
Problems on pencils of small genus

Miles Reid

1 Introduction

Let f : X → B be a fibre space of curves over a base curve B; write F =
f−1(P ) for a fibre of f , and set g = genusF ≥ 2 and b = genusB. For
genus 2 pencils, the geometric methods of Horikawa and Xiao Gang are
very powerful and practical, and my aim is to try to generalise these to
genus 3, 4, 5,. . .

My problems here are concerned with the study of the relative canon-
ical algebra R(X/B) = R(f) of f , and how to use it to get geographical
information on X. First the definitions: write KX/B = KX −f∗KB, and set

f∗(K⊗nX/B) = Rn for n ≥ 0.

Then Rn is a locally free sheaf of OB-modules of rank

dimRn = h0(F, nKF ) =


1 if n = 0;
g if n = 1;
3g − 3 if n = 2;
(2n− 1)(g − 1) if n ≥ 2.

This is trivial using base change if n ≥ 2. For n = 1, by base change,
you need to prove that h0(OF ) = 1 for every fibre F ; this is a kind of
vanishing result which needs char k = 0. It follows by an argument relating
the coherent cohomology group H0(OF ) at a multiple fibre to the topological
monodromy (see e.g. [Xiao], pp.1–3]).

The relative canonical algebra is of course

R(X/B) = R(f,KX/B) =
⊕
n≥0

Rn,

with multiplication induced by the tensor product K⊗aX/B⊗K
⊗b
X/B → K⊗a+b

X/B .
It’s a finitely generated graded OB-algebra, usually generated in degrees ≤ 3
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and related in degrees ≤ 6 (the “1–2–3 conjecture”, soon to be a theorem,
I hope). By base change, its stalk at P ∈ B is an OB,P -algebra whose
reduction modulo mP is the k-algebra

R(F ) = R(F,KF ) =
⊕
n≥0

H0(F, nKF ),

where F = f−1P is the scheme-theoretic fibre over P and KF = ωF =
(KX/B)|F . This means that to understand R(X/B) locally around P , it’s
enough to write down R(F ) and then do a flat deformation; e.g., to prove
the 1–2–3 conjecture it’s enough to prove the corresponding statement for
R(F ). For genus 3 fibrations, this (and much more besides) is proved in
Mendes Lopes [ML].

The algebra R(X/B) can be defined in terms of a minimal nonsingular
model, but I usually assume that X is a relative canonical model, that is,
at worst Du Val singularities and KX relatively ample. Then, as usual,
X = ProjBR(X/B).

When discussing local properties of fibres, it’s important to distinguish
whether the property depends on the singular fibre alone, or depends on a
(complex) neighbourhood of the fibre (the latter is more usual); this is like
stalk FP versus fibre FP /(mP · FP ) of a sheaf. I will say “fibre germ” to
mean “tubular neighbourhood of fibre” or “germ of fibration” f : X → B
around P ∈ B, but I will sometimes be sloppy and just say “fibre”.

I write Mg for the moduli space of stable curves of genus g, the usual
compactification of the moduli space of nonsingular curves. Mg is a coarse
moduli space, so that a fibration X → B with general fibre a nonsingular
curve of genus g corresponds to a rational map B 99KMg, which extends to
a morphism B →Mg, since B is a nonsingular curve and Mg a projective
variety. This morphism is called the modular invariant of X → B; the
fact that it a priori only a rational map has some noteworthy consequences
when the germ is deformed (see §3, x.y). Recall thatMg has a codimension
1 boundary component ∆a = {E1 +E2} for each a ≤ g/2, corresponding to
the degeneration C 7→ E1 + E2 of C into two curves of genus a and g − a
meeting transversally in one point.

2 Genus 2

Horikawa’s method consists of studying the rank 2 vector bundle R1 =
f∗KX/B and the relative 1-canonical map ϕKX/B : X → PB(R1); on the
general fibre of f , this is the canonical double cover F → P

1 of a genus 2
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curve. Horikawa [H] shows how to define an invariant H(P ) = H(X/B,P )
of a neighbourhood of a singular fibre F = f−1P such that

K2
X = 2χ(OX)− 6χ(OB) +

∑
P∈B

H(P ). (∗)

e.g., if B = P
1 and every fibre is 2-connected (and q = 0) then K2 = 2pg−4.

I call H(P ) the Horikawa number of a genus 2 fibre germ. I know of
several different ways of defining it:

(i) Horikawa’s definition is in terms of his analysis of the 1-canonical
model:

Ik 7→ 2k − 1;
IIk 7→ 2k;

IIIk 7→ 2k − 1;
IVk 7→ 2k;

V 7→ 1.

(ii) The degree of the base locus of the relative 1-canonical system. If
X is the relative canonical model, the base locus of f∗KX/B is the
subscheme Z of X defined by f∗f∗OX(KX/B) = IZ · OX(KX/B); if
you prefer to work with the relative minimal model, there is a similar
expression in terms of minus the selfintersection of the fixed part plus
the degree of the base locus of the moving part.

(iii) The length of the cokernel of S2R1 ↪→ R2.

(iv) (Xiao Gang) The “virtual number of fibres of type E1 + E2” (with
E1, E2 elliptic curves meeting transversally in 1 point). As it stand,
(iv) is only a dynamic definition: it’s known (Horikawa, Xiao Gang,
Mendes Lopes) that a tubular neighbourhood of a bad fibre has a small
deformation Xu → disc so that for u 6= 0 every fibre of Xu is either
nonsingular or has a single node; then count the number of reducible
fibres in the disc.

Problem 2.1 It would be interesting to make this definition static, as the
intersection number of the modular invariant B →M2 with the boundary
component ∆1 = {E1 + E2} of M2; although the universal curve of genus
2 over M2 is not defined, the corresponding relative canonical algebra may
well be defined?
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It’s easy to pass from the concrete definition (i) to the more abstract
definitions (ii), (iii) or (iv), or to pass from (ii) or (iii) to the global result
(∗). For example |KX+aF | for a� 0 has base locus exactly Z, and ϕKX+aF

is a 2-to-1 map to a normally embedded scroll over B. The proof that my
favourite definition (iii) implies (∗) is an interesting calculation:

Lemma 2.2

K2
X = 2χ(OX)− 6χ(OB) + length coker{S2R1 ↪→ R2}

Proof The fact that S2R1 → R2 is an inclusion comes at once from the
fact that on the general fibre ϕK maps F onto P1; the same argument
shows SnR1 ↪→ Rn for all n. Hence the length of the cokernel equals
χ(B,R2)− χ(B,S2R1).

I use RR on X and the Leray spectral sequence to calculate χ(B,R1) and
χ(B,R2): first forR1 = f∗OX(KX−f∗KB), taking account of Grothendieck
duality R1f∗KX/B = OB, I get

χ(OX(KX − f∗KB)) = χ(OX) +
1
2

(KX − f∗KB)(−f∗KB)

= χ(OX) + 2χ(OB)
= χ(R1)− χ(OB).

Similarly

χ(R2) = χ(OX(2KX − 2KB)) = χ(OX) +K2
X + 12χ(OB).

Now from χ(R1) = χ(OX) + 3χ(OB) I can calculate χ(S2R1) by RR on B:

χ(R1) = 2χ(OB) + degR1 gives degR1 = χ(OX) + χ(OB);

and
χ(S2R1) = 3χ(OB) + 3 degR1 = 3χ(OX) + 6χ(OB).

The lemma follows by subtraction. QED

For practical purposes, Horikawa’s methods are entirely sufficient for
working with genus 2 fibration. However, the structure of the relative canoni-
cal algebra can also be determined very easily. This following result is proved
in [ML], Theorem II.3.1 (or the reader can find his or her own proof as a
reasonable exercise).
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Theorem 2.3 Near a 2-connected fibre,

R(X/B) = OB[x1, x2, z]/(z2 = h6(x1, x2));

near a 2-disconnected fibre,

R(X/B) = OB[x1, x2, y, z]/(q, z2 = h6(x1, x2, y)),

where q is a relation in degree 2, which can be normalised to q = (ay−x1x2)
or q = (ay − x2

1) for some a ∈ mP ⊂ OB.
In these expressions, x1, x2 and y generate the invariant subalgebra R+

of the hyperelliptic involution, and the −1-eigensheaf is given by R− = R+·z.

This result can be described as follows: the multiplication map

µ : S2R1 → R2

is generically an isomorphism, but fails to be surjective at the finitely many
2-disconnected fibres; this failure is measured by the Horikawa number
H(P ), a local invariant of the fibre germ over P . The invariant subalgebra
R+ is determined by R1, R2 and µ. The corresponding projective scheme
Q = ProjBR+ → B, the quotient of X → B by the hyperelliptic involution,
is a conic bundle over B, in the sense that every fibre is isomorphic to a plane
conic: where µ is an isomorphism it is ∼= P

1 = P(R1), or more precisely the
second Veronese embedding of P(R1); where µ is not surjective ProjBR+ is
locally the relative conic in P(1, 1, 2) given by q = 0. The global quadratic
equation q can be deduced from µ : S2R1 → R2; in local terms R2 is the
OB-module generated by u0 = x2

1, u1 = x1x2, u2 = x2
2 and y with the linear

relation q = (ay − x1x2) or (ay − x2
1), and the quadratic relation on R2 is

u0u2 = u2
1.

The fact that the canonical algebra is a relative complete intersection
is very convenient. Thus the set of all fibre germs is just the set of pairs
(q, h) of relations over OB in degrees 2 and 6 satisfying the open condition
that the complete intersection V (q, h) ⊂ PB(1, 1, 2) has at worst Du Val
singularities. Horikawa’s analysis of the 1-canonical model can be obtained
from this, by eliminating y from the relations definingR(X/B) using q. Xiao
Gang’s Morsification conjecture follow immediately, since the deformation
theory of complete intersections is unobstructed: just modify q, h so that
q = (b(t)y−x1x2), where t is a local parameter on B, the function b(t) ∈ OB
has simple roots, and the curve h6(x1, x2, y) = 0 on the conic bundle q = 0
is nonsingular and doesn’t pass through (0, 0, 1) over the zeros of b(t).
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Note that cokerS2R1 → R2 is an OB,P -module, not necessarily killed
by mP . This means that H(X/B,P ) is not determined by the fibre F
of the relative canonical model over P . For example, all of Horikawa’s
models Ik, IIk have fibres F of the same nature – namely, two irreducible
curves of arithmetic genus 1 meeting transversally at a point Q. In this
case cokerS2R1 → R2 is a module of the form OB,P /tH , where t is a
local parameter and H = H(X/B,P ). In other words, H = H(X/B,P ) is
determined not just by the base locus of |KF |, but by how many infinitesimal
steps this base locus sticks out of the fibre over P . In fact in this case
H = H(X/B,P ) is determined by the number of −2-curves in the fibre of
the relative minimal model (Horikawa’s definition), or by the type of the
singularity Q ∈ X of the relative canonical model; despite the fact that
the scheme-theoretic base locus of |KX/B| is not contained in the fibre in
general.

3 Genus 3 pencils

3.1 Invariants of fibrations

Let f : X → B be a genus g fibration. At least while the canonical algebra
of the general fibre has a concrete description (e.g., complete intersection),
it makes sense to try to define invariants of the fibration in terms of this
description and the way it degenerates.

Note that even a smooth fibre may be degenerate in terms of the way
the canonical algebra is generated: e.g., a smooth hyperelliptic or trigonal
fibre will mess up the generators and relations. History: The importance of
hyperelliptic fibres for genus 3 pencils became clear in work of K. Konno and
T. Ashikaga, e.g. [Ko1], and modifies a conjectural picture due to Xiao Gang
and myself. I believe that Horikawa has a substantial body of knowledge
on genus 3 pencils (dating from around 1976–80), covering probably most
of what I know or guess, and I hope that his results will eventually be
published.

Things get very complicated as the relative genus g gets bigger, and it
seems a tall order to analyse all the degenerate fibre germs at one go, so
Xiao Gang proposes to break the study into two steps:

Step 1 Work first under the assumption that the singular fibre germs are
atomic, that is, “suffer only one accident” in terms of their singularities and
special linear systems. This means the fibre F has either a single node,
or is a multiple of a nonsingular fibre, or has some other combination of
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singularities forced by the monodromy, or has a linear system special-in-
the-sense-of-moduli (but not a combination of these accidents). The idea is
that atomic fibre germs should be stable in the sense of singularity theory: a
small deformation of the germ is of the same nature. See below for examples.

Step 2 Try to understand more general degenerations as a sum of atoms.
e.g., in many cases a bad fibre germ f : X → disc will have a Morsification,
a small deformation Xu → disc so that for u 6= 0 every fibre of Xu is atomic
(the Morsification conjecture). It may make sense to handle a complicated
singularity as a sum of atoms even in cases where there may not exist a
deformation between them, as in some other phenomenons of singularity
theory, so that proving the Morsification conjecture is not necessarily a
prerequisite for studying this problem, although it would certainly help a
lot.

3.2 Genus 3, nonhyperelliptic

In this case the relative canonical algebra is generically a quartic hypersur-
face, that it, R ∼= OB[x1, x2, x3]/(h4). The 1-canonical model is a divisor X
in the scroll PB(R1), the P2-bundle corresponding to the rank 3 locally free
sheaf R1, with each fibre a plane curve of degree 4.

Since there are no quadratic relations at the generic fibre, S2R1 ↪→ R2

is an injection, and generically an isomorphism. I can therefore define the
Horikawa number H(X/B,P ) of a fibre germ to be

H(X/B,P ) = length coker{S2R1 ↪→ R2}P .

The same calculation as in Lemma 2.2 proves that for f : X → B a non-
hyperelliptic genus 3 fibration,

K2
X = 3χ(OX)− 10χ(OB) +

∑
P∈B

H(X/B,P ). (∗)

e.g., if B = P
1 and every fibre is 2-connected and nonhyperelliptic (and

q = 0) then K2 = 3pg − 7. The definition is of course rather cheap, since
it may not be possible to calculate H(X/B,P ) except in very simple cases.
However, it fits into a general pattern: important invariants in singularity
theory can often be defined as the length of some finite module, e.g., the
Milnor number. Note also that since K2 is a deformation invariant of a
surface,

∑
H(X/B,P ′) (summed over a small disc in the base) must be a

deformation invariant of a fibre germ, so that H(X/B,P ) can be calculated
by dynamic methods if a Morsification is available.
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3.3 Genus 3 atoms

If my calculations are correct, there are exactly 4 atomic fibre germs in
genus 3:

(0) F is an irreducible curve with a single node, and is nonhyperelliptic;

(1) F is a nonsingular hyperelliptic curve;

(2) F = E + C where E and C are irreducible curves of respective genus
1 and 2 meeting transversally in a point Q;

(3) F = 2C where C is a nonsingular genus 2 curve, and OC(C) is a
nonzero 2-torsion class.

In case (0), S2R1 → R2 is surjective so H(X/B,P ) = 0. Although this
case does not contribute to K2

X in (∗), it contributes −1 to the Euler number
of the minimal model, or to c2(X).

3.4

In case (1), the canonical ring of the fibre R(F ) is a double cover of a conic
q(x1, x2, x3) = 0, that is R(F ) = k[x1, x2, x3, y]/(q, y2 = h4(xi, y)). In order
for the fibre to be atomic, I require that the relation in degree 2 in R1

is q + a(t)y, where a(t) ∈ mP has a simple zero at P ∈ B, or in other
words, that the 1-canonical image X ⊂ P(R1) has q as an ordinary double
curve (not a curve of tacnodes or worse). This correspond to the modular
invariant having contact of order 2 with the hyperelliptic divisor H3 ⊂M3;
the moduli spaceM3 should be considered as a Z/2-orbifold aroundH3, and
the modular invariant of every fibration X → B with a smooth hyperelliptic
curve as fibre has even order of contact with H3. The atomic assumption is
that ty ∈ S2R1, so that R(X/B) requires only 1 generator y in degree 2, so
that this atomic fibre has H(X/B,P ) = 1.

3.5

In case (2), the canonical ring for the fibre F is covered by the case of “1
elliptic tail” in Mendes Lopes’ analysis [ML], Theorem III.4.1. Incidentally,
the ring needs 6 generators, so has codimension 4, and has 9 relations yoked
by 16 syzygies; it can be written in a semideterminantal “format”, part
of a pattern with Gorenstein rings in codimension 4 that is familiar from
many other examples. In the present case, the ring can be obtained fairly
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simply by an obvious elimination from the Cartesian product graded algebra
R(E,OE(P )) × R(C,OC(KC + P )). From Mendes Lopes’ results (or by
direct calculation) one sees that it needs 2 generators in degree 2, so that
H(X/B,P ) ≥ 2. By analogy with Horikawa’s family Ik, IIk, I believe that
the fibre is atomic if and only if Q = E∩C ∈ X is a nonsingular point of the
relative canonical model, or if and only if the modular invariant B → M3

intersects the boundary component ∆1 = {E1 + E2} transversally, and in
these cases H(X/B,P ) = 2.

Although from the point of view of the modular invariant this fibre
appears very naturally, its 1-canonical model X ⊂ P(R1) seems at first
sight to be too horribly degenerate to be “atomic”. The relative canonical
map blows up the base point Q to a −1-curve `, then contracts E to an
elliptic Gorenstein singularity of degree 2 (i.e., like x2 + y4 + z4), and maps
C as a double cover of P1. Thus the fibre of the 1-canonical image X is a
double line pair, of which the first line is an ordinary double locus of X, the
second is a locus of ordinary tangency of X to the fibre P2, and X has an
elliptic Gorenstein singularity of degree 2 at one point of the second line. It’s
not really the fibre that’s pathological in this case, nor its relative canonical
algebra, but rather the process of eliminating the generators of R(X/B)
in degree ≥ 2, corresponding to projecting to the 1-canonical model. This
explains in part my preference for the abstract projective model given by
the relative canonical algebra, rather than more concrete models. Another
reason will appear shortly.

3.6

In case (3), the relative canonical algebra is covered by the case of double
fibre written down in [ML], Theorem III.5.1. In the present case, her result
can be derived very simply as follows. Suppose that X → B is a genus 3
fibrations having a double fibre F = 2C, with C be a nonsingular curve of
genus 2. Let B̃ → B be the double cover branched at P , corresponding
to τ =

√
t where t is a local parameter on B, and X̃ → B̃ the normalised

pullback. The fibre C̃ is a hyperelliptic curve of genus 3 having a free
involution ι, so it’s a double cover of a plane conic, with 8 branch points
invariant under an involution. From this it’s not hard to write down the
canonical ring R(C̃,K

C̃
) together with the action of ι:

R(C̃,K
C̃

) = k[ξ1, ξ2, ξ3, η]/(ξ2ξ3 = ξ2
1 , η

2 = h4),

with ξ1 invariant, and ξ2, ξ3, η in the − eigenspace of ι; here h4(ξ1, ξ2, ξ3) is
the invariant polynomial of degree 4 which intersects the conic ξ2ξ3 = ξ2

1 in
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the 8 branch points. Now the relative canonical algebra of X̃ → B̃ is clearly

R(X̃/B̃) = O
B̃

[ξ1, ξ2, ξ3, η]/(ξ2ξ3 = ξ2
1 + τq′2, η

2 = h4 + τh′4).

where q′2 and h′4 are polynomials of the indicated degrees in the −1 eigen-
space of ι. Now R(X/B) is the ring of invariants of the Z/2-action; it’s
generated by the invariant coordinate ξ1 and the quadratic monomials in
the − eigencoordinates τ , ξ2, ξ3 and η, that is:

in degree 1: x1 = ξ1, x2 = τξ2, x3 = τξ3;

in degree 2: y1 = τη, y2 = ξ2
2 , y3 = ξ2

3 ;
in degree 3: z1 = ξ2η, z2 = ξ3η;

here τ2 = t ∈ OB, and the two relations

ξ2ξ3 = ξ2
1 + τq′2 = Q and η2 = h4(ξ1, ξ2, ξ3) + τh′4 = H

(where Q and H are expressible as polynomials in x1, . . . , y3) save me the
effort of writing down the two monomials ξ2ξ3 and η2 as new generators.
By construction of the ring of invariants, the relations in R(X/B) can be
expressed as rankM ≤ 1, where M is the following 4× 4 symmetric matrix:

t x2 x3 y1

x2 y2 Q z1

x3 Q y3 z2

y1 z1 z2 H

 with entries of degrees

0 1 1 2
1 2 2 3
1 2 2 3
2 3 3 4

In particular, 3 generators y1, y2, y3 are required in degree 2, so that
H(X/B,P ) ≥ 3. It’s fairly clear that this fibre is atomic if and only if
the monomial y1 appears in Q with nonzero coefficient; then by writing out
the 20 relations rankM ≤ 1 explicitly, it’s easy to see that y1, y2 and y3

generate cokerS2R1 → R2, and hence H(X/B,P ) = 3.
The above form of the equations means that R(X/B) is a codimension 2

complete intersection in a generic symmetric determinantal (given by setting
Q and H to be function of x1, . . . , t). I believe that the other double fibres of
[ML], Theorem III.5.1 are also symmetric determinantals, although there is
some unpleasantness if you want to put all the cases in a single parametrised
family, as she does. The point is that the quadratic relation, which I assumed
to be ξ2

1 = ξ2ξ3, can be a line pair or double line. Incidentally, R(F,KF )
is exactly the same ring as R(C,KX |C) where X is a Godeaux surface with

10



Tors = Z/2 and C ∈ |KX + 1| its unique paracanonical curve, so that the
rather complicated proof of [ML], Theorem III.5.1 kills two birds with one
stone.

Excercise 3.1 (i) Show how to eliminate yi, zi to get the equation of the
1-canonical model;

(ii) make some sarcastic remarks about how horrid it is compared to the
nice determinantal format of the entire canonical ring.

3.7

Consider the following two cases:

(4) F = 2C with C ∼= P
1, and X has 8 nodes on C;

(5) F = 2E with E and elliptic curve, and X has 4 nodes on E.

Cases (1), (3), (4) and (5) all correspond to the modular invariant of an
atomic germ X → B tending to the hyperelliptic divisor H3, with various
possibilities for the monodromy, differing by a Z/2 twist. For an atomic
germ in case (3), X → B intersects the H3 transversally. An etale double
cover of a nonsingular curve of genus 2 as in case (3) fits in the Galois tower
corresponding to

√
(P1 +P2),

√
(P3 + · · ·+P6); the other steps of the tower

correspond to cases (1), (4) and (5). In other words, as local analytic fibre
germs, the 4 cases (3), (5), and (1), (4) for special values of the moduli can
all be obtained from one another by base change of order 2 and taking a
quotients by a group of order 2, analogous to the duality of Kodaira elliptic
fibres.

3.8

It’s very instructive to understand exactly why the two cases (1) and (3) are
atomic, whereas (4) and (5) are not:

In case (4), the relative canonical algebra is just a quartic hypersurface:
the fibre F is a double conic in P2. Typically, X ⊂ P(A1) is q2 + th4 where
q = q(x1, x2, x3) is a nonsingular conic, h = h(x1, x2, x3) a quartic, and t
is a local parameter along B. A deformation of the germ with parameter u
is given by q2 + th4 + uh′4, and obviously for fixed value of u this will have
only Morse singularities. However, doesn’t the modular invariant give rise
to a contradiction? Case (4) corresponds to the modular invariant crossing
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the hyperelliptic divisor H3 ⊂M3 transversally. Making a normalised base-
change by a branched cover of order 2 of a fibre germ in case (4) gives case
(1). Surely, since hyperelliptic curves form a divisor H3 ⊂ M3, and the
germ with u = 0 has modular invariant tending to a point of H3 at t = 0,
the modular invariant for other values of t should also cross H3? This is
just false: the modular invariant is not a morphism, and from the equation
q2 + th4 +uh′4 you can see at once that the value of the modular invariant at
(t, u) = (0, 0) depends on the way you approach (0, 0): if you approach along
the tangent direction t = λu then you get the hyperelliptic curve branched
in the 8 points λh+ h′ = 0 of q = 0.

The contrast with cases (1) and (3) is very pointed. In case (4), because
the algebra is generated in degree 1, the moduli spaceM3 of curves of genus 3
has really nothing to do with the situation—the set of germs only depends on
the moduli space of plane quartics, and all hyperelliptic curves correspond
to one point. On the other hand, in case (1), the modular invariant is a
morphism toM3, taking a well-defined value (special fibre) ∈ H3 at P ∈ B;
then if the germ is deformed, the modular invariant changes continuously,
and must continue to touch H3 to order 2. In case (3) also, the value of the
modular invariant at P is determined purely by the special fibre F = 2C, as
the double cover of C corresponding to the 2-torsion class OC(C), so that
the modular invariant is a morphism.

I view this as another argument for working with the relative canoni-
cal algebra R(X/B), rather than a concrete model such as the 1-canonical
model; in each case, the thing which is really deformed is the algebra
R(F,KF ).

3.9

The above is a local analysis of atomic fibre germs. It’s clear by considera-
tions of the modular invariant B →M3 and monodromy that the 4 types of
atomic fibre germs (0–3) are not small deformations of one another. I believe
the Morsification conjecture for genus 3 fibrations; it implies the following
(due essentially to Xiao Gang):

Conjecture 3.2 There is a calculus which associates to each bad fibre germ
of a genus 3 fibration X → B an invariant (a0, a1, a2, a3), in which ai is the
virtual number of atomic fibres in case (i).

And X → B should have the global numerical properties of a genus 3
fibration with these atomic fibres as its only singular fibres. More precisely,
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the Chern numbers of X → B should be given by

c2(X) = Euler number of nonsingular minimal model
= 8(b− 1) + a0 + a2 + 2a3; (1)

(here the Euler number of the base is 2− 2b and that of the general fibre is
−4; each fibre in case (0) or (2) decreases the Euler number by 1, and in
case (3) by 2); and using (∗) together with the values of H(X/B,P ) obtained
in (3.3–5) gives

K2
X = 3χ(OX)− 10χ(OB) + a1 + 2a2 + 3a3. (2)

Noether’s formula and elementary arithmetic gives

χ(OX) = 2(b− 1) +
1
9

(a0 + a1 + 3a2 + 5a3) (3)

and
K2
X = 16(b− 1) +

1
3

(a0 + 4a1 + 9a2 + 14a4). (4)

3.10

The conjectural picture of the geography of genus 3 fibrations which emerges
is as follows: fix K2, χ(OX) and b = genus(B). Then there are a finite
number of solutions of

a1 + 2a2 + 3a3 = K2
X − 3χ(OX) + 10χ(OB). (5)

Fixing (a1, a2, a3), consider genus 3 fibrations f : X → B as in the con-
clusion of the conjecture. These will usually form one or more irreducible
components of the moduli space. By analogy with Horikawa’s work, I ex-
pect that for fairly small values of K2, say K2 ≤ 4χ, there is normally just
one component, and sometimes an extra one corresponding to some extreme
possibility for the vector bundle R1 = f∗ωX/B; in any case, the number of
irreducible components of the moduli space should be approximately the
number of solutions of (5). If this is true, there is an area in surface geogra-
phy in which the number of components of the moduli space grows as 1/6
times the square of K2

X − 3χ(OX).
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3.11

Some nontrivial results in this area of geography have been obtained by
Konno and Ashikaga. For example, [A] proves that there exist surfaces
with a genus 3 pencil and assigned values of K2 and χ(OX) in the range
3χ − 10 ≤ K2 ≤ 8χ − 78; the big values of K2 come from the base curve
B having large genus, so over P1 he only gets 3χ − 10 ≤ K2 ≤ 4χ − 16.
The examples are constructed from divisors in a 3-fold scroll having lots of
elliptic Gorenstein singularities of degree 2 (i.e., like x2 + y4 + z4), rather
similar to Ulf Persson’s first explorations. Ashikaga’s singular fibres consist
of two elliptic curves E1 + E2 meeting transversally in 2 points; in terms
of the invariants ai of the above conjecture, each of these corresponds to
a0 = 2, a1 = 1, that is, it has a Morsification with two irreducible nodal
fibres and one nonsingular hyperelliptic fibre.

4 Conclusion, more problems

A nonhyperelliptic curve of genus 4 is canonically an intersection of a quadric
and cubic, so that for a genus 4 pencil X → B, the relative 1-canonical image
X ⊂ P(R1) lives in a P3-bundle over B, and is contained in a uniquely
defined relative quadric X ⊂ Q ⊂ P(R1). Because of this relative quadratic
equation, L = ker{S2R1 → R2} is a line bundle. The value of K2 is of
course determined as in §2 and (3.1) by cokerS2R1 → R2 and degL:

K2 = 4χ(OX)− 12χ(OB)− degL+ length coker .

However, because of the term degL, this is not purely an invariant of the
fibre germ. Also, if X → B varies in a family, it seems quite likely that
length coker and degL will vary upper-semicontinuously; e.g., X → B may
acquire a nonsingular hyperelliptic fibre, giving cokerS2R1 → R2, and the
degree of the hypersurface Q will drop.

Genus 4 pencils are very interesting for two reasons: Consider surfaces
for which ϕK is birational, and just above the continental rift given by
the Castelnuovo–Horikawa inequality K2 ≥ 3pg − 7. I conjecture that up to
some bound K2 ≤ apg−b (with some value I can’t remember, something like
a = 10/3, b = 10), (?) any such surface X has a genus 3 pencil X → B; since
these are canonically plane quartics, the canonical image of X is certainly
not an intersection of cubics. After that, and up the next rift K2 ≤ apg − b
(ditto, maybe a = 7/2), (?) X has a pencil of curves of genus 3 or 4.
The reason for believing this is that in the range K2 < 4pg − 12, canonical
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surfaces (?) are contained in a 3-fold X ⊂ W ⊂ Ppg−1, and when degW is
small, it is (?) ruled by planes or quadric surfaces. Thus the genus 4 pencils
give (?) the surfaces of smallest degree for which the canonical image can
be birationally cut out by cubics. (See [R] for some of these conjecture.)
Surfaces with a genus 5 pencil X → P

1, and no essential singular fibres have
K2 = 4pg − 12.

Secondly, if X0 is a Godeaux surface and |2KX0 | has no fixed part then
blowing up the codimension 2 base locus gives a genus 4 pencil X → P

1. In
this case R1 = 4O

P1(−1) (because its degree is known, and pg = 0). The
2-disconnected fibres come from the torsion group of X0. For the known
classes of Godeaux surfaces, when the torsion is big, cokerS2R1 → R2 is
also big, and X ⊂ Q ⊂ P1×P3, where Q has bidegree (a, 2) with a small, so
that X can be constructed by writing down Q, then X as a divisor on Q; in
other words, X is more or less like a complete intersection inside P1 × P3.
But when the torsion is small, Q has bidegree (a, 2) with a large, and X ⊂ Q
is in a divisor class |OQ(b, 2)| with b negative; in other words, to construct
X, I have to make a residual intersection with a cubic containing many fibres
of Q. In this case, the question of how many hyperelliptic curves of genus 4
there are among the fibres, and whether this number changes in the moduli
space of Godeaux surfaces, seems very interesting.
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