Parallel unprojection equations for $\mathbb{Z}/3$ Godeaux surfaces

Miles Reid

Abstract

I construct a 9-dimensional affine "key variety" $V \subset \mathbb{A}^{13}$ by triple parallel unprojection from a hypersurface. With a basic choice of \mathbb{G}_m action (that is, grading), regular sections of V give rise to a number of varieties, including the universal cover of general $\mathbb{Z}/3$ Godeaux surfaces, together with a small menagerie of related curves, surfaces, 3-folds and 4-folds. The construction includes cases of $\mathbb{Z}/3$ Godeaux surfaces having an involution. As a by-product, the equations and syzygies of V lead to useful exercises illustrating general Gorenstein codimension 4 phenomena.

1 The key variety and the main result

Consider a hypersurface F = 0 with F in the intersection of the three codim 2 ideals

$$(x_0, y_0) \cap (x_1, y_1) \cap (x_2, y_2) \tag{1}$$

where $x_0, y_0, x_1, y_1, x_2, y_2$ are six independent variables (viewed as three pairs), and such that the coefficient of $y_0y_1y_2$ in F equals 1. The general case is

$$y_0y_1y_2 = sx_0x_1x_2 + r_0x_1x_2y_0 + r_1x_0x_2y_1 + r_2x_0x_1y_2.$$
 (2)

Indeed, any terms with y_1y_2 can be tidied away by doing

$$y_0 \mapsto y_0 + \text{multiples of } x_i.$$
 (3)

For the moment, consider the coefficients s, r_0, r_1, r_2 also as independent indeterminates. Following Papadakis, treat the subvarieties $(x_i = y_i = 0)$ as unprojection divisors, and introduce the corresponding unprojection variables z_i , that is,

$$z_{0} = (y_{1}y_{2} - r_{0}x_{1}x_{2})/x_{0}$$

= $(sx_{1}x_{2} + r_{1}x_{2}y_{1} + r_{2}x_{1}y_{2})/y_{0}$
 $z_{1} = (y_{0}y_{2} - r_{1}x_{0}x_{2})/x_{1}$
= $(sx_{0}x_{2} + r_{0}x_{2}y_{0} + r_{2}x_{0}y_{2})/y_{1}$
 $z_{2} = (y_{0}y_{1} - r_{2}x_{0}x_{1})/x_{2}$
= $(sx_{0}x_{1} + r_{0}x_{1}y_{0} + r_{1}x_{0}y_{1})/y_{2}$

The z_i are subject to the linear unprojection equations deduced in the obvious way from these expressions; also, adding two of the z_i gives rise to a 5 × 5 Pfaffian format, which provides the bilinear relations for $z_i z_j$: for example

$$\begin{pmatrix} x_1 & y_0 & z_2 & r_1 x_0 \\ & x_2 & y_1 & y_2 \\ & & r_2 x_0 & z_1 \\ & & & s x_0 + r_0 y_0 \end{pmatrix}$$
(4)

hence

$$z_1 z_2 = s x_0 y_0 + r_0 y_0^2 + r_1 r_2 x_0^2, (5)$$

and similarly

$$z_0 z_2 = s x_1 y_1 + r_1 y_1^2 + r_0 r_2 x_1^2,$$

$$z_0 z_1 = s x_2 y_2 + r_2 y_2^2 + r_0 r_1 x_2^2.$$

Theorem 1.1 These 9 equations define a codimension 4 affine Gorenstein 9fold $V \subset \mathbb{A}^{13}_{\langle x_i, y_i, z_i, r_i, s \rangle}$. Its singular locus is $\mathbb{A}^4_{\langle r_0, r_1, r_2, s \rangle}$ union the three planes $\mathbb{A}^2_{\langle r_i, x_i \rangle}$ for i = 0, 1, 2. It has a diagonal action of the torus \mathbb{G}^6_m and S_3 symmetry permuting the indices. Grading by

$$\operatorname{wt} x_i = 1, \quad \operatorname{wt} y_i = \operatorname{wt} r_i = 2, \quad \operatorname{wt} z_i = \operatorname{wt} s = 3$$

gives V canonical weight -12.

With this grading, regular sections of V provide the graded rings over the following varieties (among other possibilities):

(A) Set r_i equal to general combinations of x_i, y_i of weight 2, and s equal to a general combinations of x_i, y_i of weight 3; also, set $x_0 + x_1 + x_2 = 0$ and $z_0 + z_1 + z_2 = 0$. Then Proj of this ring is a canonical surface $Y \subset \mathbb{P}^6(1, 1, 2, 2, 2, 3, 3)_{\langle x_1, x_2, y_0, y_1, y_2, z_1, z_2 \rangle}$ with $p_g = 2$, $K^2 = 3$. It is nonsingular in general.

Moreover, taking r_i and s symmetric under permuting the indices gives Y a fixed point free action of $\mathbb{Z}/3$, hence a quotient $\mathbb{Z}/3$ Godeaux surface $X = Y/(\mathbb{Z}/3)$ as in [R1]; or an action of S_3 , giving X with an involution (see Section 2 for a specific case).

- (B) Omitting the sections $\sum x_i = 0$ and $\sum z_i = 0$ in (1) gives a quasismooth Fano 4-fold $F \subset \mathbb{P}^6(1, 1, 1, 2, 2, 2, 3, 3, 3)_{\langle x_0, x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2 \rangle}$ with $K_F = \mathcal{O}_F(-3)$ and $3 \times \frac{1}{3}(1, 1, 2, 2)$ orbifold points.
- (C) Omitting the section $x_0 + x_1 + x_2 = 0$ in (1) gives a nonsingular Calabi-Yau 3-fold containing Y as a hyperplane section.
- (D) Omitting the section $z_0 + z_1 + z_2 = 0$ in (1) gives a quasismooth Fano 3-fold $W \subset \mathbb{P}^6(1, 1, 2, 2, 2, 3, 3, 3)_{\langle x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2 \rangle}$ of index 2 with $-K_W = 2A$, $A^3 = 1$ having $3 \times \frac{1}{3}(1, 2, 2)$ orbifold points [GRDB], No 40198.

The 4-fold in (2) and the 3-folds in (3) and (4) can be given fixed point free $\mathbb{Z}/3$ actions, or full S_3 symmetry, while maintaining the stated nonsingularity properties.

Remark 1.1 Specialising r_0, r_1, r_2 to 0 and s to 1 gives

$$\bigwedge^2 \begin{pmatrix} x_0 & y_2 & z_1 \\ z_1 & x_1 & y_0 \\ y_1 & z_0 & x_2 \end{pmatrix} = 0.$$

Thus V is a flat deformation of the cone over $\text{Segre}(\mathbb{P}^2 \times \mathbb{P}^2)$.

,

The symmetric group S_3 acts on V by permuting the indices 0, 1, 2. My paper [R1] used the eigenbasis coming from the cyclotomic change of bases to $x_0 + \varepsilon x_1 + \varepsilon^2 x$ with $\varepsilon \in \mu_3$ and similarly for the y_i and z_i .

The general algebraic properties of the key variety V come directly by unprojection from the hypersurface (2). The hypersurface has the obvious \mathbb{G}_m^6 action, which is preserved by the unprojection. The singular locus of V is discussed in the next section, along with the nonsingularity of its sections (A–D). As a preparation, note that the equations include 4 unprojection equations for z_0 :

$$x_0 z_0 = \cdots, \quad y_0 z_0 = \cdots, \quad z_1 z_0 = \cdots, \quad z_2 z_0 = \cdots, \quad (6)$$

so that V is nonsingular where $z_0 \neq 0$, and similarly for z_1, z_2 . They also include

$$y_0 z_0 = \cdots, \quad y_0 y_2 = \cdots, \quad y_0 y_1 = \cdots, \quad y_0^2 r_0 = \cdots,$$
 (7)

so that V is also nonsingular where $y_0 \neq 0$, and similarly for y_1, y_2 . Thus the singular locus of V is contained in $y_i = z_i = 0$. One sees that these define a reducible subvariety of V with many components, all of dimension ≤ 4 . Thus V is at least normal.

2 Nonsingularity

I prove all the nonsingularity results in Theorem 1.1 by brute force computer algebra. I only describe the calculations for (A), since the others are practically identical, and the Magma files doing all of them are online at [], (currently DropBox, NonSing_Calc_for_God3.txt), and run in short order on the Magma online calculator http://magma.maths.usyd.edu.au/calc.

Claim 2.1 The S_3 symmetric surface Y that is the universal cover of the $\mathbb{Z}/3$ Godeaux is nonsingular, and the $\mathbb{Z}/3$ action on it is free.

Start from the graded polynomial ring $R = k[x_1, x_2, y_0, y_1, y_2, z_1, z_2]$, and define x_0, z_0 by

$$x_0 = -x_1 - x_2$$
 and $z_0 = -z_1 - z_2$.

I define the sections by

$$r_0 = y_0 + x_0^2 + 7x_1x_2,$$

$$r_1 = y_1 + x_1^2 + 7x_0x_2, \quad \text{and} \quad s = x_0^3 + x_1^3 + x_2^3.$$

$$r_2 = y_2 + x_2^2 + 7x_0x_1$$

The nine equations of $Y \subset \mathbb{P}^{6}(1, 1, 2, 2, 2, 3, 3)_{\langle x_1, x_2, y_0, y_1, y_2, z_1, z_2 \rangle}$ are then

 $\begin{aligned} sx_0x_2 + r_0x_2y_0 + r_2x_0y_2 - y_1z_1, & r_0x_1x_2 - y_1y_2 + x_0z_0, \\ -r_1r_2x_0^2 - sx_0y_0 - r_0y_0^2 + z_1z_2, & -r_0r_2x_1^2 - sx_1y_1 - r_1y_1^2 + z_0z_2, \\ sx_0x_1 + r_0x_1y_0 + r_1x_0y_1 - y_2z_2, & -r_1x_2y_1 - r_2x_1y_2 + y_0z_0, \\ -r_1x_0x_2 + y_0y_2 - x_1z_1, & -r_0r_1x_2^2 - sx_2y_2 - r_2y_2^2 + z_0z_1. \end{aligned}$ (8)

Write $L = [L_1, \ldots, L_9]$ for these equations.

Brute force computer algebra frees us from heavy lifting, so simply define the 9 × 7 Jacobian matrix $\frac{\partial L_i}{\partial \{x_i, y_i, z_i\}}$ and its set of 4 × 4 minors J (with $\#J = \binom{9}{4} \times \binom{7}{4} = 4410$). Then Magma takes

1.3 seconds to verify that $z_0^4 \in \langle J \rangle$, the ideal generated by J,

so that the singular locus of Y is contained in $z_0 = 0$, hence also in $z_0 = z_1 = z_2 = 0$. Similarly, it takes

0.8 seconds to verify that $y_0^5 \in \langle J \cup \{z_0, z_1, z_2\} \rangle$, and 0.8 seconds to verify that $x_0^{13} \in \langle J \cup \{z_0, z_1, z_2\} \cup \{y_0, y_1, y_2\} \rangle$.

This proves that Y is nonsingular.

To prove that Y is disjoint from the fixed point locus of $\mathbb{Z}/3$ on V, it is enough to check that, in the same coordinates, L together with the equations $x_0^3 = x_1^3 = x_2^3$, $y_0^3 = y_1^3 = y_2^3$, $z_0 = z_1 = z_2$ defines the empty set in Proj R. Obviously $z_0 + z_1 + z_2 = 0$ and $z_0 = z_1 = z_2$ implies that all the $z_i = 0$. In fact, Magma says at once that the ideal generated by

$$L \cup \{x_1^3 - x_0^3, x_2^3 - x_1^3, y_1^3 - y_0^3, y_2^3 - y_1^3, z_1 - z_0, z_2 - z_1\}$$

defines the empty set of $\operatorname{Proj} R$.

3 Applications to codimension 4 Gorenstein

I have so far applied the variety $V \subset \mathbb{A}^{13}$ to construct various varieties. In the rest of this note, I use it to illustrate the general structure theory of Gorenstein codimension 4 ideals, supporting [R2].

3.1 The 9 equations of V as extended Pfaffians

Adjoining z_0 to the 4 × 4 Pfaffians of (4) is a Tom₃ unprojection; recall that this means that the 6 entries m_{ij} of the matrix with $i, j \neq 3$ are in unprojection ideal (x_0, y_0, z_1, z_2) (a codimension 4 complete intersection), so that its Pfaffians are also in (x_0, y_0, z_1, z_2) . Tom unprojections are usually related to $\mathbb{P}^2 \times \mathbb{P}^2$ (see [TJ], Section 9 for more details), and one can try to accommodate the unprojection equations as the 4 × 4 Pfaffians of a 6 × 6 skew matrix with extra symmetry. Since this case is Tom₃, if we put z_0 as the entry m_{36} then in Pfaffians it does not multiply any of the 4 entries in its own Row-and-Column 3, but it does multiply the other 6 entries in the unprojection ideal (x_0, y_0, z_1, z_2) .

This gives

$$\begin{pmatrix} r_1x_0 & y_2 & z_1 & r_0y_0 + sx_0 & r_0r_1x_2 + sy_2 \\ x_1 & y_0 & z_2 & r_1y_1 + sx_1 \\ x_2 & y_1 & z_0 \\ & & r_2x_0 & r_2y_2 \\ & & & & r_0r_2x_1 \end{pmatrix},$$
(9)

which contains all the equations except that $x_0z_0 - y_1y_2 + r_0x_1x_2$ only appears after cancelling r_1 or r_2 . This is a common phenomenon. The general philosophical point is that the unprojection structure is basic, whereas the matrix format is secondary – the equation $z_0x_0 = \cdots$ is one of the unprojection equations, but it is not completely captured by the matrix.

In this case, the factor r_2 in the bottom 456 triangle floats over to the top 123 triangle to give

$$\begin{pmatrix} r_1 r_2 x_0 & r_2 y_2 & z_1 & r_0 y_0 + s x_0 & r_0 r_1 x_2 + s y_2 \\ r_2 x_1 & y_0 & z_2 & r_1 y_1 + s x_1 \\ & x_2 & y_1 & z_0 \\ & & x_0 & y_2 \\ & & & r_0 x_1 \end{pmatrix}.$$
 (10)

The r_2 should not really be included in the matrix, but should be thought of as a crazy-Pfaffian multiplier coming between 123 and 456.

The equations admit other partial expressions as extended Pfaffians, 6×6

or even 7×7 or bigger. For example,

$$\begin{pmatrix} r_{1}r_{2}x_{0} & r_{2}y_{2} & z_{1} & r_{0}y_{0} & r_{0}r_{1}x_{2} & 0 \\ r_{2}x_{1} & y_{0} & z_{2} & r_{1}y_{1} + sx_{1} & r_{1}r_{2}x_{0} \\ & x_{2} & y_{1} & z_{0} & r_{2}y_{2} \\ & & x_{0} & y_{2} & z_{1} \\ & & & r_{0}x_{1} & r_{0}y_{0} + sx_{0} \\ & & & & r_{0}r_{1}x_{2} + sy_{2} \end{pmatrix}$$
(11)

and cancel r_0, r_2 from the Pfaffians as necessary. And so on,... It is not clear that any of this is useful.

3.2 Matrix of first syzygies

I order the relations L_i and choose their signs as in (8). The matrix M_1 of first syzygies in the approved (AB) form of [R2], 2.1 is the transpose of

•	x_1	y_0	z_2	$r_1 x_0$		•	•	•
$-x_1$		x_2	y_1	y_2				
$-y_{0}$	$-x_{2}$		$r_{2}x_{0}$	z_1				
$-z_{2}$	$-y_1$	$-r_2x_0$		$sx_0 + r_0y_0$				
$-r_1x_0$	$-y_2$	$-z_1$	$-sx_0 - r_0y_0$			•	•	•
		$r_2 x_1$		$-sx_1 - r_1y_1$		y_0	$-z_{2}$	
		x_2		y_2	$-y_0$		x_0	
		$-y_1$		$-r_{0}x_{1}$	z_2	$-x_0$		
								(12)
z_0	•		•		$-sx_2 - r_2y_2$	•	$-r_0 x_2$	y_1
	z_0	r_2y_2		$-r_0r_1x_2 - sy_2$	$r_1 r_2 x_0 + s y_0$	•	$r_0 y_0$	$-z_{2}$
		z_0			$-sx_1 - r_1y_1$	y_2	$-r_0 x_1$	
			z_0		$r_1 x_2$	•	$-y_2$	x_1
•		•	•	z_0	$-r_2x_1$	$-x_2$	y_1	
y_2			$-r_0x_2$		$-z_{1}$			x_0
r_1y_1		$-r_{2}y_{2}$	$r_0 r_2 x_1 + s y_1$	$r_0r_1x_2 + sy_2$		$-z_1$		z_2
$r_1 x_2$		•	$sx_2 + r_2y_2$			•	$-z_{1}$	y_0

The spinor sets made up by I = (4 out of the first 5 rows, with i omitted)and the complementary $J = I^c$ have spinors of the form $z_1 \operatorname{Pf}_i$.

```
// Magma: Matrix of first syzygies
RR<r0,r1,r2,s,x0,x1,x2, y0,y1,y2, z0,z1,z2>
 := PolynomialRing(Rationals(), [2,2,2,3,1,1,1,2,2,2,3,3,3]);
L := [
s*x0*x2 + r0*x2*y0 + r2*x0*y2 - y1*z1,
-r1*r2*x0^2 - s*x0*y0 - r0*y0^2 + z1*z2,
s*x0*x1 + r0*x1*y0 + r1*x0*y1 - y2*z2,
-r1*x0*x2 + y0*y2 - x1*z1,
r2*x0*x1 - y0*y1 + x2*z2,
r0*x1*x2 - y1*y2 + x0*z0,
-r0*r2*x1^2 - s*x1*y1 - r1*y1^2 + z0*z2,
-s*x1*x2 - r1*x2*y1 - r2*x1*y2 + y0*z0,
-r0*r1*x2^2 - s*x2*y2 - r2*y2^2 + z0*z1
];
Mat := Matrix(9,[0, x1, y0, z2, r1*x0, 0, 0, 0, 0,
-x1, 0, x2, y1, y2, 0, 0, 0, 0,
-y0, -x2, 0, r2*x0, z1, 0, 0, 0, 0,
-z2, -y1, -r2*x0, 0, s*x0+r0*y0, 0, 0, 0, 0,
-r1*x0, -y2, -z1, -s*x0-r0*y0, 0, 0, 0, 0, 0,
0, 0, r2*x1, 0, -s*x1-r1*y1, 0, y0, -z2, 0,
0, 0, x2, 0, y2, -y0, 0, x0, 0,
0, 0, -y1, 0, -r0*x1, z2, -x0, 0, 0,
z0, 0, 0, 0, 0, -s*x2-r2*y2, 0, -r0*x2, y1,
0, z0, r2*y2, 0, -r0*r1*x2-s*y2, r1*r2*x0+s*y0, 0, r0*y0, -z2,
0, 0, z0, 0, 0, -s*x1-r1*y1, y2, -r0*x1, 0,
0, 0, 0, z0, 0, r1*x2, 0, -y2, x1,
0, 0, 0, 0, z0, -r2*x1, -x2, y1, 0,
y2, 0, 0, -r0*x2, 0, -z1, 0, 0, x0,
r1*y1, 0, -r2*y2, r0*r2*x1+s*y1, r0*r1*x2+s*y2, 0, -z1, 0, z2,
r1*x2, 0, 0, s*x2+r2*y2, 0, 0, 0, -z1, y0]);
Matrix(9,L)*Transpose(Mat); // check Mat is made of syzygies
printf("-----\n");
J0 := ZeroMatrix(RR,16,16);
for i in [1..8] do J0[i,i+8] := 1; end for;
J := J0 + Transpose(J0);
```

```
Transpose(Mat)*J*Mat; // check M satisfies ^tM*J*M=0
printf("-----\n");
L;
printf("-----\n");
Mat;
for i in [1..5] do
    I := Remove([1..5],i); J := [j+8 : j in [1..8] | j notin I];
    SquareRoot((-1)^i*Determinant(Submatrix(Mat,I cat J,[1..8]))
        div L[9]);
end for;
```

References

- [GRDB] Gavin Brown and others, Graded Ring Database, grdb.lboro.ac.uk
- [R1] M. Reid, Surfaces with $p_g = 0$, $K^2 = 1$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **25** (1978) 75–92
- [Ki] M. Reid, Graded rings and birational geometry, in Proc. of algebraic geometry symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), 1–72, get from

www.warwick.ac.uk/~masda/3folds/Ki/Ki.pdf

- [R2] M. Reid, Gorenstein in codimension 4 the general structure theory, 29 pp., submitted to Algebraic Geometry in East Asia (Taipei Nov 2011), to appear in Advanced Studies in Pure Mathematics, 2013, get from www.warwick.ac.uk/~masda/codim4
- [TJ] Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry, Part I, Compositio <u>148</u> (2012) 1171– 1194, preprint arXiv:1009.4313, 33 pp.

Miles Reid,

Math Inst., Univ. of Warwick, Coventry CV4 7AL, England e-mail: miles@maths.warwick.ac.uk web: www.maths.warwick.ac.uk/~miles