
TUTORIAL ON TOM AND JERRY:
THE TWO SMOOTHINGS OF THE

ANTICANONICAL CONE OVER P(1, 2, 3)

GAVIN BROWN, MILES REID, AND JAN STEVENS

Abstract. This is a first introduction to unprojection methods,
and more specifically to Tom and Jerry unprojections. These two
harmless tricks deserve to be better known, since they answer many
practical questions about constructing codimension 4 Gorenstein
subschemes. In particular, we discuss here the two smoothing com-
ponents of the anticanonical cone over P(1, 2, 3).

Section 2 treats the “6 × 6 extrasymmetric format”, that describes
the Segre embedding of P2×P2 and some of its degenerations. One can
view this as just algebraic manipulations, or as a typical case of Tom
unprojection. In a similar vein, Section 3 treats the “Double Jerry con-
struction”, that describes the Segre embedding of P1×P1×P1 and some
of its degenerations. In Section 4 we put these two unprojection con-
structions together as a versal deformation of the anticanonical cone
over P(1, 2, 3) over a reducible base, with the obstructions also con-
trolled by the matrix format. We conclude with some general remarks,
mnemonics, slogans, and FAQ. We do not pretend any generality, or
any theoretical treatment of Gorenstein codimension 4 (compare [G4]).

1. The anticanonical cone over P(1, 2, 3)

Let X ⊂ A7 be the anticanonical cone over P(1, 2, 3)〈u,v,w〉; this is
also the quotient by the group action 1

6
(1, 2, 3) on A3

〈u,v,w〉. We set out
its 7 coordinate monomials as the Newton polygon

u6 u4v u2v2 v3

u3w uvw

w2

=

a b c x

d e

f

(1)

The somewhat idiosyncratic choice of coordinates on A7 relates to the
extrasymmetric format of Section 2.

One finds the equations defining X without difficulty. The semigroup
ideal of internal monomials of the Newton polygon is generated by the
single monomial e = uvw. There are tag relations between any three
consecutive boundary monomials, that involve e if we turn a corner:

ac− b2, xb− c2, cf − e2, xdf − e3, af − d2, bd− ae. (2)
1
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Note in particular the equations cf = e2 (that is, the tag at x is 0) and
xd = f−1e3 or xdf = e3 (the tag at f is −1).

These equations define the toric variety X in the complement of the
coordinate hyperplanes, where e is invertible. The remaining genera-
tors of IX come by coloning out e: for example, cf − e2 and xdf − e3
give

(
c(xdf − e3)− xd(cf − e2)

)
e−2 = xd− ce where e is invertible, so

that the ideal is generated by the 9 binomials:

ac− b2, xb− c2, cf − e2, af − d2, bd− ae
xd− ce, bf − de, dc− be, xa− bc.

(3)

Another way to view the equations is that they describe a singular
del Pezzo surface S of degree 6, embedded by plane cubics having flex
line u = 0 at (0 : 0 : 1):

u3 u2v uv2 v3

u2w uvw

uw2

(4)

It is an amusing exercise to recover from this the A1 singularity cf = e2

at Px and the A2 singularity xdf = e3 at Pf .

2. Extrasymmetric format

2.1. Extrasymmetric format. Tom unprojections frequently lead to
equations in extrasymmetric format. Consider for example the 6 × 6
skew matrix1

N =


z y a b d

x b c e
d e f

λz λy
λx

 =

(
B A
−A λB

)
(5)

A matrix of this shape is extrasymmetric (the term also covers slightly
more general cases, see [TJ], 9.1). It is made up of 3× 3 blocks, where
the top right block A is symmetric, the top left block B is skew, and
the bottom right block λB repeats the information contained in the
top left block, in this case with a scalar factor λ.

The 4× 4 Pfaffians of N generate the ideal of the Segre embedding

Segre(P2 × P2) ⊂ P8
〈a,b,c,d,e,f,x,y,z〉.

More precisely, the extrasymmetry means that the 15 upper-triangular
entries of N consist of 9 independent entries and 6 repeats. The same is
true of the 4×4 Pfaffians ofN , which give 9 relations and 6 repeats. The
resulting 9 equations define a variety in A9

〈x,y,z,a,b,c,d,e,f〉 that, for λ 6= 0,

is a linear transformation away from the affine cone over Segre(P2×P2).

1We omit the diagonal terms (which are zero) and the mji = −mij with i < j.
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The linear transformation involves taking
√
−λ; swapping the signs of

the square root interchanges the two copies of P2 × P2. We leave the
calculations as entertainment.

A more banal way to define Segre(P2 × P2) is
∧2M = 0 with M a

generic 3 × 3 matrix. If we write M = A +
√
−λB with A symmetric

and B skew, the ideal of 2 × 2 minors of M equals the ideal of 4 × 4
Pfaffians of the extrasymmetric matrix N =

(
B A
−A λB

)
.

More geometrically, this format displays P2 × P2 as a nongeneric
linear section of Grass(2, 6).

2.2. Specialise to v6(P(1, 2, 3)). Now we consider λ as a variable and
specialise by setting λ = 0, z = 0 and y = c; the Pfaffians equations
specialise to the same as (3). That is, the anticanonical cone X over
P(1, 2, 3) is the particular section λ = 0, z = 0 and y = c of a degen-
eration of the cone over P2 × P2. Wiggling the section gives one of the
smoothing components of the deformations of X.

2.3. The same viewed as a Tom unprojection. As we said, the
extrasymmetric matrix N in (5) has 6 repeated entries. The entries
that are not repeated are the three diagonal entries a, c, f of the top
right 3× 3 block A. They correspond to the three coordinate points of
P2×P2 such as Pa = (1 : 0 : 0; 1 : 0 : 0), etc. Here again λ is a nonzero
scalar.

Now project from Pa, and view the original equations as the result
of undoing this projection. A practical point of view on unprojection is
that it groups the 9 equations according to how they involve a. Because
of the format of (5), a only appears linearly in 4 equations

ac = · · · , ae = · · · , af = · · · , ax = · · · ,

and the remaining 5 equations not involving a are the Pfaffians of

N4̂ =


z y b d

x c e
e f

λx


(delete row and column 4 from N of (5)). What makes this a Tom1

matrix is that the 6 entries not in row and column 1 are in the codi-
mension 4 complete intersection ideal (x, c, e, f). The coincidences
m25 = m34 = e and m45 = λx = λm23 that bring this about are
remnants of the extrasymmetry of N .

Geometrically, these are the equations of the projection of P2 × P2

from Pa. It is a 4-fold section of Grass(2, 5) containing the 3-plane
P3
〈b,d,z,y〉 defined by the ideal (x, c, e, f).
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2.4. Finding the Tom format from v6(P(1, 2, 3)). We can start
from the other end, dividing the 9 equations (3) of v6(P(1, 2, 3)) into 4
that are linear in a and 5 not involving a. One gets af = d2, ae = bd,
ac = b2 and ax = bc together with the five Pfaffians of

0 c b d
x c e

e f
0

 . (6)

If we hope to describe the set of all 9 equations as Pfaffians of a special
6× 6 skew matrix, we must put a where it multiplies x, c, e, f and not
b, d, so put it as m16.

3. Double Jerry format

3.1. Double Jerry. A neat starting point [TJ, 9.2] is to view Double
Jerry as a theorem saying that a codimension 2 complete intersection
m1 = m2 = 0 that contains two different codimension 3 complete
intersections (x1, x2, x3) and (y1, y2, y3) is defined by two bilinear forms

m1(x1, x2, x3; y1, y2, y3) and m2(x1, x2, x3; y1, y2, y3). (7)

We can then introduce two parallel sets of unprojection equations

s · (x1, x2, x3) = · · · and t · (y1, y2, y3) = · · · , (8)

each taking us to codimension 3, together with a long equation st = · · · .
Each unprojection separately is given by Cramer’s rule, leading to a
5× 5 Pfaffian Jerry matrix, but the long equation is an intriguing and
surprisingly complicated function of m1,m2, xi, yi. A particular case is
worked out in Brown and Georgiadis [BG].

3.2. Our particular case. Rather than rework the general material
of [TJ, 9.2], consider only the case of the Newton polygon (1).

As before, a only appears linearly in 4 equations, so can be eliminated
or “projected out”, expressing the variety as an unprojection; as before,
note that a multiplies x, c, e, f :

af = d2, ae = bd, ac = b2 and ax = bc; (9)

the 5 equations not involving a are

xb = c2, xd = ce, fc = e2, bf = de and be = dc. (10)

These are the Pfaffians of the Jerry45 matrix
b d c 0

0 e c
f e

x

 . (11)

The matrix is a permutation of (6). What makes it a Jerry45 is that
the 7 entries in the 4th and 5th rows and columns are combinations of
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the regular sequence x, c, e, f . What makes it a double Jerry is that the
pivot m45 = x is one of the variables on the nose, rather than a linear
combination.

The matrix 
b d c− νf µf
g e c

f e
x

 , (12)

is a deformation respecting the Jerry45 requirements just described.
Here g is a new indeterminate of degree 1 and µ and ν scalars. Putting
back a as unprojection variable defines a family of del Pezzo 3-folds

Wµ,ν ⊂ P7
〈a,b,c,d,e,f,g,x〉. (13)

We recover v6(P(1, 2, 3)) on setting µ = ν = 0 and taking the hyper-
plane section g = 0.

For general µ, ν, the 3-fold Wµ,ν is P1 × P1 × P1 up to projective
equivalence. However, to make the coordinate change requires an S3

Galois field extension. This corresponds to permuting the 3 copies of
P1. At the same time, it reflects the Weyl group W (A2) = S3 symmetry
behind the deformation theory of the A2 singularity.

In the deformation (12), the tag equation xdf = e3 of (1) deforms to

x(df + eg) = e3 − νef 2 − µf 3 = Φ(e, f). (14)

The required field extension is the splitting field of Φ. When the dis-
criminant of Φ does not vanish, the 3-fold Wµ,ν is projectively equi-
valent to P1×P1×P1 over this field. The projective equivalence involves
the roots of Φ.

3.3. A2 symmetry. The little exercise in A2 symmetry is fun and not
quite obvious: in (12), the three equations involving x are

xb = c2 − µef − νcf
−xd = µf 2 − ce+ νef

xg = e2 − cf

We write s, t, u for the roots of Φ, so that s+ t+ u = 0,

ν = −(st+ ut+ su) = s2 + st+ t2, µ = ust = −st(s+ t),

and Φ(e, f) = (e− sf)(e− tf)(e− uf),

Now set y0, y1, y2 and z0, z1, z2 to be the following linear combinations
of (b,−d, g) and (c, f, e):

z0 = b− s d+ tu g,

z1 = b− t d+ su g,

z2 = b− u d+ st g,

and

y0 = c+ s e+ tu f,

y1 = c+ t e+ su f,

y2 = c+ u e+ st f.
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We find

xzi = yjyk,

ayi = zjzk,

xa = yizi,

for {i, j, k} = {0, 1, 2}.

These are the standard equations of P1 × P1 × P1 as the 2× 2 minors
of the 3-cube.

3.4. Interpretation as double Jerry. In (12), the two equations not
involving x are

bf − de+ g(c− νf) = 0 and be− dc+ µgf = 0 (15)

This is a codimension 2 complete intersection containing the codimen-
sion 3 c.i. f = e = c = 0. Adjoining x as the unprojection variable of
this ideal gives the 5 Pfaffians of (12). This works as follows. Write
the equations (15) as

(
g −d b

)c− νf µf
e c
f e

 = 0.

By Cramer’s rule the vector (g,−d, b) is proportional to the minors of
the 3×2-matrix. The correct proportionality constant follows from the
unperturbed equations (10). However, (15) also contains the codimen-
sion 3 c.i. b = d = g = 0, and can be written as

(
f e c

)b− νg µg
−d b
g −d

 = 0.

Note that this is also the result of interchanging (c, e, f) and (b,−d, g) in
(15), so the equations are invariant under the involution (x, b,−d, g)↔
(a, c, e, f).

Adjoining a as the unprojection variable gives the other half of the
double Jerry: 

c −e b− νg µg
f −d b

g −d
a

 .

It remains to find the long equation for ax. This can be done using the
other equations: start for example with gx = e2 − fc, multiply by a
and rewrite the right hand side until it is divisible by g. The result is

ax = (b− νg)(c− νf) + µge− µfd.
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4. Unprojection and deformations

4.1. Unprojection. The general theory of unprojection was initiated
by Kustin and Miller [KM] and developed in the present form by
Papadakis and Reid, see [Ki, P, PR].

Let P ∈ D ⊂ X be a singular point of a Gorenstein scheme, lying
on a Gorenstein codimension 1 subscheme D. Consider the adjunction
sequence

0→ ωX → Hom(ID, ωX)→ ωD → 0.

By [PR, Lemma 1.1], the OX-module Hom(ID, ωX) is generated by two
elements; we can take one of these as an injective map s : ID ↪→ ωX ∼=
OX that projects to a basis element of ωD ∼= OD. The unprojection
Y of D in X is the spectrum of the OX-algebra OX [S]/(Sfi − s(fi)),
where the fi generate the ideal ID ⊂ OX . The scheme Y is again
Gorenstein.

As X is Gorenstein, Hom(ID, ωX) ∼= Hom(ID,OX). We calculate
generators of Hom(ID,OX) in concrete cases by computer algebra,
cf. [BP]. This construction also applies in a relative situation, over
a base space T . The most general T is the base of a versal deformation
of the inclusion map i : D ↪→ X.

4.2. Our case. The first order infinitesimal deformations of i : D ↪→ X
are described as the Pfaffian perturbations of the equations contained in
the ideal (x, c, e, f). The trivial deformations are given by vector fields
Der(− logD) preserving D. For deformations of weight −1, this means
that we make the matrix as general as possible, with no coordinate
transformations of x, c, e and f allowed. The result is

z c+ y b d
x c e

e f
−g


We choose the minus sign to conform with the deformation (12).

For deformations of weight ≥ 0 a short computation in Singular
[DGPS] shows that the above deformations generate the module of
deformations: we can replace y and z with polynomials in f , and g with
a polynomial in x having deformation variables as coefficients. Since
our singularity is nonisolated some care is needed with the meaning of
infinite dimensional versal deformation. We restrict ourselves here to
deformations of nonpositive weight, that globalise to deformations of
the projective cone. Then the first order infinitesimal deformations are
given by 

z + µf c+ y − νf b d
x c e

e f
−g + λx

 (16)
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For higher order deformations, the equations are the Pfaffians of the
matrix (16), as the deformation is in particular a deformation of X.
The obstruction is that they must lie in the ideal (x, c, e, f). Hence
setting these variables to zero in (16) we find gy = gz = 0 as the
equations of the base space.

We compute Hom(ID,OX) using Singular [DGPS] to determine
the unprojection, obtaining the equations

ac− b(b− νg)− λ(z + µf)2 − µdg − λνc(c+ y − νf),

ae− (b− νg)d− λ(c+ y)(z + µf)− µg2 − λνxd+ λµxg,

af − d2 + bg − λ(c+ y)2 + λν(c+ y)f,

ax− (b− νg − λνx)(c+ y − νf) + d(z + µf)− µeg.

We find two components, with total spaces isomorphic up to a smooth
factor with the Tom and Jerry formats of Sections 2 and 3.4. We re-
place y by y + c in the Tom equations, to obtain the cone as section
λ = 0, z = 0 and y = 0. The coordinate transformations needed are
a 7→ a+λν(c+y), y 7→ y+νf and z 7→ z−µf for the Tom component
and a 7→ a + λµe, g 7→ g + λx for Jerry. Note that these coordinate
transformations mix the deformation and the space variables.

4.3. The versal deformation of the cone over v6(P(1, 2, 3)). Alt-
mann [A, Table 5.1] records the result of our computation of the infinite
dimensional versal deformation. What we have actually computed is
the part in nonpositive weight, giving the (embedded) versal deforma-
tion of the projective cone. After a simple coordinate transformation
and translation to our present coordinates, the formulas there give ex-
actly the same ideal as computed above in terms of unprojection.

4.4. The cone over an elliptic curve of degree 6. The versal defor-
mation of the cone over an elliptic normal curve of degree 6 is described
without equations by Mérindol [Me]. The base space is the product of
the cone over the Segre embedding of P1 × P2 with the germ of an
appropriate modular curve.

Deformations of negative weight can be described by Pinkham’s con-
struction of “sweeping out the cone”. More precisely, the total space
over a line in the base space is the cone over the anticanonical model
of an almost del Pezzo surface of degree 6, with the given elliptic curve
E as hyperplane section. Such a surface is obtained by blowing up
three points on the curve, embedded in the plane by a linear system of
degree 3. Mérindol’s construction starts with a family of such surfaces
over an Abelian variety A, which is the hypersurface in Pic3×E3 given
by 3H − (P1 + P2 + P3) = 6O. The Weyl group W = A1 × A2 acts on
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this: A2 permutes the three points, and A1 acts by

(H;P1, P2, P3) 7→
(2H − P1 − P2 − P3;H − P2 − P3;H − P1 − P3, H − P1 − P2).

Thus the base space of the versal deformation in negative weight is the
cone over A/W ∼= P1 × P2.

We find the elliptic curve as hyperplane section of the singular del
Pezzo surface v6(P(1, 2, 3)). In affine coordinates related to (4) we take
the curve w2 = v3+γv2+v, realising the cone as the hyperplane section
f−x−γc−b = 0. Thus the variable a does not appear in the equation.

For the deformations of negative weight, we perturb the matrix (6)
(with b = f − x − γc) with independent variables, subject to the re-
sulting equations lying in the ideal (x, c, e, f). This means that the
entries multiplied by m1,5 = d are not perturbed, and moreover, no
perturbation of x, c, e or f is absorbed by coordinate transformations.
We take 

z c+ y b+ u d
x c e+ q

e f + p
s

 . (17)

The Pfaffians of this matrix with x, c, e and f (and therefore also b)
equated to zero give the equations of the base space: the minors of(

z y u
q p s

)
.

As for the space of deformations of weight zero, a computation with
Singular shows that it has dimension two. One deformation is given
by the modulus γ, but there is another, corresponding to the choice of
point from which to project the curve.

The matrix (17) is neither a Tom nor a Jerry matrix. But it can
written in these forms after a small resolution of the base space. We
do this here for the Tom format. The cone over P1 × P2 is resolved by
P1 × A3. We introduce an inhomogenous coordinate λ on P1 and set
q = λz, s = λy and s = λu. Then we can make the matrix into a Tom1

by row and column operations. After the coordinate transformation

(c, d, e, f, x, u, y, z) 7→ (c− λx, d− γλz + λ2z, e,

f + λc+ γλx− 2λ2x, x, u+ b, y − c+ λx, z),

(so that b = f − x− γc+ λc− 2λ2x), the matrix takes the form
z y u d

x c e
e f

(λ+ γλ2 + λ3)x

 .
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5. General remarks and FAQ

5.1. Which is Tom, and which is Jerry? We offer three answers
as useful mnemonics. We do not assume any prior familiarity with the
Hanna–Barbera characters.

(i) Tom is fatter. The ancestral Tom is the projective 4-fold P2×P2,
whereas for Jerry it is the 3-fold P1 × P1 × P1.

(ii) The Tomi condition on a skew 5 × 5 matrix is that, deleting
the ith row and column, the remaining 6 entries mjk are in a
codimension 4 c.i. ideal. In simple terms, this means two coinci-
dences on the mjk. On the other hand, the Jerryjk condition is
that the 7 elements mij = −mji and mik = −mki in the jth and
kth rows and columns are in a codimension 4 c.i. ideal, which
means 3 conditions.

(iii) Weight-for-weight, Jerry is more singular. Any point P ∈ P1 ×
P1 × P1 ⊂ P7 lies on 3 lines, that the linear projection from P
contracts to nodes. In contrast, if we take the 3-fold hyperplane
section V of P2 × P2 to get the flag variety of P2, the linear
projection of V from P only has two nodes.

Trying to fit a Jerry unprojection into a 6× 6 skew matrix format is
invariably a waste of time.

5.2. What’s it all about? A hypersurface or complete intersection
is determined by the coefficients of its defining equations, so its de-
formations are unobstructed. The subtlety of the deformation theory
in these cases is nothing to do with obstructions, but how to pass to
the quotient by the appropriate equivalence relation, which involves
dividing by the groupoid of local diffeomorphisms.

The Buchsbaum–Eisenbud theorem [BE] puts codimension 3 Goren-
stein ideals in the same framework: the variety is given by a skew
(2k + 1)× (2k + 1) matrix (most commonly 5× 5), that encodes both
the defining equations and the syzygies, so that the entries of the ma-
trix can be freely deformed. In other words, the skew matrix is a given
mold, into which one can simply pour functions on the ambient space
in a liquid manner.

In contrast, one usually expects codimension 4 constructions to be
obstructed. A typical case is the cone over dP6, whose deformation
theory has the 2 components we have mentioned many times.

The point of Tom and Jerry is that, in most commonly occurring
cases, our variety admits a Gorenstein projection to codimension 3,
with the projected variety given by the Pfaffians of a 5×5 skew matrix;
that is, the projected variety is a regular pullback from Grass(2, 5) in
its Plücker embedding, marked with an unprojection divisor that cor-
responds to a linear subspace of Grass(2, 5). Every geometer must have
done the easy exercise of seeing that any linear subspace of Grass(2, 4)
(the Klein quadric) either consists of lines of P3 passing through a point
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P , or dually, of lines contained in a plane P2 ⊂ P3. The Tom and Jerry
formats answer the same question for Grass(2, 5); see [TJ, 2.1].

5.3. Do they do everything? Unfortunately, no. Tom and Jerry
provide two smooth components of the deformation theory, and for
deformation problems entirely contained within one component or the
other, they can be relied on to do everything. However, we know other
cases in codimension 4 that appear not to have any useable structure
of Kustin–Miller unprojection.

A general structure theorem for Gorenstein codimension 4 ideals is
described in [G4]. It is rather complicated, as it should account for
the singular total spaces of versal deformations, cf. the discussion of
the cone over an elliptic curve of degree 6 above. Deformations of its
hyperplane sections are even more complicated.
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