
Constructing algebraic varieties via

commutative algebra

Miles Reid (EAGER network)

Abstract Problems on the existence and moduli of

abstract varieties in the classification of varieties can

often be studied by embedding the variety X into

projective space, preferably in terms of an intrinsically

determined ample line bundle L such as the (anti-)

canonical class or its submultiples. A comparatively

modern twist on this old story is to study the graded

coordinate ring

R(X,L) =
⊕
n≥0

H0(X,L⊗n),

which in interesting cases is a Gorenstein ring; this

makes available theoretical and computations tools from

commutative algebra and computer algebra. The

varieties of interest are curves, surfaces, 3-folds, and

historical results of Enriques, Fano and others are

sometimes available to serve as a guide. This has been a

prominent area of work within European algebraic

geometry in recent decades, and the lecture will present

the current state of knowledge, together with some

recent examples.
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(Warwick) → link to independent group “Vector
bundles on algebraic curves”(VBAC)

(12) Switzerland, Christian Okonek (Zuerich)

(13) Program Management node, W. Decker
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EAGER objectives

(1) Classification of algebraic varieties

(2) Homological and categorical methods

(3) Moduli stacks of curves

(4) Moduli of vector bundles

(5) Abelian varieties and their moduli

(6) Hodge theory and algebraic cycles

(7) Toric methods and group actions

(8) Computer algebra

(9) Coding theory

(10) Computer Aided Geometric Design

Other Calabi–Yau manifolds and mirror symmetry.
Topology of algebraic surfaces and 4-manifolds. Moduli spaces.
Algebraic stacks and their Gromov–Witten invariants. Free
resolutions, homological algebra and derived categories.
Birational methods. Deformation theory. Analytic and
differential geometric methods. Syzygies and homological
methods, derived categories.

Today’s lecture only treats a small fraction of the first
topic, namely:

Classification of algebraic varieties via commutative
algebra methods.
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Classification of varieties

The classification of surfaces goes back to the 19th century.

1846 Cayley and Salmon: 27 lines on S3 ⊂ P3

1860s Riemann surfaces, Brill–Noether, RR theorem

1890–1910 Castelnuovo, Enriques and other: Birational
classification of surfaces by their plurigenera

1930s Enriques and students: Surfaces of general type

1930s Fano: 3-folds V2g−2 ⊂ Pg+1

1950s Kodaira: deformation theory, moduli, classification of
complex analytic surfaces

1980s Mori theory, minimal models of 3-folds. The conclusion
that classification is the division K < 0, K = 0, K > 0
plus fibrations, where K is the canonical class.

1980s Differentiable and symplectic 4-manifolds (Donaldson
and others)

1990s Calabi–Yau 3-folds, orbifolds, mirror symmetry.

EAGERists are involved in all these topics (and many more, of
course).

Any number of survey lectures could be made out of other
EAGER topics.
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Preliminary philosophical remarks

Surfaces In what follows the ultimate aim (not necessarily
expressed) is the study of regular surfaces of general type, for
example, the simply connected Godeaux surfaces (that is,
canonical surfaces S with pg = 0, K2

S = 1). This is a mature
subject, that involves most other areas of geometry. To study
S, it may be convenient to know a lot about curves C ⊂ S,
possibly passing through singular points of S; or it may be
convenient to express S as a hypersurface section of some
higher dimensional “key variety”, e.g., a Fano 3-fold or Fano
4-fold, possibly with orbifold singularities. Surprisingly, it
turns out to be advantageous in some problems not to worry
too much in advance what dimension of variety we are
studying: taking a hypersurface section is a known operation.

Commutative algebra The geometric constructions of
Enriques, Horikawa and others can often be interpreted in
algebraic terms as constructions of rings by generators and
relations. As samples:

(1) The hypersurface Xd ⊂ Pn defined by fd = 0 has
homogeneous coordinate ring the graded ring
C[x0, x1, . . . , xn]/(fd).

(2) The geometric idea of projection corresponds algebraically
to elimination of variables.

(3) “Key varieties” may have a homological or commutative
algebra treatment, such as determinantal form of the
equations.
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Definition of graded ring

A graded ring R =
⊕
n≥0Rn is a (commutative) ring with a

grading such that multiplication does Ri ×Rj → Ri+j.

Extra assumptions The following are often in force:

(1) R0 = k is a field (often k = C);

(2) The maximal ideal m =
⊕
n>0Rn is finitely generated.

=⇒ R = k[x0, . . . , xn]/IR,

where the generators xi ∈ Rai of m have wtxi = ai, and
IR is the homogeneous ideal of relations.

(3) R is an integral domain.

Example The standard textbooks define a projective variety
to be a closed subvariety X ⊂ Pn in “straight” projective
space Pn (all the generators of degree 1, so xi ∈ R1). Write

IX =
⊕
d≥0
{forms of degree d vanishing on X}.

Then IX is a homogeneous ideal and k[X] = k[x0, . . . , xn]/IX is
the coordinate ring of X. Here R is generated by its elements
of degree 1; we are usually interested in the more general case
of varieties in weighted projective space.

For details, see my website + algebraic geometry links +
surfaces + graded rings and homework.
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The Proj construction R 7→ ProjR

As described in [EGA2] or [Hartshorne, Chap. II] or my notes
(webloc. cit.), X = ProjR is defined as the quotient
(SpecR \ 0)/C∗ of the variety SpecR = V (I) ⊂ Cn+1 by the
action of the multiplicative group C∗ = Gm(k) induced by the
grading.

In more detail, if R = k[x0, . . . , xn]/I with wt xi = ai then
λ ∈ C∗ acts on R by multiplication by λn on Rn, that is,

λ:xi → λaixi.

It therefore acts on the affine variety

SpecR = V (I) ⊂ Cn+1.

Note the philosophy: grading = C∗ action.

The origin 0 ∈ Cn+1 is in the closure of every orbit (because
(0, 0, . . . , 0) = limλ→0(λ

a0x0, . . . , λ
anxn); this uses the fact that

the grading of R =
⊕
Rn is by N with n > 0, or wtxi = ai > 0.

Therefore we must exclude the unstable point 0 to be able to
take a sensible quotient.

For all f ∈ Rd homogeneous of degree d > 0, form the ring(
R

[
1

f

])0
=

{
g

f e

∣∣∣∣∣ wt g = de

}
⊂ FracR (1)

consisting of rational functions that are homogeneous of deg 0
with only f or its powers in the denominator. Then define

Xf = Spec

(
R

[
1

f

])0
, and X =

⋃
f∈Rd

Xf .
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In other words, on taking the quotient (SpecR \ 0)/C∗:

(1) The typical C∗ invariant open set is (f 6= 0) for f ∈ Rd.

(2) the ring (1) is the ring of all C∗-invariant regular
functions on this open.

Thus the quotient ProjR is the space of orbits of the C∗

action, with all C∗-invariant functions.

Remark X = ProjR is really a stack, and it is sometimes
convenient to treat it as an orbifold. It is a projective scheme
X,OX , but it has the extra structure of the sheaves OX(k) for
all k ∈ Z, defined by

Γ(Xf ,OX(k)) =

{
g

f e

∣∣∣∣∣ wt g = de+ k

}
⊂ FracR.

Then
⊕
k∈ZOX(k) is a sheaf of graded algebras.

For straight projective space (that is, wtxi = 1 for all xi),
OX(1) is an ample invertible sheaf, and

OX(k) = OX(1)⊗k.

But for wP we must take
⊕OX(k) as extra data. For example,

if all the ai have some common factor q | ai then Rn = 0 for all
n not divisible by q, and so OX(k) = 0. In this case we say
that X has nontrivial orbifold structure in codim 0.

Examples C2g+2 ⊂ P(1, 1, g + 1) defined by
y2 = f2g+2(x1, x2) is a hyperelliptic curve of genus g.
X10 ⊂ P(1, 1, 2, 5) defined by z2 = f10(x1, x2, y) is a famous
example of Enriques and Kodaira of a canonical surface with
pg = 2, K2 = 1.
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Hilbert series

It follows from my assumptions on R that Rn if a finite
dimensional vector space over R0 = C for each n. Set

Pn(R) = dimkRn and PR(t) =
∑
n≥0

Pnt
n.

The formal power series PR(t) is the Hilbert series of R. Under
our assumptions it is a rational function in t; thus

R = k[x0, . . . , xn]/IR with wt xi = ai

implies that
∏n
i=0(1− tai) · PR(t) is a polynomial in t, called the

Hilbert numerator; it contains information and hints as to the
homological algebra or commutative algebra properties of R.

Examples

(1) If R = k[x0, . . . , xn] is the weighted polynomial ring then

PR(t) =
1∏n

i=0(1− tai)
.

(2) If R = k[x0, . . . , xn]/(fd) is the ring of a weighted
hypersurface of degree d in P(a0, . . . , an) then

PR(t) =
1− td∏n

i=0(1− tai)
.

Likewise, a codim 2 complete intersection has Hilbert
numerator (1− td1)(1− td2).

See the homework sheet on webloc. cit. for more examples.
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Hilbert series from orbifold RR

From now on, X is a projective variety, and OX(k) = OX(kA)
with A an ample Q-divisor. So rA is an ample Cartier divisor
for some r > 0. Assume that

R = R(X,A) =
⊕
k≥0

H0(X,OX(kA)).

(This is an extra assumption on R, akin to projective
normality.)

Usually the terms of the Hilbert series

Pn(R) = h0(X,OX(nA))

are given by RR and vanishing for n� 0, plus initial
assumptions for small n. If A is Q-Cartier, the form of RR we
need is orbifold RR (also known as equivariant RR or the
Atiyah–Singer Lefschetz formula). See [YPG, Chap. III] for
details. A simple example gives the flavour.

Example C a curve, A = D+ a
rP with D an integral divisor,

r > 1 and a ∈ [1, . . . , r − 1] coprime to r. Then
OC(nA) = OC([nA]), where we round down the divisor nA to
the nearest integer (because a meromorphic function has poles
of integral order), so that RR takes the form

χ(C,OC(nA)) = χ(OC([nA])) = 1− g + n degA−
{
na

r

}
.

Here the fractional part
{
na
r

}
is the small change we lose on

rounding down nA to [nA].
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This introduces the orbifold correction term

− 1

1− tr
·
r−1∑
i=1

{
ia

r

}
ti (2)

into the Hilbert series. (The effect of multiplying by
1

1−tr = 1 + tr + t2r + · · · is just to repeat the rounding-down
errors periodically.)

Remark Set ab ≡ 1 mod r and let ε be a primitive rth root
of 1 (for example, ε = exp(2πi/r)). Then one checks that

1

1− εb
=

r−1∑
i=1

{
ia

r

}
εi

Thus the term (2) is “cyclotomic” in nature. Generalisations of
this idea give very quick and convenient ways of calculating the
orbifold contributions to RR. We are in fact close to the proof
of the Atiyah–Singer equivariant Lefschetz formula: the
denominator is the equivariant Todd class det(ε : TX,P ). See
[YPG, Chap. III].
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Example [Bauer, Catanese, Pignatelli] C a curve of genus
g = 3 with points P,Q ∈ C such that P + 3Q = KC . For
example, C = C4 ⊂ P2, with Q a flex and P the 4th point of
intersection of the flex line with C.

I choose the divisor A = 1
2P +Q. Then

h0(nA) =



1 n = 0;

1 n = 1;

2 n = 2 (P + 2Q = KC −Q is a g1
3);

3 n = 3 (3A = KC + 1
2P and g = 3);

−2 + 3n
2 if n ≥ 4 even;

−2 + 3n−1
2 if n ≥ 4 odd.

Therefore

PC,A(t) = 1 + t+ 2t2 + 3t3 + 4t4 + 5t5 + 7t6 + · · ·
(1− t2)PC,A(t) = 1 + t+ t2 + 2t3 + 2t4 + 2t5 + 3t6 +

∑
3tn

(1− t)(1− t2)PC,A(t) = 1 + t3 + t6

Thus

PC,A(t) =
1− t9

(1− t)(1− t2)(1− t3)
.

This gives C9 ⊂ P(1, 2, 3) as a possible model for C. One
checks that it works: C has a 1

2(1) orbifold singular points at
(0, 1, 0). The linear system |2A| = P + 2Q is the g1

3. R(C,A) is
a Gorenstein ring because 3A = KC + 1

2P is the orbifold
canonical class of C.
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Some classes of varieties to study

Regular surfaces of general type (Enriques) Assume that
KS is ample, and that q = h1(S,OS) = 0. (We say that S is a
regular surface; irregular surfaces with q > 0 are studied by
different methods.)

Pn(S) =



1 k = 0;

pg k = 1 (the definition of pg);

1 + pg +

n
2

K2 k ≥ 2 (by RR and vanishing).

An easy calculation gives

pS(t) =
1 + (pg − 3)t+ (K2 − 2pg + 4)t2 + (pg − 3)t3 + t4

(1− t)3 .

About a dozen important cases were treated geometrically by
Enriques, Kodaira, Horikawa and others. Algebraic treatment
by Ciliberto, Catanese, Reid and others.

Examples pg = 4, K2 = 6. The first possible case suggested
by the Hilbert series is S3,4 ⊂ P(1, 1, 1, 1, 2). This really works.
There are lots of degenerate cases studied by Horikawa, and
recently by [Bauer, Catanese and Pignatelli]; see below. The
situation for pg = 3, K2 = 2, 3, 4 or for pg = 2, K2 = 1, 2, 3 is
similar. Beyond these initial cases, the calculations get very
difficult.

Fano 3-folds Nonsingular 3-folds V with −KV ample,
usually anticanonically embedded as V2g−2 ⊂ Pg+1. These were
studied by Fano in the 1930s and Iskovskikh from 1970s, later
Mori and Mukai.
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Q-Fano 3-folds 3-folds V with terminal singularities and
−KV ample (Mori, Reid and others, 1990s). In studying
3-folds, terminal singularities are unavoidable; the most
important and interesting singularities are the cyclic quotient
singularities 1

r(1, a, r − a) with r ≥ 2 and a ∈ [1, r − 1] coprime
to r. Several hundred families of Q-Fano 3-folds are known, for
example the “famous 95” Fano hypersurfaces studied in [Corti,
Pukhlikov, Reid]. See [DB].

Q-K3s These are surfaces X with quotient singularities and
KX = OX , H1(OX) = 0 polarised by a Q-divisor. They appear
naturally as anticanonical surfaces X ∈ |−KV | on a Q-Fano
3-fold V .

Remark It can happen that a surface of general type S is
contained in a Q-Fano 3-fold V , for example:

(1) S ∈ |−2KV |, so adjunction gives KS = KV |S;

(2) or V is a Q-Fano 3-fold of index 2 with −KV = 2A and
S ∈ |3A|, so that KS = A|S.

A striking fact: the basket of singularities of V (giving the
fractional contributions to its Hilbert series) is then already
determined by S: in the two cases above

(1) V has basket (K2 − 4pg + 12)× 1
2(1, 1, 1). So for example,

if S has pg = 1, K2 = 1 then V has 9× 1
2(1, 1, 1) points,

whereas if S has pg = 1, K2 = 2 then V has 10× 1
2(1, 1, 1)

points. We really meet these cases below.

(2) V has basket (K2 − 3pg + 6)× 1
3(1, 2, 2).

This follows automatically from orbifold RR!
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Appendix: Cohen–Macaulay and Gorenstein

I omit the definitions and treatment by homological algebra,
which are standard and not very difficult. In practice, we want
R to be Cohen–Macaulay and (better) Gorenstein; otherwise
the ring and the variety are very difficult to construct.

Criterion Let R = R(X,A). Then

R is Cohen–Macaulay if and only if H i(X,OX(kA)) = 0 for
all i with 0 < i < dimX and all k, for i = 0 and k < 0,
and for i = dimX and k � 0.

R is Gorenstein if and only if it is Cohen–Macaulay and
KX = kA for some k ∈ Z.

Examples These conditions hold in most of our cases:

(1) X is a K3 surface with quotient singularities and A an
ample Weil divisor;

(2) X is a regular surface of general type and A = KX . Then
H1(KX) = 0 follows from regularity and Serre duality, and
H1(nKX) = 0 for n ≥ 2 from Kodaira vanishing;

(3) V is a Q-Fano 3-fold of Fano index f and −KV = fA;

(4) C is an orbifold curve (with a point 1
rP ), and we interpret

KC in the criterion as orbi-KC = KC + r−1
r P .

The cone over a projectively embedded Abelian surfaces is a
simple example of a geometrically interesting variety that is
not Cohen–Macaulay.
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Application 1

Horikawa’s study of surfaces with pg = 4, K2 = 6 divides them
into several cases, and solves many problems, but leaves the
existence of degenerations between cases II and IIIb as an open
question. [Bauer, Catanese, Pignatelli] have recently proved
that such a degeneration does occur.

II The case assumption is that |KX | is a free linear system
and defines a 3-to-1 morphism ϕKX

:X → Q ⊂ P3, where Q is
the quadric cone x1x3 = x2

2. In this case pulling back the pencil
of the quadric cone provides a pencil |A| on the canonical
model X with 2A = KX . In general X has an orbifold point of
type 1

2(1, 1) over the vertex of Q. Restricting A to a general
C ∈ |A| gives rise to the example treated above of a curve of
genus 3 and an orbifold divisor A = 1

2P +Q, so that
2A = P + 2Q is a g1

3.

It follows that X = X9 ⊂ P(1, 1, 2, 3). This has all the required
properties, and every surface in II is given by this construction.

IIIb The case assumption is that |KX | has a double point as
its base locus on the canonical model (or a −2-curve as base
component on the minimal model), and ϕK : X̃ → Q ⊂ P3 is a
2-to-1 morphism to the quadric cone. Then again KX = 2A
with A2 = 3/2. At the level of a general curve C ∈ |A|, the
curve C is a nonsingular hyperelliptic curve of genus 3, and the
restriction A|C is 3

2P , where P is a Weierstrass point. (Thus
2A = P + g1

2 can be viewed as a g1
3 with a fixed point.)
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[BCP2] (and also [Coughlan]) calculate R(C,A) and R(X,KX)
in case IIIb:

R

(
C,

1

2
P

)
= k[a, b, c]/(c2 − f7(a

4, b)) with wt a, b, c = 1, 4, 14,

giving C = C28 ⊂ P(1, 4, 14). Then R(C,A) = R(C, 3
2P ) is the

third Veronese embedding: it needs generators

x = a3, y = a2b, z = ab2, t = b3, u = ac, v = bc

with wt x, y, z, t, u, v = 1, 2, 3, 4, 5, 6. And relations

rank

 x y z u

y z t v

 ≤ 1 (3)

(meaning the 2× 2 minors = 0, which gives 6 equations); and 3
further equations derived from c2 = f7, of the form

u2 = [a2f ], uv = [abf ], v2 = [b2f ],

where [a2f ] means that we write out the terms
a30, a26b, . . . , a2b7 of a2f in terms of x, y, z, t. If we group
together the terms in f as

f = a28 + a24b+ · · ·+ a4b6 + b7 = aA+ b4B

with
A = A9, B = B4 ∈ k[x, y, z, t]

then the 3 final equations become

u2 = xA+ z2B, uv = yA+ ztB, v2 = zA+ t2B. (4)

This is the “rolling factors” format of [Dicks]: you go from one
relation to the next by replacing an entry in the top row of the
matrix of (3) by an entry in the bottom.
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(3–4) are 9 equations with 16 syzygies defining a codim 4
Gorenstein ring. They can be written as the 4× 4 Pfaffians of
the following extrasymmetric matrix:

M =



0 z x y u

t y z v

u v A

0 Bz

−sym Bt


of weights M =



0 3 1 2 5
4 2 3 6

5 6 9
4 7

8


The matrix M is skew, with the following extra symmetry: the
top right 3× 3 block is symmetric, and the bottom right 3× 3
block is B times the top left. Thus instead of 15 independent
entries it only has 9, and likewise, only 9 independent 4× 4
Pfaffians. The format relates closely to the Segre embedding of
P2 ×P2 as a (nongeneric) linear section of Grass(2, 6).

This format is flexible: it carries its own syzygies with it, so
that we can vary the entries as we like and obtain a flat
deformation. Replacing by

M =



λ z x y u

t y z v

u v A

Bλ Bz

−sym Bt


with a constant λ 6= 0 deforms the hyperelliptic curve to a
nonhyperelliptic trigonal curve. Similarly (but with some more
work), one can prove that the surfaces in case IIIb have small
deformations in II.
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Appendix: All about Pfaffians

Let M0 = {mij} be a 2k × 2k skew matrix. Its Pfaffian is

Pf M0 =
∑′

sign(σ)
k∏
i=1

mσ(2i−1)σ(2i);

(sum over the symmetric group S2k), and
∑′ means that we

only take 1 occurrence of each repeated factor. Skewsymmetry
causes each term to occur 2k · k! times, so the Pfaffian consists
of

2k!

2k · k!
= 1 · 3 · · · (2k − 1)

terms. For example, a 4× 4 Pfaffian is of the form

Pf12.34 = m12m34 −m13m24 +m14m23

which is familiar as the Plücker equations of Grass(2, n).

In fact detM0 = (Pf M0)
2. The Pfaffian is a skew determinant,

and every aspect of the theory of determinants extends to
Pfaffians. For example, it follows from the definition that a
Pfaffian can be expanded along any row exactly like a
determinant: thus a 6× 6 Pfaffian is

Pf12.34.56 = m12 · Pf34.56−m13 · Pf24.56 + · · · .
If M is a (2k + 1)× (2k + 1) skew matrix, write

Pfi = (−1)i Pf Mi,

where Mi is the skew 2k × 2k matrix obtained by deleting the
ith row and column from M . Then the adjoint matrix of M
(matrix of 2k × 2k cofactors) is the matrix of rank 1 (or 0)

adjM = Pf ·t Pf, where Pf = (Pf1, . . . ,Pf2k+1)

Since detM = 0 we get Pf ·M = 0, and if M has rank 2k then
Pf generates kerM (skew Cramer’s rule).
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Application 2

Surfaces with pg = 1, K2 = 2 were studied in [Catanese and
Debarre], following Enriques; an alternative construction as a
section of a higher dimensional variety was given by Jan
Stevens in 1995 (but as far as I know not written down).

I start from the graded ring over the canonical curve C ∈ |KS|:
a reasonably general 4× 4 symmetric matrix M of linear forms
on P2

y1,y2,y3
defines an invertible sheaf OC(A) on the plane

quartic C = C4 : (detM = 0) ⊂ P2, with the resolution

OC(A)← 4OP2(−1)
M←− 4OP2(−2)← 0, (5)

and satisfying OC(2A) = KC (in other words, A is an
ineffective theta characteristic on C). The corresponding
graded ring

R(C,A) = k[y1, y2, y3, z1, z2, z3, z4]/IC

is generated by y1, y2, y3 ∈ H0(OC(2A)) and
z1, . . . , z4 ∈ H0(OC(3A)) = OC(A)(1) with relations
(z1, . . . , z4)M = 0 from (5) and zizj = Mij (the ijth maximal
minor of M . These equations define a codim 5 embedding
C ⊂ P(23, 34) with Hilbert numerator

1− 4t5 − 10t6 + 15t8 + 20t9 − 20t11 − · · ·

The same construction starting from a 4× 4 symmetric matrix
M over P3 leads to a quartic K3 surface X4 ⊂ P3 carrying an
ineffective Weil divisor AX with a resolution similar to (5), and
R(X,A) embeds X into P(24, 34). However, now X has 10
nodes at points where rankM = 2. These are 1

2(1, 1) orbifold
points at which OX(AX) is the odd eigensheaf.

20



The problem is to deform the graded ring R(C,A) or
R(X,AX) with new generators of degree 1. First project X
from a chosen node to X ′6,6 ⊂ P(2, 2, 2, 3, 3); the exceptional
curve of this projection is P1 = P(1, 1) embedded into
P(2, 2, 2, 3, 3). Since P(2, 2, 2, 3, 3) has no forms of degree 1,
this embedding is not projectively normal ; in coordinates it is

(v, w) 7→ (v2, vw, w2, v3 + αv2w, βvw2 + w3)

with 1 + αβ 6= 0.

The following result is joint work with Grzegorz Kapustka and
Michal Kapustka (who held an EAGER visiting studentship at
Warwick in spring 2004).

Claim General forms of degree 1, 2, 2, 2, 3, 3 define an
embedding P2 ∼= Π ⊂ P(1, 2, 2, 2, 3, 3) with image Π contained
in 3 sextics. The complete intersection of two general sextics
through Π is a Q-Fano 3-fold V ′6,6 with 9× 1

2(1, 1, 1) orbifold
points on P2

y1,y2,y3
, 24 ordinary nodes on Π, and nonsingular

otherwise.

The 24 nodes of V ′6,6 on Π are resolved by the (small) blowup
V ′′ → V ′6,6 of Π, and the birational image E ⊂ V ′′ of Π has
E ∼= P2, OE(−E) ∼= OP2(2); it contracts to a tenth orbifold
point 1

2(1, 1, 1) on a Fano V ⊂ P(1, 24, 34).

The proof is a calculation in computer algebra. According to
results of Jan Stevens, V actually extends to a Fano 6-fold
W ⊂ P(14, 24, 34) of Fano index 4 having 10 isolated orbifold
points of type 1

2(1, . . . , 1). (It can be obtained by an immersion
P5 → P(14, 23, 32) contained in two sextics, but the
computation is quite bulky.)
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