followed by applying ¢ to the product. Re-
ferring specifically to the dual basis element z)’, compose the multiplication
given by fz; = > m;jz; with 2/, to get

(f 20z = 2 (F20) = 2 (3 migzs ) = mat.
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In other words, f - z) takes z; — my;t, and this is the element - m;zz)
of K. Thus in the dual basis, f acts on K by the transpose matrix ‘F.

9.10 The canonical divisor K- and the canonical line bundle
Oc(K¢)

It follows from the above discussion that K with its given structure of
R(C, D) module is torsion free: a matrix and its transpose have the same
rank. Thus its localisation at any point of C is a locally free module of
rank 1.

This defines the canonical line bundle O¢(K¢) over C and the canonical
divisor class K.

Several issues around this still needs clarifying, but no time.
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